Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Annu Rev Immunol ; 33: 475-504, 2015.
Article in English | MEDLINE | ID: mdl-25622195

ABSTRACT

In this review we discuss the effects of microbial exposure on the B cell repertoire. Neonatal exposure to conserved bacterial carbohydrates and phospholipids permanently reprograms the natural antibody repertoire directed toward these antigens by clonal expansion, alterations in clonal dominance, and increased serum antibody levels. These epitopes are present not only in bacterial cell walls, but also in common environmental allergens. Neonatal immunization with bacterial polysaccharide vaccines results in attenuated allergic airway responses to fungi-, house dust mite-, and cockroach-associated allergens in mouse models. The similarities between mouse and human natural antibody repertoires suggest that reduced microbial exposure in children may have the opposite effect, providing a potential mechanistic explanation for the hygiene hypothesis. We propose that understanding the effects of childhood infections on the natural antibody repertoire and the mechanisms of antibody-mediated immunoregulation observed in allergy models will lead to the development of prevention/interventional strategies for treatment of allergic asthma.


Subject(s)
Allergens/immunology , Antibodies/immunology , Respiratory Hypersensitivity/immunology , Animals , Antibodies/blood , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Bacteria/immunology , Host-Pathogen Interactions/immunology , Humans , Respiratory Hypersensitivity/blood , Respiratory Hypersensitivity/metabolism , Respiratory Hypersensitivity/microbiology
2.
Immunity ; 56(4): 847-863.e8, 2023 04 11.
Article in English | MEDLINE | ID: mdl-36958335

ABSTRACT

Seasonal influenza vaccination elicits hemagglutinin (HA)-specific memory B (Bmem) cells, and although multiple Bmem cell populations have been characterized, considerable heterogeneity exists. We found that HA-specific human Bmem cells differed in the expression of surface marker FcRL5 and transcriptional factor T-bet. FcRL5+T-bet+ Bmem cells were transcriptionally similar to effector-like memory cells, while T-betnegFcRL5neg Bmem cells exhibited stem-like central memory properties. FcRL5+ Bmem cells did not express plasma-cell-commitment factors but did express transcriptional, epigenetic, metabolic, and functional programs that poised these cells for antibody production. Accordingly, HA+ T-bet+ Bmem cells at day 7 post-vaccination expressed intracellular immunoglobulin, and tonsil-derived FcRL5+ Bmem cells differentiated more rapidly into antibody-secreting cells (ASCs) inĀ vitro. The T-bet+ Bmem cell response positively correlated with long-lived humoral immunity, and clonotypes from T-bet+ Bmem cells were represented in the secondary ASC response to repeat vaccination, suggesting that this effector-like population predicts influenza vaccine durability and recall potential.


Subject(s)
Influenza Vaccines , Influenza, Human , Humans , Influenza, Human/prevention & control , Antibody Formation , Memory B Cells , Vaccination , Immunologic Memory , Antibodies, Viral
3.
Immunity ; 53(1): 172-186.e6, 2020 07 14.
Article in English | MEDLINE | ID: mdl-32610078

ABSTRACT

B-1 B cells derive from a developmental program distinct from that of conventional B cells, through B cell receptor (BCR)-dependent positive selection of fetally derived precursors. Here, we used direct labeling of B cells reactive with the N-acetyl-D-glucosamine (GlcNAc)-containing Lancefield group A carbohydrate of Streptococcus pyogenes to study the effects of bacterial antigens on the emergent B-1 B cell clonal repertoire. The number, phenotype, and BCR clonotypes of GlcNAc-reactive B-1 B cells were modulated by neonatal exposure to heat-killed S.Ā pyogenes bacteria. GlcNAc-reactive B-1 clonotypes and serum antibodies were reduced in germ-free mice compared with conventionally raised mice. Colonization of germ-free mice with a conventional microbiota promoted GlcNAc-reactive B-1 B cell development and concomitantly elicited clonally related IgA+ plasma cells in the small intestine. Thus, exposure to microbial antigens in early life determines the clonality of the mature B-1 B cell repertoire and ensuing antibody responses, with implications for vaccination approaches and schedules.


Subject(s)
Antibodies, Bacterial/blood , Antigens, Bacterial/immunology , B-Lymphocyte Subsets/immunology , Polysaccharides, Bacterial/immunology , Streptococcus pyogenes/immunology , Acetylglucosamine/metabolism , Animals , Animals, Newborn/immunology , Germ-Free Life/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Microbiota/immunology
4.
J Immunol ; 212(12): 1913-1921, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38647373

ABSTRACT

Using an Ig H chain conferring specificity for N-acetyl-d-glucosamine (GlcNAc), we developed transgenic (VHHGAC39 TG) mice to study the role of self-antigens in GlcNAc-reactive B-1 B cell development. In VHHGAC39 TG mice, GlcNAc-reactive B-1 B cell development during ontogeny and in adult bone marrow was normal. However, adult TG mice exhibited a block at transitional-2 immature B cell stages, resulting in impaired allelic exclusion and accumulation of a B cell subset coexpressing endogenous Ig gene rearrangements. Similarly, VHHGAC39 B cell fitness was impeded compared with non-self-reactive VHJ558 B TG cells in competitive mixed bone marrow chimeras. Nonetheless, adult VHHGAC39 mice immunized with Streptococcus pyogenes produce anti-GlcNAc Abs. Peritoneal cavity B cells transferred from VHHGAC39 TG mice into RAG-/- mice also exhibited robust expansion and anti-GlcNAc Ab production. However, chronic treatment of young VHHGAC39 mice with GlcNAc-specific mAbs leads to lower GlcNAc-binding B cell frequencies while increasing the proportion of GlcNAc-binding B1-a cells, suggesting that Ag masking or clearance of GlcNAc Ags impedes maturation of newly formed GlcNAc-reactive B cells. Finally, BCR H chain editing promotes expression of endogenous nontransgenic BCR alleles, allowing potentially self-reactive TG B cells to escape anergy or deletion at the transitional stage of precursor B cell development. Collectively, these observations indicate that GlcNAc-reactive B cell development is sensitive to the access of autologous Ags.


Subject(s)
Acetylglucosamine , Mice, Transgenic , Animals , Mice , Acetylglucosamine/immunology , Cell Differentiation/immunology , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Heavy Chains/immunology , Immunity, Innate/immunology , B-Lymphocyte Subsets/immunology , Mice, Inbred C57BL , Autoantigens/immunology , Streptococcus pyogenes/immunology , B-Lymphocytes/immunology
5.
Gastroenterology ; 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39173722

ABSTRACT

BACKGROUND AND AIMS: Inflammatory bowel disease (IBD) is a chronic manifestation of dysregulated immune response to the gut microbiota in genetically predisposed hosts. Nearly half of patients with Crohn's disease (CD) develop selective serum immunoglobulin (Ig)G response to flagellin proteins expressed by bacteria in the Lachnospiraceae family. This study aimed to identify the binding epitopes of these IgG antibodies and assess their relevance in CD and in homeostasis. METHODS: Sera from an adult CD cohort, a treatment-naĆÆve pediatric CD cohort, and 3 independent non-IBD infant cohorts were analyzed using novel techniques including a flagellin peptide microarray and a flagellin peptide cytometric bead array. RESULTS: A dominant B cell peptide epitope in patients with CD was identified, located in the highly conserved "hinge region" between the D0 and D1 domains at the amino-terminus of Lachnospiraceae flagellins. Elevated serum IgG reactivity to the hinge peptide was strongly associated with incidence of CD and the development of disease complications in children with CD up to 5 years in advance. Notably, high levels of serum IgG to the hinge epitope were also found in most infants from 3 different geographic regions (Uganda, Sweden, and the United States) at 1 year of age, which decrements rapidly afterward. CONCLUSIONS: These findings identified a distinct subset of patients with CD, united by a shared reactivity to a dominant commensal bacterial flagellin epitope, that may represent failure of a homeostatic response to the gut microbiota beginning in infancy.

6.
J Immunol ; 211(9): 1320-1331, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37747293

ABSTRACT

Environmental factors and host microbiota strongly influence type 1 diabetes (T1D) progression. We report that neonatal immunization with group A Streptococcus suppresses T1D development in NOD mice by promoting clonal expansion of N-acetyl-d-glucosamine (GlcNAc)-specific B-1 B cells that recognize pancreatic Ɵ cell-derived Ags bearing GlcNAc-containing posttranslational modifications. Early exposure to Lancefield group A cell-wall carbohydrate Ags increased production of GlcNAc-reactive serum Abs and enhanced localization of innate-like GlcNAc-specific B cells to pancreatic tissue during T1D pathogenesis. We show that B-1 B cell-derived GlcNAc-specific IgM engages apoptosis-associated Ɵ cell Ags, thereby suppressing diabetogenic T cell activation. Likewise, adoptively transferring GlcNAc-reactive B-1 B cells significantly delayed T1D development in naive recipients. Collectively, these data underscore potentially protective involvement of innate-like B cells and natural Abs in T1D progression. These findings suggest that previously reported associations of reduced T1D risk after GAS infection are B cell dependent and demonstrate the potential for targeting the natural Ab repertoire in considering therapeutic strategies for T1D.


Subject(s)
Diabetes Mellitus, Type 1 , Mice , Animals , Mice, Inbred NOD , Glucosamine , Acetylglucosamine , Pancreas/pathology
7.
Glycobiology ; 34(11)2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39095059

ABSTRACT

IgA nephropathy is a kidney disease characterized by deposition of immune complexes containing abnormally O-glycosylated IgA1 in the glomeruli. Specifically, some O-glycans are missing galactose that is normally Ɵ1,3-linked to N-acetylgalactosamine of the core 1 glycans. These galactose-deficient IgA1 glycoforms are produced by IgA1-secreting cells due to a dysregulated expression and activity of several glycosyltransferases. Galactose-deficient IgA1 in the circulation of patients with IgA nephropathy is bound by IgG autoantibodies and the resultant immune complexes can contain additional proteins, such as complement C3. These complexes, if not removed from the circulation, can enter the glomerular mesangium, activate the resident mesangial cells, and induce glomerular injury. In this review, we briefly summarize clinical and pathological features of IgA nephropathy, review normal and aberrant IgA1 O-glycosylation pathways, and discuss the origins and potential significance of natural anti-glycan antibodies, namely those recognizing N-acetylgalactosamine. We also discuss the features of autoantibodies specific for galactose-deficient IgA1 and the characteristics of pathogenic immune complexes containing IgA1 and IgG. In IgA nephropathy, kidneys are injured by IgA1-containing immune complexes as innocent bystanders. Most patients with IgA nephropathy progress to kidney failure and require dialysis or transplantation. Moreover, most patients after transplantation experience a recurrent disease. Thus, a better understanding of the pathogenetic mechanisms is needed to develop new disease-specific treatments.


Subject(s)
Glomerulonephritis, IGA , Immunoglobulin A , Humans , Glomerulonephritis, IGA/immunology , Glomerulonephritis, IGA/metabolism , Glomerulonephritis, IGA/pathology , Glycosylation , Immunoglobulin A/immunology , Immunoglobulin A/metabolism , Autoantibodies/immunology , Animals
8.
Immunol Rev ; 270(1): 32-50, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26864103

ABSTRACT

Natural immunoglobulin derived from innate-like B lymphocytes plays important roles in the suppression of inflammatory responses and represents a promising therapeutic target in a growing number of allergic and autoimmune diseases. These antibodies are commonly autoreactive and incorporate evolutionarily conserved specificities, including certain glycan-specific antibodies. Despite this conservation, exposure to bacterial polysaccharides during innate-like B lymphocyte development, through either natural exposure or immunization, induces significant changes in clonal representation within the glycan-reactive B cell pool. Glycan-reactive natural antibodies (NAbs) have been reported to play protective and pathogenic roles in autoimmune and inflammatory diseases. An understanding of the composition and functions of a healthy glycan-reactive NAb repertoire is therefore paramount. A more thorough understanding of NAb repertoire development holds promise for the design of both biological diagnostics and therapies. In this article, we review the development and functions of NAbs and examine three glycan specificities, represented in the innate-like B cell pool, to illustrate the complex roles environmental antigens play in NAb repertoire development. We also discuss the implications of increased clonal plasticity of the innate-like B cell repertoire during neonatal and perinatal periods, and the prospect of targeting B cell development with interventional therapies and correct defects in this important arm of the adaptive immune system.


Subject(s)
Antibodies/immunology , Antibodies/therapeutic use , Immunotherapy , Polysaccharides/immunology , Animals , Antibodies/genetics , Antibody Formation , Antibody Specificity/immunology , Antigens/immunology , B-Lymphocyte Subsets/cytology , B-Lymphocyte Subsets/immunology , B-Lymphocyte Subsets/metabolism , Cell Differentiation , Clonal Selection, Antigen-Mediated/genetics , Clonal Selection, Antigen-Mediated/immunology , Epitopes/immunology , Gene Rearrangement, B-Lymphocyte , Humans , Immunity, Innate , Immunotherapy/methods , Microbiota/immunology , Symbiosis
9.
J Immunol ; 197(8): 3175-3187, 2016 10 15.
Article in English | MEDLINE | ID: mdl-27581173

ABSTRACT

There is a higher incidence of allergic conditions among children living in industrialized countries than those in developing regions. One explanation for this is reduced neonatal exposure to microbes and the consequent lack of immune stimulation. Sensitivity to cockroach allergen is highly correlated with the development of severe asthma. In this study, we determined that an Ab to microbial α-1,3-glucan binds an Enterobacter species and cockroach allergen. Neonatal, but not adult, mice immunized with this α-1,3-glucan-bearing Enterobacter (MK7) are protected against cockroach allergy. Following exposure to cockroach allergen, α-1,3-glucan-specific IgA-secreting cells are present in the lungs of mice immunized with MK7 as neonates but not in the lungs of those immunized as adults. Mice that are unable to generate anti-α-1,3-glucan IgA Abs were immunized with MK7 as neonates and were no longer protected against cockroach allergy. Thus, neonatal, but not adult, exposure to α-1,3-glucan results in suppressed development of cockroach allergy via pulmonary α-1,3-glucan-specific IgA-secreting cells.


Subject(s)
Allergens/immunology , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Cockroaches/immunology , Glucans/immunology , Immunoglobulin A/immunology , Lung/immunology , Animals , Mice , Mice, Congenic , Mice, Inbred C57BL , Mice, Knockout
10.
J Immunol ; 194(9): 4387-96, 2015 May 01.
Article in English | MEDLINE | ID: mdl-25821219

ABSTRACT

Invasive aspergillosis (IA) resulting from infection by Aspergillus fumigatus is a leading cause of death in immunosuppressed populations. There are limited therapeutic options for this disease and currently no vaccine. There is evidence that some anti-A. fumigatus mAbs can provide protection against IA. However, vaccine development has been impeded by a paucity of immunological targets on this organism demonstrated to provide protective responses. Sialylated oligosaccharide epitopes found on a variety of pathogens, including fungi and group B streptococci (GBS), are thought to be major virulence factors of these organisms facilitating pathogen attachment to host cells and modulating complement activation and phagocytosis. Because some of these oligosaccharide structures are conserved across kingdoms, we screened a panel of mAbs raised against GBS serotypes for reactivity to A. fumigatus. This approach revealed that SMB19, a GBSIb type-specific mAb, reacts with A. fumigatus conidia and hyphae. The presence of this Ab in mice, as a result of passive or active immunization, or by enforced expression of the SMB19 H chain as a transgene, results in significant protection in both i.v. and airway-induced models of IA. This study demonstrates that some Abs generated against bacterial polysaccharides engage fungal pathogens and promote their clearance in vivo and thus provide rationale of alternative strategies for the development of vaccines or therapeutic mAbs against these organisms.


Subject(s)
Antibodies, Bacterial/immunology , Antibodies, Monoclonal/immunology , Aspergillosis/immunology , Aspergillosis/prevention & control , Streptococcus/immunology , Animals , Antibodies, Bacterial/administration & dosage , Antibodies, Monoclonal/administration & dosage , Antibody Specificity/immunology , Aspergillosis/genetics , Aspergillosis/mortality , Aspergillus/immunology , Brain/immunology , Brain/pathology , Calcium/metabolism , Disease Models, Animal , Immunization , Kidney/immunology , Kidney/pathology , Mice , Mice, Transgenic , Neutrophil Infiltration/immunology , Oligosaccharides/metabolism , Protein Binding/immunology , Streptococcus/classification
11.
J Am Soc Nephrol ; 27(11): 3278-3284, 2016 Nov.
Article in English | MEDLINE | ID: mdl-26966014

ABSTRACT

Autoantibodies against galactose-deficient IgA1 drive formation of pathogenic immune complexes in IgA nephropathy. IgG autoantibodies against galactose-deficient IgA1 in patients with IgA nephropathy have a specific amino-acid sequence, Y1CS3, in the complementarity-determining region 3 of the heavy chain variable region compared with a Y1CA3 sequence in similar isotype-matched IgG from healthy controls. We previously found that the S3 residue is critical for binding galactose-deficient IgA1. To determine whether this difference is due to a rare germline sequence, we amplified and sequenced the corresponding germline variable region genes from peripheral blood mononuclear cells of seven patients with IgA nephropathy and six healthy controls from whom we had cloned single-cell lines secreting monoclonal IgG specific for galactose-deficient IgA1. Sanger DNA sequencing revealed that complementarity-determining region 3 in the variable region of the germline genes encoded the Y1C(A/V)3 amino-acid sequence. Thus, the A/V>S substitution in the complementarity-determining region 3 of anti-galactose-deficient-IgA1 autoantibodies of the patients with IgA nephropathy is not a rare germline gene variant. Modeling analyses indicated that the S3 hydroxyl group spans the complementarity-determining region 3 loop stem, stabilizing the adjacent Ɵ-sheet and stem structure, important features for effective binding to galactose-deficient IgA1. Understanding processes leading to production of the autoantibodies may offer new approaches to treat IgA nephropathy.


Subject(s)
Autoantibodies/genetics , Galactose/deficiency , Glomerulonephritis, IGA/genetics , Glomerulonephritis, IGA/immunology , Immunoglobulin A , Mutation , Glomerulonephritis, IGA/enzymology , Humans
12.
Eur J Immunol ; 43(2): 348-59, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23112125

ABSTRACT

CD19-deficient mice were used as a model to study follicular dendritic cell (FDC) activation because these mice have normal numbers of FDC-containing primary follicles, but lack the ability to activate FDCs or form GCs. It was hypothesized that CD19 expression is necessary for B-cell activation and upregulation of membrane lymphotoxin (mLT) expression, which promotes FDC activation. Using VCAM-1 and FcƎĀ³RII/III as FDC activation markers, it was determined that the adoptive transfer of CD19(+) wild-type B cells into CD19-deficient hosts rescued GC formation and FDC activation, demonstrating that CD19 expression on B cells is required for FDC activation. In contrast, CD19(+) donor B cells lacking mLT were unable to induce VCAM-1 expression on FDCs, furthermore FcƎĀ³RII/III upregulation was impaired in FDCs stimulated with mLT-deficient B cells. VCAM-1 expression on FDCs, but not FcƎĀ³RII/III, was rescued when CD19-deficient B cells expressing transgenic mLT were cotransferred into recipient mice with CD19(+) , mLT-deficient B cells, suggesting that FDC activation requires the CD19-dependent upregulation of mLT on activated B cells. Collectively, these data demonstrate that activated B cells are responsible for the initiation of FDC activation resulting in a microenvironment supportive of GC development and maintenance.


Subject(s)
B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Dendritic Cells, Follicular/immunology , Dendritic Cells, Follicular/metabolism , Germinal Center/immunology , Germinal Center/metabolism , Lymphotoxin alpha1, beta2 Heterotrimer/biosynthesis , Animals , Antigens, CD19/biosynthesis , Antigens, CD19/genetics , Antigens, CD19/immunology , Lymphocyte Activation , Lymphotoxin alpha1, beta2 Heterotrimer/genetics , Lymphotoxin alpha1, beta2 Heterotrimer/immunology , Mice , Mice, Inbred C57BL , Receptors, IgG/biosynthesis , Receptors, IgG/genetics , Receptors, IgG/immunology , Up-Regulation , Vascular Cell Adhesion Molecule-1/biosynthesis , Vascular Cell Adhesion Molecule-1/genetics , Vascular Cell Adhesion Molecule-1/immunology
13.
J Immunol ; 187(7): 3565-77, 2011 Oct 01.
Article in English | MEDLINE | ID: mdl-21873522

ABSTRACT

Endogenous expression of the adaptor protein hematopoietic Src homology 2-containing adaptor protein (HSH2) is regulated in a dynamic manner during B cell maturation and differentiation. Developing B cells lack detectable HSH2, whereas transitional 1 and 2 B cells in the periphery exhibit increasing levels of expression. Mature follicular B cells exhibit decreased expression of HSH2 compared with transitional 2 B cells, and expression is further downregulated in germinal center B cells. In contrast, marginal zone B cells and B1a/b B cells exhibit high-level HSH2 expression. Regulation of HSH2 expression plays a critical role in determining the outcome of the humoral immune response as demonstrated using HSH2 transgenic (Tg) mice. Constitutive expression of HSH2 in the B lineage at levels comparable to B1a/b B cells results in decreased serum Ig titers for all subclasses with the exception of IgA. HSH2 Tg mice immunized with T-dependent or T-independent Ags exhibit a moderate decrease in the production of Ag-specific IgM, whereas class-switched isotypes are decreased by Ć¢ĀˆĀ¼80-90% compared with control mice. Analysis of HSH2 Tg B cell activation in vitro demonstrated that HSH2 selectively regulates the B cell response to TNF family receptors (i.e., CD40 and BAFF-R), but not BCR- or TLR-dependent signals. These data demonstrate that changes in HSH2 expression have profound effects on the humoral immune response.


Subject(s)
Adaptor Proteins, Signal Transducing/immunology , B-Lymphocytes/cytology , B-Lymphocytes/immunology , Cell Differentiation/immunology , Immunity, Humoral/immunology , Lymphopoiesis/immunology , Adaptor Proteins, Signal Transducing/metabolism , Animals , B-Lymphocytes/metabolism , Blotting, Western , Cell Separation , Flow Cytometry , Germinal Center/cytology , Germinal Center/immunology , Germinal Center/metabolism , Mice , Mice, Transgenic , Reverse Transcriptase Polymerase Chain Reaction
14.
J Immunol ; 187(5): 2346-55, 2011 Sep 01.
Article in English | MEDLINE | ID: mdl-21804015

ABSTRACT

Receptors encoded within the Trem locus have been shown to play an important role in modulating the cellular response to pattern recognition receptor signaling. TREM-like transcript 2 (TLT2) is a member of the Trem locus that is conserved in mouse and human. TLT2 exhibits a unique expression pattern in that it is expressed on cells of the myeloid and lymphoid lineage, suggesting that it plays a role in both innate and adaptive immunity. In this work, studies reveal that TLT2 plays an important role in potentiating neutrophil antibacterial activity and chemotaxis. TLT2 ligation enhances the neutrophil response to the formylated peptide FMLF, leading to increased reactive oxygen species production, degranulation, and chemotaxis. Moreover, TLT2 has the ability to specifically potentiate neutrophil activation and chemotaxis in response to a range of agonists that bind to G protein-coupled receptors, as it does not potentiate the response of cells to growth factor receptor-, Fc receptor-, or TLR-mediated signaling. Finally, TLT2 ligation potentiates the recruitment of neutrophils to sites of inflammation in vivo. These findings reveal a novel functional role for TLT2 that involves potentiation of neutrophil responses to G protein-coupled receptor signaling. Thus, TLT2 appears to play an important role in enhancing the innate immune response via a novel molecular mechanism.


Subject(s)
Chemotaxis, Leukocyte/immunology , Neutrophils/immunology , Receptors, G-Protein-Coupled/immunology , Receptors, Immunologic/immunology , Signal Transduction/immunology , Animals , Cell Separation , Flow Cytometry , Immunity, Innate/immunology , Inflammation/immunology , Mice , Mice, Inbred C57BL , Neutrophil Activation/immunology , Neutrophils/metabolism
15.
Transplantation ; 107(12): 2526-2532, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37493609

ABSTRACT

BACKGROUND: Although donor-specific antibody pre- and posttransplantation is routinely assessed, accurate quantification of memory alloreactive B cells that mediate recall antibody response remains challenging. Major histocompatibility complex (MHC) tetramers have been used to identify alloreactive B cells in mice and humans, but the specificity of this approach has not been rigorously assessed. METHODS: B-cell receptors from MHC tetramer-binding single B cells were expressed as mouse recombinant immunoglobulin G1 (rIgG1) monoclonal antibodies, and the specificity was assessed with a multiplex bead assay. Relative binding avidity of rIgG1 was measured by modified dilution series technique and surface plasmon resonance. Additionally, immunoglobulin heavy chain variable regions of 50 individual B-cell receptors were sequenced to analyze the rate of somatic hypermutation. RESULTS: The multiplex bead assay confirmed that expressed rIgG1 monoclonal antibodies were preferentially bound to bait MHC class II I-E d over control I-A d and I-A b tetramers. Furthermore, the dissociation constant 50 binding avidities of the rIgG1 ranged from 10 mM to 7 nM. The majority of tetramer-binding B cells were low avidity, and ~12.8% to 15.2% from naive and tolerant mice and 30.9% from acute rejecting mice were higher avidity (dissociation constant 50 <1 mM). CONCLUSIONS: Collectively, these studies demonstrate that donor MHC tetramers, under stringent binding conditions with decoy self-MHC tetramers, can specifically identify a broad repertoire of donor-specific B cells under conditions of rejection and tolerance.


Subject(s)
Major Histocompatibility Complex , Transplantation Tolerance , Humans , Mice , Animals , Histocompatibility Antigens Class II , Immunoglobulin G , Antibodies, Monoclonal , Receptors, Antigen, B-Cell
16.
bioRxiv ; 2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37609309

ABSTRACT

About half of patients with Crohn's disease (CD) develop selective serum IgG response to flagellin proteins of the Lachnospiraceae family. Here, we identified a dominant B cell peptide epitope in CD, locating in the highly conserved "hinge region" between the D0 and D1 domains at the amino-terminus of Lachnospiraceae flagellins. Serum IgG reactive to this epitope is present at an elevated level in adult CD patients and in pediatric CD patients at diagnosis. Most importantly, high levels of serum IgG to the hinge epitope were found in most infants from 3 different geographic regions (Uganda, Sweden, and the USA) at one year of age. This vigorous homeostatic response decrements with age as it is not present in healthy adults. These data identify a distinct subset of CD patients, united by a shared reactivity to this dominant flagellin epitope that may represent failure of a homeostatic response beginning in infancy.

17.
J Interferon Cytokine Res ; 42(7): 301-315, 2022 07.
Article in English | MEDLINE | ID: mdl-35793525

ABSTRACT

Immunoglobulin A (IgA) nephropathy is the most common primary glomerulonephritis worldwide, with no disease-specific treatment and up to 40% of patients progressing to kidney failure. IgA nephropathy (IgAN), characterized by IgA1-containing immunodeposits in the glomeruli, is considered to be an autoimmune disease in which the kidneys are injured as innocent bystanders. Glomerular immunodeposits are thought to originate from the circulating immune complexes that contain aberrantly O-glycosylated IgA1, the main autoantigen in IgAN, bound by IgG autoantibodies. A common clinical manifestation associated with IgAN includes synpharyngitic hematuria at disease onset or during disease activity. This observation suggests a connection of disease pathogenesis with an activated mucosal immune system of the upper-respiratory and/or gastrointestinal tract and IgA1 glycosylation. In fact, some cytokines can enhance production of aberrantly O-glycosylated IgA1. This process involves abnormal cytokine signaling in IgA1-producing cells from patients with IgAN. In this article, we present our view of pathogenesis of IgAN and review how some cytokines can contribute to the disease process by enhancing production of aberrantly glycosylated IgA1. We also review current clinical trials of IgAN based on cytokine-targeting therapeutic approaches.


Subject(s)
Glomerulonephritis, IGA , Autoantigens/metabolism , Cytokines/metabolism , Glomerulonephritis, IGA/metabolism , Glycosylation , Humans , Immunoglobulin A
18.
Hum Vaccin Immunother ; 18(6): 2127292, 2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36194255

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has illustrated the critical need for effective prophylactic vaccination to prevent the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Intranasal vaccination is an attractive approach for preventing COVID-19 as the nasal mucosa is the site of initial SARS-CoV-2 entry and viral replication prior to aspiration into the lungs. We previously demonstrated that a single intranasal administration of a candidate adenovirus type 5-vectored vaccine encoding the receptor-binding domain of the SARS-CoV-2 spike protein (AdCOVID) induced robust immunity in both the airway mucosa and periphery, and completely protected K18-hACE2 mice from lethal SARS-CoV-2 challenge. Here we show that a single intranasal administration of AdCOVID limits viral replication in the nasal cavity of K18-hACE2 mice. AdCOVID also induces sterilizing immunity in the lungs of mice as reflected by the absence of infectious virus. Finally, AdCOVID prevents SARS-CoV-2 induced pathological damage in the lungs of mice. These data show that AdCOVID not only limits viral replication in the respiratory tract, but it also prevents virus-induced inflammation and immunopathology following SARS-CoV-2 infection.


Subject(s)
COVID-19 Vaccines , COVID-19 , SARS-CoV-2 , Animals , Humans , Mice , Administration, Intranasal , Antibodies, Viral , COVID-19/prevention & control , Lung , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus , Viral Vaccines/administration & dosage , COVID-19 Vaccines/administration & dosage
19.
J Clin Med ; 10(19)2021 Sep 29.
Article in English | MEDLINE | ID: mdl-34640530

ABSTRACT

IgA nephropathy, initially described in 1968 as a kidney disease with glomerular "intercapillary deposits of IgA-IgG", has no disease-specific treatment and is a common cause of kidney failure. Clinical observations and laboratory analyses suggest that IgA nephropathy is an autoimmune disease wherein the kidneys are damaged as innocent bystanders due to deposition of IgA1-IgG immune complexes from the circulation. A multi-hit hypothesis for the pathogenesis of IgA nephropathy describes four sequential steps in disease development. Specifically, patients with IgA nephropathy have elevated circulating levels of IgA1 with some O-glycans deficient in galactose (galactose-deficient IgA1) and these IgA1 glycoforms are recognized as autoantigens by unique IgG autoantibodies, resulting in formation of circulating immune complexes, some of which deposit in glomeruli and activate mesangial cells to induce kidney injury. This proposed mechanism is supported by observations that (i) glomerular immunodeposits in patients with IgA nephropathy are enriched for galactose-deficient IgA1 glycoforms and the corresponding IgG autoantibodies; (ii) circulatory levels of galactose-deficient IgA1 and IgG autoantibodies predict disease progression; and (iii) pathogenic potential of galactose-deficient IgA1 and IgG autoantibodies was demonstrated in vivo. Thus, a better understanding of the structure-function of these immunoglobulins as autoantibodies and autoantigens will enable development of disease-specific treatments.

20.
Vaccines (Basel) ; 9(8)2021 Aug 09.
Article in English | MEDLINE | ID: mdl-34452006

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has highlighted the urgent need for effective prophylactic vaccination to prevent the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Intranasal vaccination is an attractive strategy to prevent COVID-19 as the nasal mucosa represents the first-line barrier to SARS-CoV-2 entry. The current intramuscular vaccines elicit systemic immunity but not necessarily high-level mucosal immunity. Here, we tested a single intranasal dose of our candidate adenovirus type 5-vectored vaccine encoding the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein (AdCOVID) in inbred, outbred, and transgenic mice. A single intranasal vaccination with AdCOVID elicited a strong and focused immune response against RBD through the induction of mucosal IgA in the respiratory tract, serum neutralizing antibodies, and CD4+ and CD8+ T cells with a Th1-like cytokine expression profile. A single AdCOVID dose resulted in immunity that was sustained for over six months. Moreover, a single intranasal dose completely protected K18-hACE2 mice from lethal SARS-CoV-2 challenge, preventing weight loss and mortality. These data show that AdCOVID promotes concomitant systemic and mucosal immunity and represents a promising vaccine candidate.

SELECTION OF CITATIONS
SEARCH DETAIL