Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
FASEB J ; 34(12): 16086-16104, 2020 12.
Article in English | MEDLINE | ID: mdl-33064329

ABSTRACT

The ability of skeletal muscle to regenerate declines significantly with aging. The expression of aryl hydrocarbon receptor nuclear translocator (ARNT), a critical component of the hypoxia signaling pathway, was less abundant in skeletal muscle of old (23-25 months old) mice. This loss of ARNT was associated with decreased levels of Notch1 intracellular domain (N1ICD) and impaired regenerative response to injury in comparison to young (2-3 months old) mice. Knockdown of ARNT in a primary muscle cell line impaired differentiation in vitro. Skeletal muscle-specific ARNT deletion in young mice resulted in decreased levels of whole muscle N1ICD and limited muscle regeneration. Administration of a systemic hypoxia pathway activator (ML228), which simulates the actions of ARNT, rescued skeletal muscle regeneration in both old and ARNT-deleted mice. These results suggest that the loss of ARNT in skeletal muscle is partially responsible for diminished myogenic potential in aging and activation of hypoxia signaling holds promise for rescuing regenerative activity in old muscle.


Subject(s)
Aging/metabolism , Aryl Hydrocarbon Receptor Nuclear Translocator/metabolism , Muscle, Skeletal/metabolism , Regeneration/physiology , Animals , Cell Differentiation/physiology , Cell Line , Hypoxia/metabolism , Hypoxia/pathology , Mice , Mice, Inbred C57BL , Muscle Development/physiology , Signal Transduction/physiology
2.
J Surg Res ; 235: 216-222, 2019 03.
Article in English | MEDLINE | ID: mdl-30691797

ABSTRACT

BACKGROUND: Dietary restriction (DR), defined as reduced nutrient intake without malnutrition, is associated with longevity extension, improved glucose metabolism, and increased stress resistance, but also poor wound healing. Short-term preoperative DR followed by a return to normal feeding after surgery results in improved surgical outcomes in preclinical models. However, the effect of preoperative DR on wound healing and perioperative glucose homeostasis is currently unknown. Here, we tested the effects of two different preoperative DR regimens-protein restriction (PR) and methionine restriction (MR)-on wound healing and perioperative glucose homeostasis using an established murine model of wound healing in both nondiabetic and diabetic mice. MATERIALS AND METHODS: Surgical outcomes were tested using the McFarlane flap in nondiabetic and streptozotocin-induced diabetic mice. Short-term dietary preconditioning included 1 wk of PR or MR diet (1-2 wk) versus an isocaloric complete diet before surgery; all mice were returned to a complete diet postoperatively. Outcome measures of flap wound recovery included skin viability and laser Doppler imaging of flap perfusion and assessment of CD45+ cell infiltration. Glucose homeostasis was assessed by glucose tolerance testing and by perioperative glucose levels in the diabetic cohort. RESULTS: No significant differences were observed in percentage of viable skin, perfusion, or immune cell infiltration at 7-10 d after surgery in PR or MR mice compared with controls in healthy or diabetic mice. Preoperative glucose tolerance and postoperative glucose levels were however significantly improved by both PR and MR in diabetic mice. CONCLUSIONS: Short-term dietary preconditioning with PR or MR did not impair wound healing in nondiabetic or diabetic mice. However, both regimens reduced preoperative hyperglycemia in diabetic mice. Thus, brief preoperative dietary manipulations stand as strategies to potentially improve perioperative hyperglycemia with no deleterious effects on wound healing in mice.


Subject(s)
Diet, Protein-Restricted/adverse effects , Hyperglycemia/diet therapy , Methionine , Preoperative Care , Wound Healing , Animals , Diabetes Mellitus, Experimental/complications , Hyperglycemia/etiology , Male , Mice, Inbred C57BL
3.
JVS Vasc Sci ; 4: 100095, 2023.
Article in English | MEDLINE | ID: mdl-36852171

ABSTRACT

Objective: Hydrogen sulfide is a proangiogenic gas produced primarily by the transsulfuration enzyme cystathionine-γ-lyase (CGL). CGL-dependent hydrogen sulfide production is required for neovascularization in models of peripheral arterial disease. However, the benefits of increasing endogenous CGL and its mechanism of action have not yet been elucidated. Methods: Male whole body CGL-overexpressing transgenic (CGLTg) mice and wild-type (WT) littermates (C57BL/6J) were subjected to the hindlimb ischemia model (age, 10-12 weeks). Functional recovery was assessed via the treadmill exercise endurance test. Leg perfusion was measured by laser Doppler imaging and vascular endothelial-cadherin immunostaining. To examine the angiogenic potential, aortic ring sprouting assay and postnatal mouse retinal vasculature development studies were performed. Finally, comparative metabolomics analysis, oxidized/reduced nicotinamide adenine dinucleotide (NAD+/NADH) analysis, and quantitative real-time polymerase chain reaction were performed on CGLWT and CGLTg gastrocnemius muscle. Results: The restoration of blood flow occurred more rapidly in CGLTg mice. Compared with the CGLWT mice, the median ± standard deviation running distance and time were increased for the CGLTg mice after femoral artery ligation (159 ± 53 m vs 291 ± 74 m [P < .005] and 17 ± 4 minutes vs 27 ± 5 minutes [P < .05], respectively). Consistently, in the CGLTg ischemic gastrocnemius muscle, the capillary density was increased fourfold (0.05 ± 0.02 vs 0.20 ± 0.12; P < .005). Ex vivo, the endothelial cell (EC) sprouting length was increased in aorta isolated from CGLTg mice, especially when cultured in VEGFA (vascular endothelial growth factor A)-only media (63 ± 2 pixels vs 146 ± 52 pixels; P < .05). Metabolomics analysis demonstrated a higher level of niacinamide, a precursor of NAD+/NADH in the muscle of CGLTg mice (61.4 × 106 ± 5.9 × 106 vs 72.4 ± 7.7 × 106 area under the curve; P < .05). Similarly, the NAD+ salvage pathway gene expression was increased in CGLTg gastrocnemius muscle. Finally, CGL overexpression or supplementation with the NAD+ precursor nicotinamide mononucleotide improved EC migration in vitro (wound closure: control, 35% ± 9%; CGL, 55% ± 11%; nicotinamide mononucleotide, 42% ± 13%; P < .05). Conclusions: Our results have demonstrated that CGL overexpression improves the neovascularization of skeletal muscle on hindlimb ischemia. These effects correlated with changes in the NAD pathway, which improved EC migration.

4.
bioRxiv ; 2023 Nov 04.
Article in English | MEDLINE | ID: mdl-37961405

ABSTRACT

Short-term preoperative methionine restriction (MetR) shows promise as a translatable strategy to modulate the body's response to surgical injury. Its application, however, to improve post-interventional vascular remodeling remains underexplored. Here, we find that MetR protects from arterial intimal hyperplasia in a focal stenosis model and adverse vascular remodeling after vein graft surgery. RNA sequencing reveals that MetR enhances the brown adipose tissue phenotype in arterial perivascular adipose tissue (PVAT) and induces it in venous PVAT. Specifically, PPAR-α was highly upregulated in PVAT-adipocytes. Furthermore, MetR dampens the post-operative pro-inflammatory response to surgery in PVAT-macrophages in vivo and in vitro . This study shows for the first time that the detrimental effects of dysfunctional PVAT on vascular remodeling can be reversed by MetR, and identifies pathways involved in browning of PVAT. Furthermore, we demonstrate the potential of short-term pre-operative MetR as a simple intervention to ameliorate vascular remodeling after vascular surgery.

5.
Cell Chem Biol ; 28(12): 1669-1678.e5, 2021 12 16.
Article in English | MEDLINE | ID: mdl-34166610

ABSTRACT

Hydrogen sulfide (H2S) is a gasotransmitter with broad physiological activities, including protecting cells against stress, but little is known about the regulation of cellular H2S homeostasis. We have performed a high-content small-molecule screen and identified genotoxic agents, including cancer chemotherapy drugs, as activators of intracellular H2S levels. DNA damage-induced H2S in vitro and in vivo. Mechanistically, DNA damage elevated autophagy and upregulated H2S-generating enzyme CGL; chemical or genetic disruption of autophagy or CGL impaired H2S induction. Importantly, exogenous H2S partially rescued autophagy-deficient cells from genotoxic stress. Furthermore, stressors that are not primarily genotoxic (growth factor depletion and mitochondrial uncoupler FCCP) increased intracellular H2S in an autophagy-dependent manner. Our findings highlight the role of autophagy in H2S production and suggest that H2S generation may be a common adaptive response to DNA damage and other stressors.


Subject(s)
Antineoplastic Agents/pharmacology , Autophagy/drug effects , Hydrogen Sulfide/metabolism , Small Molecule Libraries/pharmacology , Animals , Antineoplastic Agents/chemistry , DNA Damage , HeLa Cells , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Small Molecule Libraries/chemistry
6.
Cell Metab ; 33(9): 1808-1819.e2, 2021 09 07.
Article in English | MEDLINE | ID: mdl-34270927

ABSTRACT

Plant-based dietary patterns are associated with improved cardiometabolic health, but causal dietary components are unclear. Protein has been proposed to play a role, but the importance of protein quantity versus quality remains unknown. We investigated the contributions of total protein amount, amino acid (AA) composition, and plant versus animal source. Analysis of total protein and AA composition of food items and dietary patterns revealed differences between individual food items, but few differences between AA profiles of vegan versus omnivorous dietary patterns. Effects of protein quantity, but not quality, on cardiometabolic health markers were observed in mice using semi-purified diets with crystalline AAs in plant versus animal-based ratios and naturally sourced diets with whole-food ingredients. Our data show relatively little difference in protein quality between plant-based and omnivorous dietary patterns and that reduced total protein intake in plant-based dietary patterns may be a contributor to the benefits of plant-based diets.


Subject(s)
Amino Acids , Diet, Vegetarian , Animals , Diet , Food , Mice
7.
Front Cardiovasc Med ; 8: 750926, 2021.
Article in English | MEDLINE | ID: mdl-34760947

ABSTRACT

Objective: Hydrogen sulfide (H2S) is a gaseous signaling molecule and redox factor important for cardiovascular function. Deficiencies in its production or bioavailability are implicated in atherosclerotic disease. However, it is unknown if circulating H2S levels differ between vasculopaths and healthy individuals, and if so, whether H2S measurements can be used to predict surgical outcomes. Here, we examined: (1) Plasma H2S levels in patients undergoing vascular surgery and compared these to healthy controls, and (2) the association between H2S levels and mortality in a cohort of patients undergoing surgical revascularization. Methods: One hundred and fifteen patients undergoing carotid endarterectomy, open lower extremity revascularization or lower leg amputation were enrolled at a single institution. Peripheral blood was also collected from a matched control cohort of 20 patients without peripheral or coronary artery disease. Plasma H2S production capacity and sulfide concentration were measured using the lead acetate and monobromobimane methods, respectively. Results: Plasma H2S production capacity and plasma sulfide concentrations were reduced in patients with PAD (p < 0.001, p = 0.013, respectively). Patients that underwent surgical revascularization were divided into high vs. low H2S production capacity groups by median split. Patients in the low H2S production group had increased probability of mortality (p = 0.003). This association was robust to correction for potentially confounding variables using Cox proportional hazard models. Conclusion: Circulating H2S levels were lower in patients with atherosclerotic disease. Patients undergoing surgical revascularization with lower H2S production capacity, but not sulfide concentrations, had increased probability of mortality within 36 months post-surgery. This work provides insight on the role H2S plays as a diagnostic and potential therapeutic for cardiovascular disease.

8.
Nutrients ; 13(11)2021 Nov 11.
Article in English | MEDLINE | ID: mdl-34836280

ABSTRACT

(1) Background: Vascular surgery operations are hampered by high failure rates and frequent occurrence of peri-operative cardiovascular complications. In pre-clinical studies, pre-operative restriction of proteins and/or calories (PCR) has been shown to limit ischemia-reperfusion damage, slow intimal hyperplasia, and improve metabolic fitness. However, whether these dietary regimens are feasible and safe in the vascular surgery patient population remains unknown. (2) Methods: We performed a randomized controlled trial in patients scheduled for any elective open vascular procedure. Participants were randomized in a 3:2 ratio to either four days of outpatient pre-operative PCR (30% calorie, 70% protein restriction) or their regular ad-libitum diet. Blood was drawn at baseline, pre-operative, and post-operative day 1 timepoints. A leukocyte subset flow cytometry panel was performed at these timepoints. Subcutaneous/perivascular adipose tissue was sampled and analyzed. Follow-up was one year post-op. (3) Results: 19 patients were enrolled, of whom 11 completed the study. No diet-related reasons for non-completion were reported, and there was no intervention group crossover. The PCR diet induced weight loss and BMI decrease without malnutrition. Insulin sensitivity was improved after four days of PCR (p = 0.05). Between diet groups, there were similar rates of re-intervention, wound infection, and cardiovascular complications. Leukocyte populations were maintained after four days of PCR. (4) Conclusions: Pre-operative PCR is safe and feasible in elective vascular surgery patients.


Subject(s)
Caloric Restriction/methods , Proteins/administration & dosage , Vascular Surgical Procedures/methods , Aged , Cytokines , Diet , Diet Therapy , Energy Intake , Exercise , Female , Glucose , Homeostasis , Humans , Immunity , Male , Middle Aged , Weight Loss
9.
J Am Heart Assoc ; 9(22): e016391, 2020 11 17.
Article in English | MEDLINE | ID: mdl-33146045

ABSTRACT

Background Failure rates after revascularization surgery remain high, both in vein grafts (VG) and arterial interventions. One promising approach to improve outcomes is endogenous upregulation of the gaseous transmitter-molecule hydrogen sulfide, via short-term dietary restriction. However, strict patient compliance stands as a potential translational barrier in the vascular surgery patient population. Here we present a new therapeutic approach, via a locally applicable gel containing the hydrogen sulfide releasing prodrug (GYY), to both mitigate graft failure and improve arterial remodeling. Methods and Results All experiments were performed on C57BL/6 (male, 12 weeks old) mice. VG surgery was performed by grafting a donor-mouse cava vein into the right common carotid artery of a recipient via an end-to-end anastomosis. In separate experiments arterial intimal hyperplasia was assayed via a right common carotid artery focal stenosis model. All mice were harvested at postoperative day 28 and artery/graft was processed for histology. Efficacy of hydrogen sulfide was first tested via GYY supplementation of drinking water either 1 week before VG surgery (pre-GYY) or starting immediately postoperatively (post-GYY). Pre-GYY mice had a 36.5% decrease in intimal/media+adventitia area ratio compared with controls. GYY in a 40% Pluronic gel (or vehicle) locally applied to the graft/artery had decreased intimal/media area ratios (right common carotid artery) and improved vessel diameters. GYY-geltreated VG had larger diameters at both postoperative days 14 and 28, and a 56.7% reduction in intimal/media+adventitia area ratios. Intimal vascular smooth muscle cell migration was decreased 30.6% after GYY gel treatment, which was reproduced in vitro. Conclusions Local gel-based treatment with the hydrogen sulfide-donor GYY stands as a translatable therapy to improve VG durability and arterial remodeling after injury.


Subject(s)
Gasotransmitters/therapeutic use , Hydrogen Sulfide/therapeutic use , Neointima/pathology , Neointima/prevention & control , Vascular Grafting/adverse effects , Vascular Remodeling , Anastomosis, Surgical , Animals , Carotid Artery, Common/surgery , Disease Models, Animal , Male , Mice , Mice, Inbred C57BL , Neointima/etiology , Venae Cavae/transplantation
10.
Cardiovasc Res ; 116(2): 416-428, 2020 02 01.
Article in English | MEDLINE | ID: mdl-30924866

ABSTRACT

AIMS: Therapies to prevent vein graft disease, a major problem in cardiovascular and lower extremity bypass surgeries, are currently lacking. Short-term preoperative protein restriction holds promise as an effective preconditioning method against surgical stress in rodent models, but whether it can improve vein graft patency after bypass surgery is undetermined. Here, we hypothesized that short-term protein restriction would limit vein graft disease via up-regulation of cystathionine γ-lyase and increased endogenous production of the cytoprotective gaseous signalling molecule hydrogen sulfide. METHODS AND RESULTS: Low-density lipoprotein receptor knockout mice were preconditioned for 1 week on a high-fat high-cholesterol (HFHC) diet with or without protein prior to left common carotid interposition vein graft surgery with caval veins from donor mice on corresponding diets. Both groups were returned to a complete HFHC diet post-operatively, and vein grafts analysed 4 or 28 days later. A novel global transgenic cystathionine γ-lyase overexpressing mouse model was also employed to study effects of genetic overexpression on graft patency. Protein restriction decreased vein graft intimal/media+adventitia area and thickness ratios and intimal smooth muscle cell infiltration 28 days post-operatively, and neutrophil transmigration 4 days post-operatively. Protein restriction increased cystathionine γ-lyase protein expression in aortic and caval vein endothelial cells (ECs) and frequency of lung EC producing hydrogen sulfide. The cystathionine γ-lyase inhibitor propargylglycine abrogated protein restriction-mediated protection from graft failure and the increase in hydrogen sulfide-producing ECs, while cystathionine γ-lyase transgenic mice displayed increased hydrogen sulfide production capacity and were protected from vein graft disease independent of diet. CONCLUSION: One week of protein restriction attenuates vein graft disease via increased cystathionine γ-lyase expression and hydrogen sulfide production, and decreased early inflammation. Dietary or pharmacological interventions to increase cystathionine γ-lyase or hydrogen sulfide may thus serve as new and practical strategies to improve vein graft durability.


Subject(s)
Cystathionine gamma-Lyase/biosynthesis , Diet, Protein-Restricted , Graft Occlusion, Vascular/prevention & control , Vena Cava, Inferior/transplantation , Animals , Carotid Artery, Common/surgery , Cholesterol, Dietary , Cystathionine gamma-Lyase/genetics , Diet, High-Fat , Disease Models, Animal , Enzyme Induction , Graft Occlusion, Vascular/enzymology , Graft Occlusion, Vascular/pathology , Graft Occlusion, Vascular/physiopathology , Hydrogen Sulfide/metabolism , Male , Mice, Inbred C57BL , Mice, Knockout , Neointima , Nutritional Status , Receptors, LDL/deficiency , Receptors, LDL/genetics , Time Factors , Vascular Patency , Vena Cava, Inferior/enzymology , Vena Cava, Inferior/pathology , Vena Cava, Inferior/physiopathology
11.
Vasc Endovascular Surg ; 53(6): 470-476, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31216949

ABSTRACT

BACKGROUND: Open vascular surgery interventions are not infrequently hampered by complication rates and durability. Preclinical surgical models show promising beneficial effects in modulating the host response to surgical injury via short-term dietary preconditioning. Here, we explore short-term protein-calorie restriction preconditioning in patients undergoing elective carotid endarterectomy to understand patient participation dynamics and practicalities of robust research approaches around nutritional/surgical interventions. METHODS: We designed a pilot prospective, multicenter, randomized controlled study in patients undergoing carotid endarterectomy. After a 3:2 randomization to a 3-day preoperative protein-calorie restriction regimen (30% calorie/70% protein restriction) or ad libitum group, blood, clinical parameters, and stool samples were collected at baseline, pre-op, and post-op days 1 and 30. Subcutaneous and perivascular adipose tissues were harvested periprocedurally. Samples were analyzed for standard chemistries and cell counts, adipokines. Bacterial DNA isolation and 16S rRNA sequencing were performed on stool samples and the relative abundance of bacterial species was measured. RESULTS: Fifty-one patients were screened, 9 patients consented to the study, 5 were randomized, and 4 completed the trial. The main reason for non-consent was a 3-day in-hospital stay. All 4 participants were randomized to the protein-calorie restriction group, underwent successful endarterectomy, reported no compliance difficulties, nor were there adverse events. Stool analysis trended toward increased abundance of the sulfide-producing bacterial species Bilophila wadsworthia after dietary intervention (P = .08). CONCLUSIONS: Although carotid endarterectomy patients held low enthusiasm for a 3-day preoperative inpatient stay, there were no adverse effects in this small cohort. Multidisciplinary longitudinal research processes were successfully executed throughout the nutritional/surgical intervention. Future translational endeavors into dietary preconditioning of vascular surgery patients should focus on outpatient approaches.


Subject(s)
Caloric Restriction , Carotid Stenosis/surgery , Diet, Protein-Restricted , Endarterectomy, Carotid , Preoperative Care/methods , Aged , Bilophila/growth & development , Boston , Caloric Restriction/adverse effects , Carotid Stenosis/diagnostic imaging , Diet, Protein-Restricted/adverse effects , Elective Surgical Procedures , Endarterectomy, Carotid/adverse effects , Feces/microbiology , Female , Gastrointestinal Microbiome , Humans , Male , Nutritional Status , Pilot Projects , Preoperative Care/adverse effects , Prospective Studies , Time Factors , Treatment Outcome
12.
Sci Rep ; 6: 24248, 2016 Apr 07.
Article in English | MEDLINE | ID: mdl-27053419

ABSTRACT

Venous grafts are often used to bypass occlusive atherosclerotic lesions; however, poor patency leads to vein graft disease. Deficiency of TLR4, an inflammatory regulator, reduces vein graft disease. Here, we investigate the effects of the accessory molecule and TLR4 analogue RadioProtective 105 (RP105) on vein graft disease. RP105 deficiency resulted in a 90% increase in vein graft lesion area compared to controls. In a hypercholesterolemic setting (LDLr(-/-)/RP105(-/-) versus LDLr(-/-) mice), which is of importance as vein graft disease is usually characterized by excessive atherosclerosis, total lesion area was not affected. However we did observe an increased number of unstable lesions and intraplaque hemorrhage upon RP105 deficiency. In both setups, lesional macrophage content, and lesional CCL2 was increased. In vitro, RP105(-/-) smooth muscle cells and mast cells secreted higher levels of CCL2. In conclusion, aggravated vein graft disease caused by RP105 deficiency results from an increased local inflammatory response.


Subject(s)
Antigens, CD/metabolism , Atherosclerosis/metabolism , Chemokine CCL2/metabolism , Macrophages/metabolism , Animals , Antigens, CD/genetics , Atherosclerosis/genetics , Cells, Cultured , Gene Expression , Immunohistochemistry , Inflammation Mediators/metabolism , Mast Cells/metabolism , Matrix Metalloproteinases/genetics , Matrix Metalloproteinases/metabolism , Mice, Inbred C57BL , Mice, Knockout , Myocytes, Smooth Muscle/metabolism , Receptors, LDL/deficiency , Receptors, LDL/genetics , Reverse Transcriptase Polymerase Chain Reaction , Tissue Inhibitor of Metalloproteinases/genetics , Tissue Inhibitor of Metalloproteinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL