Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
Chemistry ; : e202403263, 2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39373024

ABSTRACT

Herein, we present the preparation of a series of electronically and/or sterically distinct borenium-type species based on a simple 2-arylpyridine scaffold. Corresponding arylpyridine was firstly subjected to electrophilic borylation (BBr3 / i-Pr2NEt) and formed BBr2 chelate was reduced with LiAlH4 to yield arylpyridine boron dihydride. Elimination of one hydride led to Lewis acidic borenium-like products. Four methods of hydride elimination were evaluated and influence of counterions on reactivity, Lewis acidic and luminescent properties was assessed both experimentally and computationally. Arylpyridine chelates featuring weakly coordinating counterions exhibit fluorescent properties upon UV irradiation. Several general trends were inferred to modulate emission wavelength and fluorescence quantum yield. Based on our observations, we have devised and prepared borenium-type fluorophores with yellow-green fluorescence and quantum yields up to 93%.

2.
Inorg Chem ; 63(9): 4419-4428, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38364266

ABSTRACT

The combination of photodynamic therapy and radiotherapy has given rise to a modality called radiodynamic therapy (RDT), based on reactive oxygen species-producing radiosensitizers. The production of singlet oxygen, O2(1Δg), by octahedral molybdenum (Mo6) clusters upon X-ray irradiation allows for simplification of the architecture of radiosensitizing systems. In this context, we prepared a radiosensitizing system using copper-free click chemistry between a Mo6 cluster bearing azido ligands and the homo-bifunctional linker bis-dPEG11-DBCO. The resulting compound formed nanoparticles, which featured production of O2(1Δg) and efficient cellular uptake, leading to remarkable photo- and radiotoxic effects against the prostatic adenocarcinoma TRAMP-C2 cell line. Spheroids of TRAMP-C2 cells were also used for evaluation of toxicity and phototoxicity. In vivo experiments on a mouse model demonstrated that subcutaneous injection of the nanoparticles is a safe administration mode at a dose of up to 0.08 g kg-1. The reported results confirm the relevancy of Mo6-based radiosensitizing nanosystems for RDT.


Subject(s)
Adenocarcinoma , Iodine , Photochemotherapy , Animals , Mice , Molybdenum/chemistry , Photochemotherapy/methods , Polyethylene Glycols
3.
Angew Chem Int Ed Engl ; 63(17): e202401872, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38400832

ABSTRACT

Luminescence is observed in three novel macropolyhedral nineteen- and eighteen-vertex chalcogenaboranes: Se2B17H17 (1), SeB17H19 (3) and SeB18H20 (4). This led us to the recognition that previously published macropolyhedral heteroborane species might also exhibit luminescence. Thus, the known nineteen- and eighteen-vertex dithiaboranes S2B17H17 (2), n-S2B16H16 (5) and i-S2B16H16 (6) were synthesised and also found to exhibit a range of luminescent properties. These macropolyhedral species are very different from the previously unique fluorescent binary borane B18H22 in terms of their structural architectures, by the presence of borane cluster hetero atoms, and, as in the cases of 5 and 6, that their synthetic origins are not derived simply through the modification of B18H22 itself. They consequently greatly expand the possibilities of finding new luminescent inorganic borane species.

4.
J Am Chem Soc ; 145(32): 17975-17986, 2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37532522

ABSTRACT

The chemistry and physics of macropolyhedral B18H22 clusters have attracted significant attention due to the interesting photophysical properties of anti-B18H22 (blue emission, laser properties) and related potential applications. We have focused our attention on the "forgotten" syn-B18H22 isomer, which has received very little attention since its discovery compared to its anti-B18H22 isomer, presumably because numerous studies have reported this isomer as nonluminescent. In our study, we show that in crystalline form, syn-B18H22 exhibits blue fluorescence and becomes phosphorescent when substituted at various positions on the cluster, associated with peculiar microstructural-dependent effects. This work is a combined theoretical and experimental investigation that includes the synthesis, separation, structural characterization, and first elucidation of the photophysical properties of three different monothiol-substituted cluster isomers, [1-HS-syn-B18H21] 1, [3-HS-syn-B18H21] 3, and [4-HS-syn-B18H21] 4, of which isomers 1 and 4 have been proved to exist in two different polymorphic forms. All of these newly substituted macropolyhedral cluster derivatives (1, 3, and 4) have been fully characterized by NMR spectroscopy, mass spectrometry, single-crystal X-ray diffraction, IR spectroscopy, and luminescence spectroscopy. This study also presents the first report on the mechanochromic shift in the luminescence of a borane cluster and generally enriches the area of rather rare boron-based luminescent materials. In addition, we present the first results proving that they are useful constituents of carbon-free self-assembled monolayers.

5.
Inorg Chem ; 62(35): 14243-14251, 2023 Sep 04.
Article in English | MEDLINE | ID: mdl-37608779

ABSTRACT

The emergence of multidrug-resistant microbial pathogens poses a significant threat, severely limiting the options for effective antibiotic therapy. This challenge can be overcome through the photoinactivation of pathogenic bacteria using materials generating reactive oxygen species upon exposure to visible light. These species target vital components of living cells, significantly reducing the likelihood of resistance development by the targeted pathogens. In our research, we have developed a nanocomposite material consisting of an aqueous colloidal suspension of graphene oxide sheets adorned with nanoaggregates of octahedral molybdenum cluster complexes. The negative charge of the graphene oxide and the positive charge of the nanoaggregates promoted their electrostatic interaction in aqueous medium and close cohesion between the colloids. Upon illumination with blue light, the colloidal system exerted a potent antibacterial effect against planktonic cultures of Staphylococcus aureus largely surpassing the individual contributions of the components. The underlying mechanism behind this phenomenon lies in the photoinduced electron transfer from the nanoaggregates of the cluster complexes to the graphene oxide sheets, which triggers the generation of reactive oxygen species. Thus, leveraging the unique properties of graphene oxide and light-harvesting octahedral molybdenum cluster complexes can open more effective and resilient antibacterial strategies.


Subject(s)
Staphylococcal Infections , Staphylococcus aureus , Humans , Molybdenum/pharmacology , Reactive Oxygen Species , Anti-Bacterial Agents/pharmacology
6.
Int J Mol Sci ; 24(12)2023 Jun 11.
Article in English | MEDLINE | ID: mdl-37373156

ABSTRACT

Due to their high abundance, polymeric character, and chemical tunability, polysaccharides are perfect candidates for the stabilization of photoactive nanoscale objects, which are of great interest in modern science but can be unstable in aqueous media. In this work, we have demonstrated the relevance of oxidized dextran polysaccharide, obtained via a simple reaction with H2O2, towards the stabilization of photoactive octahedral molybdenum and tungsten iodide cluster complexes [M6I8}(DMSO)6](NO3)4 in aqueous and culture media. The cluster-containing materials were obtained by co-precipitation of the starting reagents in DMSO solution. According to the data obtained, the amount and ratio of functional carbonyl and carboxylic groups as well as the molecular weight of oxidized dextran strongly affect the extent of stabilization, i.e., high loading of aldehyde groups and high molecular weight increase the stability, while acidic groups have some negative impact on the stability. The most stable material based on the tungsten cluster complex exhibited low dark and moderate photoinduced cytotoxicity, which together with high cellular uptake makes these polymers promising for the fields of bioimaging and PDT.


Subject(s)
Molybdenum , Tungsten , Molybdenum/chemistry , Tungsten/chemistry , Dextrans , Iodides , Dimethyl Sulfoxide , Hydrogen Peroxide
7.
Molecules ; 28(11)2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37298983

ABSTRACT

The action of AlCl3 on room-temperature tetrachloromethane solutions of anti-B18H22 (1) results in a mixture of fluorescent isomers, 3,3'-Cl2-B18H20 (2) and 3,4'-Cl2-B18H20 (3), together isolated in a 76% yield. Compounds 2 and 3 are capable of the stable emission of blue light under UV-excitation. In addition, small amounts of other dichlorinated isomers, 4,4'-Cl2-B18H20 (4), 3,1'-Cl2-B18H20 (5), and 7,3'-Cl2-B18H20 (6) were isolated, along with blue-fluorescent monochlorinated derivatives, 3-Cl-B18H21 (7) and 4-Cl-B18H21 (8), and trichlorinated species 3,4,3'-Cl3-B18H19 (9) and 3,4,4'-Cl3-B18H19 (10). The molecular structures of these new chlorinated derivatives of octadecaborane are delineated, and the photophysics of some of these species are discussed in the context of the influence that chlorination bears on the luminescence of anti-B18H22. In particular, this study produces important information on the effect that the cluster position of these substitutions has on luminescence quantum yields and excited-state lifetimes.


Subject(s)
Halogenation , Luminescence , Isomerism , Molecular Structure
8.
Inorg Chem ; 61(12): 5076-5083, 2022 Mar 28.
Article in English | MEDLINE | ID: mdl-35293732

ABSTRACT

The development of singlet oxygen photosensitizers, which target specific cellular organelles, constitutes a pertinent endeavor to optimize the efficiency of photodynamic therapy. Targeting of the cell membrane eliminates the need for endocytosis of drugs that can lead to toxicity, intracellular degradation, or drug resistance. In this context, we utilized copper-free click chemistry to prepare a singlet oxygen photosensitizing complex, made of a molybdenum-iodine nanocluster stabilized by triazolate apical ligands. In phosphate-buffered saline, the complex formed nanoaggregates with a positive surface charge due to the protonatable amine function of the apical ligands. These nanoaggregates targeted cell membranes and caused an eminent blue-light phototoxic effect against HeLa cells at nanomolar concentrations, inducing apoptotic cell death, while having no dark toxicity at physiologically relevant concentrations. The properties of this complex were compared to those of a negatively charged parent complex to highlight the dominant effect of the nature of apical ligands on biological properties of the nanocluster. These two complexes also exerted (photo)antibacterial effects on several pathogenic strains in the form of planktonic cultures and biofilms. Overall, we demonstrated that the rational design of apical ligands toward cell membrane targeting leads to enhanced photodynamic efficiency.


Subject(s)
Iodine , Molybdenum , Cell Membrane , HeLa Cells , Humans , Iodine/pharmacology , Ligands , Molybdenum/pharmacology
9.
Inorg Chem ; 59(13): 9287-9293, 2020 Jul 06.
Article in English | MEDLINE | ID: mdl-32516524

ABSTRACT

Two new octahedral molybdenum cluster complexes act as an efficient singlet oxygen supplier in the context of the photodynamic therapy of cancer cells under blue-light irradiation. These complexes integrate the {Mo6I8}4+ core with 4'-carboxybenzo-15-crown-5 or cholate apical ligands and were characterized by 1H NMR, HR ESI-MS, and CHN elemental analysis. Both complexes display high quantum yields of luminescence and singlet oxygen formation in aqueous media associated with a suitable stability against hydrolysis. They are internalized into lysosomes of HeLa cells with no dark toxicity at pharmacologically relevant concentrations and have a strong phototoxic effect under blue-light irradiation, even in the presence of fetal bovine serum. The last feature is essential for further translation to in vivo experiments. Overall, these complexes are attractive molecular photosensitizers toward photodynamic applications.


Subject(s)
Antineoplastic Agents/pharmacology , Coordination Complexes/pharmacology , Photosensitizing Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/radiation effects , Apoptosis/drug effects , Coordination Complexes/chemical synthesis , Coordination Complexes/radiation effects , Drug Screening Assays, Antitumor , HeLa Cells , Humans , Ligands , Light , Lysosomes/metabolism , Molybdenum/chemistry , Molybdenum/radiation effects , Photosensitizing Agents/chemical synthesis , Photosensitizing Agents/radiation effects , Singlet Oxygen/metabolism
10.
Inorg Chem ; 59(23): 17058-17070, 2020 Dec 07.
Article in English | MEDLINE | ID: mdl-33166444

ABSTRACT

We present the first examples of alkylated derivatives of the macropolyhedral boron hydride, anti-B18H22, which is the gain medium in the first borane laser. This new series of ten highly stable and colorless organic-inorganic hybrid clusters are capable of the conversion of UVA irradiation to blue light with fluorescence quantum yields of unity. This study gives a comprehensive description of their synthesis, isolation, and structural characterization together with a delineation of their photophysical properties using a combined theoretical and experimental approach. Treatment of anti-B18H22 1 with RI (where R = Me or Et) in the presence of AlCl3 gives a series of alkylated derivatives, Rx-anti-B18H22-x (where x = 2 to 6), compounds 2-6, in which the 18-vertex octadecaborane cluster architectures are preserved and yet undergo a linear "polyhedral swelling", depending on the number of cluster alkyl substituents. The use of dichloromethane solvent in the synthetic procedure leads to dichlorination of the borane cluster and increased alkylation to give Me11-anti-B18H9Cl2 11, Me12-anti-B18H8Cl2 12, and Me13-anti-B18H7Cl2 13. All new alkyl derivatives are highly stable, extremely efficient (ΦF = 0.76-1.0) blue fluorophores (λems = 423-427 nm) and are soluble in a wide range of organic solvents and also a polystyrene matrix. The Et4-anti-B18H18 derivative 4b crystallizes from pentane solution in two phases with consequent multiabsorption and multiemission photophysical properties. An ultrafast transient UV-vis absorption spectroscopic study of compounds 4a and 4b reveals that an efficient excited-state absorption at the emission wavelength inhibits the laser performance of these otherwise remarkable luminescent molecules. All these new compounds add to the growing portfolio of octadecaborane-based luminescent species, and in an effort to broaden the perspective on their highly emissive photophysical properties, we highlight emerging patterns that successive substitutions have on the molecular size of the 18-vertex borane cluster structure and the distribution of the electron density within.

11.
Inorg Chem ; 58(24): 16546-16552, 2019 Dec 16.
Article in English | MEDLINE | ID: mdl-31794199

ABSTRACT

Recent studies have unraveled the potential of octahedral molybdenum cluster complexes (Mo6) as relevant red phosphors and photosensitizers of singlet oxygen, O2(1Δg), for photobiological applications. However, these complexes tend to hydrolyze in an aqueous environment, which deteriorates their properties and limits their applications. To address this issue, we show that phenylphosphinates are extraordinary apical ligands for the construction of Mo6 complexes. These new complexes display unmatched luminescence quantum yields and singlet oxygen production in aqueous solutions. More importantly, the complex with diphenylphosphinate ligands is the only stable complex of these types in aqueous media. These complexes internalize in lysosomes of HeLa cells, have no dark toxicity, and yet are phototoxic in the submicromolar concentration range. The superior hydrolytic stability of the diphenylphosphinate complex allows for conservation of its photophysical properties and biological activity over a long period, making it a promising compound for photobiological applications.

12.
Inorg Chem ; 58(15): 10248-10259, 2019 Aug 05.
Article in English | MEDLINE | ID: mdl-31314499

ABSTRACT

Treatment of the laser borane anti-B18H22 (compound 1) with iodine in ethanol gives the monoiodinated derivative 7-I-anti-B18H21 (compound 2) in 67% yield, or, by reaction with iodine or ICl in the presence of AlCl3 in dichloromethane, the diiodinated derivative 4,4'-I2-anti-B18H20 (compound 3) in 85% yield. On excitation with 360 nm light, both compounds 2 and 3 give strong green phosphorescent emissions (λmax = 525 nm, ΦL = 0.41 and λmax = 545 nm, ΦL = 0.71 respectively) that are quenched by dioxygen to produce O2(1Δg) singlet oxygen with quantum yields of ΦΔ = 0.52 and 0.36 respectively. Similarly strong emissions can be stimulated via the nonlinear process of two-photon absorption when exciting with 720 or 800 nm light. The high quantum yields of singlet-oxygen production, coupled with the option of two-photon excitation, make compounds 2 and 3 promising O2(1Δg) photosensitizers. The molecular structures of compounds 2 and 3 were determined by single-crystal X-ray crystallographic studies as well as multinuclear NMR spectroscopy and mass spectrometry. Time-resolved UV-vis spectroscopy was used to delineate their photophysical properties, and the electronic-structure properties of the emitting species were determined by means of multiconfigurational quantum-chemistry computations.

13.
J Chem Phys ; 151(19): 194310, 2019 Nov 21.
Article in English | MEDLINE | ID: mdl-31757138

ABSTRACT

Photoelectron spectroscopy and theoretical investigations have been performed to systematically probe the intrinsic electronic properties of [Mo6X14]2- (X = halogen). All three PE spectra of gaseous [Mo6X14]2- (X = Cl, Br, I) dianions, which were generated by electrospray ionization, exhibit multiple resolved peaks in the recorded binding energy range. Theoretical investigations on the orbital structure and charge distribution were performed to support interpretation of the observed spectra and were further extended onto [Mo6F14]2-, a dianion that was not available for the experimental study. The measured adiabatic (ADE) and vertical detachment energies (VDE) for X = Cl-I were well reproduced by density functional theory calculations (accuracy ∼0.1 eV). Corresponding ADE/VDE values for the dianions were found to be 1.48/2.13 (calc.) and 2.30/2.65, 2.30/2.62, and 2.20/2.42 eV (all expt.) for X = F, Cl, Br, and I, respectively, showing an interesting buckled trend of electron binding energy (EBE) along the halogen series, i.e., EBE (F) ≪ EBE (Cl) ∼ EBE (Br) > EBE (I). Molecular orbital analyses indicate different mixing of metal and halogen atomic orbitals, which is strongly dependent on the nature of X, and suggest that the most loosely bound electrons are detached mainly from the metal core for X = F and Cl, but from halide ligands for X = Br and I. The repulsive Coulomb barrier (RCB), estimated from the photon energy dependent spectra, decreases with increasing halogen size, from 1.8 eV for X = Cl to 1.6 eV for X = I. Electrostatic potential modeling confirms the experimental RCB values and predicts that the most favorable electron detaching pathway should lie via the face-bridging halide ligands.

14.
Chemistry ; 24(51): 13467-13478, 2018 Sep 12.
Article in English | MEDLINE | ID: mdl-29894019

ABSTRACT

Water-soluble salts of anionic [Re6 Q8 (CN)6 ]4- (Q=S, Se, Te) chalcogenide octahedral rhenium clusters react with γ-cyclodextrin (γ-CD) producing a new type of inclusion compounds. Crystal structures determined through single-crystal X-ray diffraction analysis revealed supramolecular host-guest assemblies resulting from close encapsulations of the octahedral cluster within two γ-CDs. Interestingly, nature of the inner Q ligands influences strongly the host-guest conformation. The cluster [Re6 S8 (CN)6 ]4- interacts preferentially with the primary faces of the γ-CD while the bulkier clusters [Re6 Se8 (CN)6 ]4- and [Re6 Te8 (CN)6 ]4- exhibit specific interactions with the secondary faces of the cyclic host. Furthermore, analysis of the crystal packing reveals additional supramolecular interactions that lead to 2D infinite arrangements with [Re6 S8 (CN)6 ]4- or to 1D "bamboo-like" columns with [Re6 Se8 (CN)6 ]4- and [Re6 Te8 (CN)6 ]4- species. Solution studies, using multinuclear NMR methods, ESI-MS and Isothermal titration calorimetry (ITC) corroborates nicely the solid-state investigations showing that supramolecular pre-organization is retained in aqueous solution even in diluted conditions. Furthermore, ITC analysis showed that host-guest stability increases significantly ongoing from S to Te. At last, we report herein that deep inclusion alters significantly the intrinsic physical-chemical properties of the octahedral clusters, allowing redox tuning and near IR luminescence enhancement.

15.
Inorg Chem ; 56(8): 4610-4615, 2017 Apr 17.
Article in English | MEDLINE | ID: mdl-28375624

ABSTRACT

We report intensive visible light radioluminescence upon X-ray irradiation of archetypal tetranuclear copper(I) iodide complexes containing triphenylphosphine or pyridine ligands in the solid state. These properties, attractive for the design of X-ray responsive materials, can be attributed to the heavy {Cu4I4} cubane-like core, the absence of oxygen quenching of the emissive triplet states, and the high photoluminescence quantum yields. Radioluminescence originates from the same emissive triplet states as those produced by ultraviolet excitation as confirmed by the observed radioluminescence thermochromism. The radioluminescence properties are also preserved after incorporation of these complexes into polystyrene films, making them appealing for the development of plastic scintillators.

16.
Inorg Chem ; 56(21): 13491-13499, 2017 Nov 06.
Article in English | MEDLINE | ID: mdl-28990789

ABSTRACT

Octahedral rhenium cluster complexes have recently emerged as relevant building blocks for the design of singlet oxygen photosensitizing materials toward biological applications such as blue-light photodynamic therapy. However, their singlet oxygen generation ability as well as biological properties have been studied only superficially. Herein we investigate in detail the singlet oxygen photogeneration, dark and photoinduced cytotoxicity, cellular uptake kinetics, cellular localization and in vitro photoinduced oxidative stress, and photodynamic cytotoxicity of the series of octahedral rhenium cluster complexes [{Re6Q8}(CN)6]4-, where Q = S, Se, Te. Our results demonstrate that the selenium-containing complex possesses optimal properties in terms of absorption and singlet oxygen productivity. These features coupled with the cellular internalization and low dark toxicity lead to the first photoinduced cytotoxic effect observed for a molecular [{M6Q8}L6] complex, making it a promising object for further study in terms of blue-light PDT.


Subject(s)
Contrast Media/pharmacology , Coordination Complexes/pharmacology , Photosensitizing Agents/pharmacology , Rhenium/chemistry , Singlet Oxygen/chemistry , Cell Line, Tumor , Contrast Media/chemical synthesis , Contrast Media/radiation effects , Contrast Media/toxicity , Coordination Complexes/chemical synthesis , Coordination Complexes/radiation effects , Coordination Complexes/toxicity , Heterochromatin/drug effects , Humans , Ligands , Light , Luminescence , Mitochondria/drug effects , Oxidative Stress/drug effects , Photosensitizing Agents/chemical synthesis , Photosensitizing Agents/radiation effects , Photosensitizing Agents/toxicity
17.
Chemistry ; 22(7): 2417-26, 2016 Feb 12.
Article in English | MEDLINE | ID: mdl-26749365

ABSTRACT

A series of zinc azaphthalocyanines with two azacrowns in a rigid tweezer arrangement were prepared and the fluorescence sensing properties were investigated. The size-driven recognition of alkali and alkaline earth metal cations was significantly enhanced by the close cooperation of the two azacrown units, in which both donor nitrogen atoms need to be involved in analyte binding to switch the sensor on. The mono- or biphasic character of the binding isotherms, together with the binding stoichiometry and magnitude of association constants (KA ), indicated specific complexation of particular analytes. Water solvation was shown to play an important role and resulted in a strong quenching of sensor fluorescence in the ON state. The lead compound was embedded into silica nanoparticles and advantageous sensing properties towards K(+) were demonstrated in water (λF =671 nm, apparent KA =82 m(-1) , increase of 17×), even in the presence of (supra)physiological concentrations of Na(+) and Ca(2+) .

18.
Inorg Chem ; 55(2): 803-9, 2016 Jan 19.
Article in English | MEDLINE | ID: mdl-26702498

ABSTRACT

Newly synthesized octahedral molybdenum cluster compound (n-Bu4N)2[Mo6I8(OOC-1-adamantane)6] revealed uncharted features applicable for the development of X-ray inducible luminescent materials and sensitizers of singlet oxygen, O2((1)Δg). The compound exhibits a red-NIR luminescence in the solid state and in solution (e.g., quantum yield of 0.76 in tetrahydrofuran) upon excitation by UV-vis light. The luminescence originating from the excited triplet states is quenched by molecular oxygen to produce O2((1)Δg) with a high quantum yield. Irradiation of the compound by X-rays generated a radioluminescence with the same emission spectrum as that obtained by UV-vis excitation. It proves the formation of the same excited triplet states regardless of the excitation source. By virtue of the described behavior, the compound is suggested as an efficient sensitizer of O2((1)Δg) upon X-ray excitation. The luminescence and radioluminescence properties were maintained upon embedding the compound in polystyrene films. In addition, polystyrene induced an enhancement of the radioluminescence intensity via energy transfer from the scintillating polymeric matrix. Sulfonated polystyrene nanofibers were used for the preparation of nanoparticles which form stable dispersions in water, while keeping intact the luminescence properties of the embedded compound over a long time period. Due to their small size and high oxygen diffusivity, these nanoparticles are suitable carriers of sensitizers of O2((1)Δg). The presented results define a new class of nanoscintillators with promising properties for X-ray inducible photodynamic therapy.


Subject(s)
Molybdenum/chemistry , Nanotechnology , Singlet Oxygen/chemistry , Crystallography, X-Ray , Luminescence
19.
Inorg Chem ; 53(24): 13012-8, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25419981

ABSTRACT

A series of luminescent octahedral molybdenum cluster complexes were obtained by treating Na2[Mo6I8(OMe)6] with icosahedral closo-dicarbaborane C-carboxylic acids in refluxing tetrahydrofuran. The study of the photophysical properties of Na2[Mo6I8(1-OOC-1,2-closo-C2B10H11)6] (1), Na2[Mo6I8(1-OOC-1,7-closo-C2B10H11)6] (2), and Na2[Mo6I8(1-OOC-1,12-closo-C2B10H11)6] (3) in acetonitrile revealed a red luminescence with high quantum yields up to 0.93 for 2, an efficient quenching of the luminescence by oxygen, and high quantum yields of singlet oxygen formation of approximately 0.7. Self-assembly between compound 2 and ß-cyclodextrin polymer led to monodisperse hydrogel particles with a diameter of approximately 200 nm and unchanged luminescence spectra and kinetics features over 14 days. In contrast, bare cluster complex 2 in water formed aggregates and hydrolyzed over the time as indicated by a progressive red shift of the luminescence maxima. The invariance of key photophysical parameters of the hydrogel particles coupled with a high oxygen sensitivity of the luminescence are attractive features for long-term biological experiments involving optical oxygen probing. In addition, this hydrogel is a singlet oxygen sensitizer in water with promising properties for photodynamic therapy.

20.
Dalton Trans ; 53(6): 2635-2644, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38224238

ABSTRACT

Subphthalocyanines (SubPcs) and their aza-analogues (SubTPyzPzs) are fluorophores with strong orange fluorescence emission; however, their sensing ability towards metal cations remains uncharted. To fill this gap, we have developed an efficient method for introducing aza-crown moieties at the axial position of SubPcs and SubTPyzPzs to investigate the structure-activity relationship for sensing alkali (Li+, Na+, K+) and alkaline earth metal (Ca2+, Mg2+, Ba2+) cations. SubPcs showed better photostability than SubTPyzPzs and even a commonly utilized dye, 6-carboxyfluorescein. Selectivity toward metal cations was driven by the size of the aza-crown, irrespective of the counter anion. The stoichiometry of binding was found to be 1 : 1 in all cases, and the interaction between SubPcs and cations was characterized by the corresponding apparent binding constants (Ka). Notably, an unusually strong interaction of all sensoric SubPcs with Ba2+ compared to other studied cations was demonstrated. The role of the surrounding environment, i.e. the addition of water or methanol, in sensing cations is shown in detail as well. Selectivity towards K+ over Na+ was demonstrated in aqueous media with SubPcs bearing the 1-aza-6-crown-18 moiety in Tween 80 micelles. In this case, a 5-fold increase of the fluorescence quantum yield was observed upon binding K+ ions. The high brightness, photostability, and sensing activity in aqueous media make SubPc macrocycles promising fluorophores for metal cation sensing.

SELECTION OF CITATIONS
SEARCH DETAIL