Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Turk J Chem ; 48(1): 50-64, 2024.
Article in English | MEDLINE | ID: mdl-38544887

ABSTRACT

The magnetic mesoporous silica material, Mag-MCM-41, was synthesized by coating magnetite (Fe3O4) nanoparticles with a mesoporous material called MCM-41. Mag-MCM-41 and modified nanomaterials Mag-MCM-41-NN and Mag-MCM-41-NN-Fe+3 which were modified with aminopropyl functional groups. In water and wastewater, phosphate anions are considered significant contaminants due to their detrimental impact on the environment. They promote the growth of algae, leading to eutrophication. The purpose of this study is to investigate the removal of phosphate anions from aqueous solutions using modified magnetic silica particles. The Mag-MCM-41 material exhibits hexagonal properties and belongs to the class of "mesoporous" materials. It has a surface area of 923 m2.g-1, which was determined through N2 adsorption-desorption isotherms, FTIR, TEM, BET, and SAXS analysis. Kinetic and adsorption isotherm studies were conducted using Mag-MCM-41, Mag-MCM-41-NN, and Mag-MCM-41-NN-Fe+3 adsorbents to examine the behavior of phosphate anions. The kinetic and adsorption isotherm studies of phosphate anions revealed that the adsorption process on Mag-MCM-41, Mag-MCM-41-NN, and Mag-MCM-41-NN-Fe+3 adsorbents followed the chemical adsorption mechanism. Phosphate adsorption on all adsorbents occurred in a monolayer, and the MCM-41-NN-Fe+3 adsorbent exhibited the highest maximum adsorption capacity (qm) value of 112.87 mg.g-1 compared to the other adsorbents.

2.
J Hazard Mater ; 162(2-3): 1309-16, 2009 Mar 15.
Article in English | MEDLINE | ID: mdl-18656312

ABSTRACT

Pure anatase, nanosized and Sn(4+) ion doped titanium dioxide (TiO(2)) particulates (TiO(2)-Sn(4+)) were synthesized by hydrothermal process. TiO(2)-Sn(4+) was used to coat glass surfaces to investigate the photocatalytic antibacterial effect of Sn(4+) doping to TiO(2) against gram negative Escherichia coli (E. coli) and gram positive Staphylococcus aureus (S. aureus). Relationship between solid ratio of TiO(2)-Sn(4+) in coatings and antibacterial activity was reported. The particulates and the films were characterized using particle size analyzer, zeta potential analyzer, Brunauer-Emmett-Teller (BET), X-ray diffractometer (XRD), SEM, AAS and UV/VIS/NIR techniques. The results showed that TiO(2)-Sn(4+) is fully anatase crystalline form and easily dispersed in water. Increasing the solid ratio of TiO(2)-Sn(4+) from 10 to 50% in the coating solution increased antibacterial effect.


Subject(s)
Glass , Tin/chemistry , Titanium/chemistry , Catalysis , Escherichia coli/drug effects , Microbial Sensitivity Tests , Microscopy, Electron, Scanning , Particle Size , Photochemistry , Spectrophotometry, Ultraviolet , Staphylococcus aureus/drug effects
3.
J Hazard Mater ; 140(1-2): 69-74, 2007 Feb 09.
Article in English | MEDLINE | ID: mdl-16876940

ABSTRACT

Sn-doped and undoped nano-TiO(2) particles have been synthesized by hydrotermal process without solvent at 200 degrees C in 1h. Nanostructure-TiO(2) based thin films have been prepared on glass substrate by spin-coating technique. The structure, surface morphology and optical properties of the thin films and the particles have been investigated by element analysis and XRD, SEM, BET and UV-vis-NIR techniques. The photocatalytic performance of the films were tested for degradation of Malachite Green dye in solution under UV and vis-lights. The results showed that (a) hydrothermally synthesized nano-TiO(2) particles are fully anatase crystalline form and are easily dispersed in water, (b) the coated surfaces have nearly super-hydrophilic properties and, (c) the doping of transition metal ion efficiently improved the photocatalytic performance of the TiO(2) thin film.


Subject(s)
Catalysis , Photochemistry , Tin/chemistry , Titanium/chemistry , Light , Nanostructures , Rosaniline Dyes , Ultraviolet Rays
SELECTION OF CITATIONS
SEARCH DETAIL