Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Pediatr Blood Cancer ; 65(2)2018 Feb.
Article in English | MEDLINE | ID: mdl-29058370

ABSTRACT

PURPOSE: Pediatric head and neck malignancies are managed with intensive multimodality therapy. Proton beam therapy (PBT) may reduce toxicity by limiting exposure of normal tissue to radiation. In this study, we report acute toxicities and early outcomes following PBT for pediatric head and neck malignancies. MATERIALS AND METHODS: Between 2010 and 2016, pediatric patients with nonhematologic malignancies of the head and neck were treated with PBT. Clinical and dosimetric data were abstracted from the medical record and treatment planning system with institutional review board approval. RESULTS: Sixty-nine consecutive pediatric patients were treated with proton-based radiotherapy for head and neck malignancies. Thirty-five were treated for rhabdomyosarcoma to a median dose of 50.4 Gy relative biological effectiveness [RBE]. Ten patients were treated for Ewing sarcoma to a median dose of 55.8 Gy[RBE]. Twenty-four patients were treated for other histologies to a median dose of 63.0 Gy[RBE]. Grade 3 oral mucositis, anorexia, and dysphagia were reported to be 4, 22, and 7%, respectively. Actuarial 1-year freedom from local recurrence was 92% (95% CI 80-97). Actuarial 1-year overall survival was 93% (95% CI 79-98) in the entire cohort. Oral cavity mucositis was significantly correlated with oral cavity dose (D80 and D50 [P < 0.05], where D80 and D50 are dose to 50% of the volume and dose to 80% of the volume, respectively). CONCLUSIONS: In this study, we report low rates of acute toxicity in a cohort of pediatric patients with head and neck malignancies. PBT appears safe for this patient population, with local control rates similar to historical reports. Longer follow-up will be required to evaluate late toxicity and long-term disease control.


Subject(s)
Head and Neck Neoplasms , Proton Therapy , Rhabdomyosarcoma , Sarcoma, Ewing , Adolescent , Adult , Child , Child, Preschool , Disease-Free Survival , Female , Follow-Up Studies , Head and Neck Neoplasms/mortality , Head and Neck Neoplasms/radiotherapy , Humans , Infant , Male , Rhabdomyosarcoma/mortality , Rhabdomyosarcoma/radiotherapy , Sarcoma, Ewing/mortality , Sarcoma, Ewing/radiotherapy , Survival Rate
2.
Acta Oncol ; 55(7): 900-8, 2016 Jul.
Article in English | MEDLINE | ID: mdl-26927612

ABSTRACT

Background Small bowel (SB) dose-volume relationships established during initial computed tomography (CT) simulations may change throughout therapy due to organ displacement and motion. We investigated the impact of organ motion on SB dose-volume histograms (DVHs) in women with gynecologic malignancies treated with pencil beam scanning (PBS) proton therapy and compared PBS SB DVHs to intensity-modulated radiation therapy (IMRT). Material and methods Post-hysterectomy patients (n = 11) treated for gynecologic cancers were enrolled on an image-guided proton therapy protocol involving CT simulation with full (CTF) and empty (CTE) bladders and weekly/biweekly on-treatment scans. IMRT plans were generated for comparative analysis. SB was contoured as bowel loops or bowel bag. Wilcoxon signed-rank tests were used for matched-pair comparisons of SB, bladder, and rectum dose-volumes between CT scans and between PBS and IMRT plans. Results In PBS loops analysis, on-treatment DVH was significantly higher than CTF for doses <45 Gy (p < 0.05), and not significantly different than CTE. Specifically, V15 for loops was higher on-treatment (median 240 cm(3)) compared to CTF (median 169 cm(3), p = 0.03). In PBS bag analysis, on-treatment DVH was not significantly different from CTF across all dose ranges. Bowel bag V45 was not significantly different between on-treatment (median 540 cm(3)) and CTF (median 499 cm(3), p = 0.53). Decreasing bladder volume was associated with increasing V15 for loops and V45 for bowel bag (p < 0.005, both). Comparing PBS and IMRT, PBS resulted in significantly lower DVHs at low dose regions (<38 Gy) and higher DVHs at high dose regions (42.5-45.5 Gy) in both loops and bag analysis. IMRT plans demonstrated higher on-treatment SB loop DVHs and only minimal differences in bowel bag DVHs compared to CTF. Conclusions SB DVHs were well estimated by CTF bowel bag and underestimated by CTF loops in the setting of inconsistent bladder filling. Verifying bladder filling prior to treatment or using CTE for planning may more conservatively estimate SB dose-volume relationships.


Subject(s)
Genital Neoplasms, Female/radiotherapy , Proton Therapy/methods , Radiotherapy Planning, Computer-Assisted/methods , Adult , Aged , Female , Genital Neoplasms, Female/surgery , Humans , Hysterectomy , Intestine, Small/radiation effects , Middle Aged , Organs at Risk , Prospective Studies , Radiation Dosage , Radiotherapy, Image-Guided/methods , Radiotherapy, Intensity-Modulated/methods , Tomography, X-Ray Computed/methods , Urinary Bladder/radiation effects
3.
J Appl Clin Med Phys ; 17(2): 427-440, 2016 03 08.
Article in English | MEDLINE | ID: mdl-27074464

ABSTRACT

The aim of this work is to demonstrate the feasibility of using water-equivalent thickness (WET) and virtual proton depth radiographs (PDRs) of intensity corrected cone-beam computed tomography (CBCT) to detect anatomical change and patient setup error to trigger adaptive head and neck proton therapy. The planning CT (pCT) and linear accelerator (linac) equipped CBCTs acquired weekly during treatment of a head and neck patient were used in this study. Deformable image registration (DIR) was used to register each CBCT with the pCT and map Hounsfield units (HUs) from the planning CT (pCT) onto the daily CBCT. The deformed pCT is referred as the corrected CBCT (cCBCT). Two dimensional virtual lateral PDRs were generated using a ray-tracing technique to project the cumulative WET from a virtual source through the cCBCT and the pCT onto a virtual plane. The PDRs were used to identify anatomic regions with large variations in the proton range between the cCBCT and pCT using a threshold of 3 mm relative difference of WET and 3 mm search radius criteria. The relationship between PDR differences and dose distribution is established. Due to weight change and tumor response during treatment, large variations in WETs were observed in the relative PDRs which corresponded spatially with an increase in the number of failing points within the GTV, especially in the pharynx area. Failing points were also evident near the posterior neck due to setup variations. Differences in PDRs correlated spatially to differences in the distal dose distribution in the beam's eye view. Virtual PDRs generated from volumetric data, such as pCTs or CBCTs, are potentially a useful quantitative tool in proton therapy. PDRs and WET analysis may be used to detect anatomical change from baseline during treatment and trigger further analysis in adaptive proton therapy.


Subject(s)
Cone-Beam Computed Tomography/methods , Head and Neck Neoplasms/diagnostic imaging , Head and Neck Neoplasms/radiotherapy , Image Processing, Computer-Assisted/methods , Proton Therapy , Water/chemistry , Head and Neck Neoplasms/pathology , Humans , Neoplasm Staging , Particle Accelerators , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods
4.
Pediatr Blood Cancer ; 62(4): 718-20, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25557901

ABSTRACT

Delivery of craniospinal irradiation (CSI) is a curative approach to recurrent ependymoma, but is associated with risks from re-irradiation, particularly of the brainstem. Pencil beam scanning proton therapy allows delivery of CSI with sparing of normal tissues. Here, we describe a case of brainstem-sparing CSI that resulted in excellent coverage of the craniospinal axis with minimal radiation to brainstem. This is a novel concept that compares favorably to previously described methods using x-rays that may result in underdosing of surrounding tissues in effort to spare brainstem.


Subject(s)
Brain Stem , Craniospinal Irradiation , Ependymoma/radiotherapy , Infratentorial Neoplasms/radiotherapy , Proton Therapy , Child , Ependymoma/pathology , Female , Humans , Infratentorial Neoplasms/pathology
5.
Acta Oncol ; 54(8): 1209-17, 2015.
Article in English | MEDLINE | ID: mdl-25734796

ABSTRACT

BACKGROUND: Concurrent chemoradiotherapy cures most patients with anal squamous cell carcinoma at the cost of significant treatment-related toxicities. Intensity-modulated radiotherapy (IMRT) reduces side effects compared to older techniques, but whether proton beam therapy (PBT) offers additional advantages is unclear. MATERIAL AND METHODS: Eight patients treated with PBT for anal cancer were chosen for this study. We conducted detailed plan comparisons between pencil-beam scanning PBT via two posterior oblique fields and seven-field IMRT. Cumulative dose-volume histograms were analyzed by Wilcoxon signed-rank test, and plan delivery robustness was assessed via verification computed tomography (CT) scans obtained during treatment. RESULTS: Compared to IMRT, PBT reduced low dose radiation (≤ 30 Gy) to the small bowel, total pelvic bone marrow, external genitalia, femoral heads, and bladder (all p < 0.05) without compromising target coverage. For PBT versus IMRT, mean small bowel volume receiving ≥ 15 Gy (V15) was 81 versus 151 cm(3), mean external genitalia V20 was 14 versus 40%, and mean total pelvic bone marrow V15 was 66 versus 83% (all p = 0.008). The lumbosacral bone marrow dose was higher with PBT due to beam geometry. PBT was delivered with ≤ 1.3% interfraction deviation in the dose received by 98% of the clinical target volumes. CONCLUSION: Pencil-beam scanning PBT is clinically feasible and can be robustly delivered for anal cancer patients. Compared with IMRT, PBT reduces low dose radiation to important organs at risk in this population. While the clinical benefit of these differences remains to be shown, existing data suggest that limiting low dose to the small bowel and pelvic bone marrow may reduce treatment toxicity.


Subject(s)
Anus Neoplasms/radiotherapy , Carcinoma, Squamous Cell/radiotherapy , Proton Therapy/methods , Chemoradiotherapy/methods , Humans , Radiometry , Radiotherapy Planning, Computer-Assisted , Radiotherapy, Intensity-Modulated
6.
Acta Oncol ; 53(10): 1312-20, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24797885

ABSTRACT

BACKGROUND: Adjuvant chemoradiotherapy improves both overall- and relapse-free survival in patients with resected gastric cancer. However, this comes at the cost of increased treatment-related toxicity. Proton therapy (PT) has distinct dosimetric characteristics that may reduce dose to normal tissues, improving the therapeutic ratio. The purpose of this treatment planning study is to compare PT and intensity-modulated x-ray therapy (IMXT) in gastric cancer with regards to normal tissue sparing. MATERIAL AND METHODS: The patient population consisted of resected gastric cancer patients treated at a single institution between 2008 and 2013. Patients who had undergone 4D CT simulation were replanned to the originally delivered doses (45-54 Gy in 25-30 daily fractions) using six-field photon IMXT and 2-3-field PT (double scattering-uniform scanning techniques). RESULTS: Thirteen patients were eligible for the planning comparison. IMXT provided slightly higher homogeneity indices (median values 0.04 ± 0.01 vs. 0.07 ± 0.01, p = 0.03). PT resulted in significantly (p < 0.05) lower intermediate-low doses for all the normal tissues examined (small bowel V15 82 ml vs. 133 ml, liver mean doses Gy 11.9 vs. 14.4 Gy, left/right kidney mean doses 5/0.9 Gy vs. 7.8/3.1 Gy, heart mean doses 7.4 Gy vs. 9.5 Gy). The total energy deposited outside the target volume was significantly lower with PT (median integral dose 90.1 J vs. 129 J). Four patients were treated with PT: treatment was feasible and verifications scans showed that target coverage was robust. CONCLUSION: PT can contribute to normal tissue sparing in the adjuvant treatment of gastric cancer, with a potential benefit in terms of compliance to treatment, acute and late toxicities.


Subject(s)
Organs at Risk/radiation effects , Proton Therapy/methods , Radiotherapy, Intensity-Modulated/methods , Stomach Neoplasms/radiotherapy , Feasibility Studies , Humans , Organ Sparing Treatments/methods , Organs at Risk/diagnostic imaging , Radiation Injuries/prevention & control , Radiography , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Stomach Neoplasms/diagnostic imaging , Stomach Neoplasms/pathology , Stomach Neoplasms/surgery
7.
Med Phys ; 38(11): 6248-56, 2011 Nov.
Article in English | MEDLINE | ID: mdl-22047390

ABSTRACT

PURPOSE: To apply the dual ionization chamber method for mixed radiation fields to an accurate comparison of the secondary neutron dose arising from the use of a tungsten alloy multileaf collimator (MLC) as opposed to a brass collimator system for defining the shape of a therapeutic proton field. METHODS: Hydrogenous and nonhydrogenous ionization chambers were constructed with large volumes to enable measurements of absorbed doses below 10(-4) Gy in mixed radiation fields using the dual ionization chamber method for mixed-field dosimetry. Neutron dose measurements were made with a nominal 230 MeV proton beam incident on a closed tungsten alloy MLC and a solid brass block. The chambers were cross-calibrated against a (60)Co-calibrated Farmer chamber in water using a 6 MV x-ray beam and Monte Carlo simulations were performed to account for variations in ionization chamber response due to differences in secondary neutron energy spectra. RESULTS: The neutron and combined proton plus γ-ray absorbed doses are shown to be nearly equivalent downstream from either a closed tungsten alloy MLC or a solid brass block. At 10 cm downstream from the distal edge of the collimating material the neutron dose from the closed MLC was (5.3 ± 0.4) × 10(- 5) Gy/Gy. The neutron dose with brass was (6.4 ± 0.7) × 10(- 5) Gy/Gy. Further from the secondary neutron source, at 50 cm, the neutron doses remain close for both the MLC and brass block at (6.9 ± 0.6) × 10(- 6) Gy/Gy and (6.3 ± 0.7) × 10(- 6) Gy/Gy, respectively. CONCLUSIONS: The dual ionization chamber method is suitable for measuring secondary neutron doses resulting from proton irradiation. The results of measurements downstream from a closed tungsten alloy MLC and a brass block indicate that, even in an overly pessimistic worst-case scenario, secondary neutron production in a tungsten alloy MLC leads to absorbed doses that are nearly equivalent to those seen from brass collimators. Therefore, the choice of tungsten alloy in constructing the leaves of a proton MLC is appropriate, and does not lead to a substantial increase in the secondary neutron dose to the patient compared to that generated in a brass collimator.


Subject(s)
Alloys , Copper , Neutrons , Proton Therapy , Radiometry/instrumentation , Radiotherapy/methods , Tungsten , Zinc , Radiotherapy Dosage
9.
Phys Imaging Radiat Oncol ; 8: 17-22, 2018 Oct.
Article in English | MEDLINE | ID: mdl-33458411

ABSTRACT

BACKGROUND AND PURPOSE: Photon Stereotactic Body Radiotherapy (SBRT) for primary and metastatic tumors of the liver is challenging for larger lesions. An in silico comparison of paired SBRT and Stereotactic Body Proton Therapy (SBPT) plans was performed to understand the potential advantages of SBPT as a function of tumor size and location. METHODS AND MATERIALS: Theoretical tumor volumes with maximum diameter of 1-10 cm were contoured in the dome, right inferior, left medial, and central locations. SBRT and SBPT plans were generated to deliver 50 Gy in 5 fractions, max dose <135%. When organs-at-risk (OAR) constraints were exceeded, hypothetical plans (not clinically acceptable) were generated for comparison. Liver normal tissue complication probability (NTCP) models were applied to evaluate differences between treatment modalities. RESULTS: SBRT and SBPT were able to meet target goals and OAR constraints for lesions up to 7 cm and 9 cm diameter, respectively. SBPT plans resulted in a higher integral gross target dose for all lesions up to 7 cm (mean dose 57.8 ±â€¯2.3 Gy to 64.1 ±â€¯2.2 Gy, p < 0.01). Simultaneously, SBPT spared dose to the uninvolved liver in all locations (from 11.5 ±â€¯5.3 Gy to 8.6 ±â€¯4.4 Gy, p < 0.01), resulting in lower NTCP particularly for larger targets in the dome and central locations. SBPT also spared duodenal dose across all sizes and positions (from 7.3 ±â€¯1.1 Gy to 1.1 ±â€¯0.3 Gy, p < 0.05). CONCLUSION: The main advantages of SBPT over SBRT is meeting plan goals and constrains for larger targets, particularly dome and central locations, and sparing dose to uninvolved liver. For such patients, SBPT may allow improvements in tumor control and treatment safety.

10.
Int J Part Ther ; 4(3): 1-11, 2018.
Article in English | MEDLINE | ID: mdl-31773009

ABSTRACT

PURPOSE: We dosimetrically compared pencil beam scanning (PBS) proton therapy and intensity-modulated radiation therapy (IMRT) for pelvic and para-aortic lymph node disease in endometrial carcinoma and present acute toxicities associated with extended-field PBS. PATIENTS AND METHODS: Twenty-five patients with locally advanced endometrial malignancies were enrolled in an image-guided registry study. Seven of these patients were treated with PBS, and 18 patients were treated with IMRT. Organs at risk included pelvic bone marrow (PBM), small bowel (SB), large bowel (LB), rectum, bladder, and kidneys. The IMRT and PBS dosimetric parameters were compared using Wilcoxon rank-sum tests. RESULTS: Compared with IMRT PBM dose-volume histograms, PBS resulted in significantly lower dose volumes from 0 to 26.0 Gy (P < .05) and higher dose volumes from 33.9 to 42.9 Gy (P < .05). Overall, PBS resulted in 22% lower median PBM volume irradiated to 10 Gy (RBE) (PBS 71.3% versus IMRT 93.4%, P < .001) and 14% lower median volume irradiated to 20 Gy (RBE) (PBS 65.1% versus IMRT 79.4%, P < .001). Compared with IMRT, PBS also significantly reduced SB dose volumes from 0 to 27.5 Gy, LB dose volumes from 0 to 31.6 Gy, bladder dose volumes from 0 to 27.3 Gy, and rectal dose volumes from 0 to 7.6 Gy (all P < .05). However, PBS resulted in higher rectal dose volumes compared with IMRT from 26.0 to 48.4 Gy. Grade 3+ hematologic toxicities were present in 2 (11%) IMRT-treated patients and no PBS-treated patients. No grade 3+ gastrointestinal or genitourinary toxicities were present in either treatment group. CONCLUSION: In endometrial carcinoma, extended-field PBS is clinically feasible, resulting in statistically significant dose reduction to PBM as well as SB, LB, and bladder in the lower dose regions.

11.
Int J Radiat Oncol Biol Phys ; 99(3): 738-749, 2017 11 01.
Article in English | MEDLINE | ID: mdl-29280468

ABSTRACT

PURPOSE: To compare the difference in robustness of single-field optimized (SFO) and robust multifield optimized (rMFO) proton plans for oropharynx carcinoma patients by an improved robustness analysis. METHODS AND MATERIALS: We generated rMFO proton plans for 11 patients with oropharynx carcinoma treated with SFO intensity modulated proton therapy with simultaneous integrated boost prescription. Doses from both planning approaches were compared for the initial plans and the worst cases from 20 optimization scenarios of setup errors and range uncertainties. Expected average dose distributions per range uncertainty were obtained by weighting the contributions from the respective scenarios with their expected setup error probability, and the spread of dose parameters for different range uncertainties were quantified. Using boundary dose distributions created from 56 combined setup error and range uncertainty scenarios and considering the vanishing influence of setup errors after 30 fractions, we approximated realistic worst-case values for the total treatment course. Error bar metrics derived from these boundary doses are reported for the clinical target volumes (CTVs) and organs at risk (OARs). RESULTS: The rMFO plans showed improved CTV coverage and homogeneity while simultaneously reducing the average mean dose to the constrictor muscles, larynx, and ipsilateral middle ear by 5.6 Gy, 2.0 Gy, and 3.9 Gy, respectively. We observed slightly larger differences during robustness evaluation, as well as a significantly higher average brainstem maximum and ipsilateral parotid mean dose for SFO plans. For rMFO plans, the range uncertainty-related spread in OAR dose parameters and many error bar metrics were found to be superior. The SFO plans showed a lower global maximum dose for single-scenario worst cases and a slightly lower mean oral cavity dose throughout. CONCLUSIONS: An enhanced robustness analysis has been proposed and implemented into clinical systems. The benefit of better CTV coverage and OAR dose sparing in oropharynx carcinoma patients by rMFO compared with SFO proton plans is preserved in a robustness analysis with consideration of setup error and range uncertainty.


Subject(s)
Carcinoma/radiotherapy , Organ Sparing Treatments/methods , Organs at Risk , Oropharyngeal Neoplasms/radiotherapy , Proton Therapy/methods , Radiotherapy, Intensity-Modulated/methods , Aged , Algorithms , Brain Stem/diagnostic imaging , Brain Stem/radiation effects , Carcinoma/diagnostic imaging , Dose Fractionation, Radiation , Female , Humans , Male , Middle Aged , Organs at Risk/diagnostic imaging , Organs at Risk/radiation effects , Oropharyngeal Neoplasms/diagnostic imaging , Parotid Gland/diagnostic imaging , Parotid Gland/radiation effects , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy Setup Errors , Uncertainty
12.
Cureus ; 9(9): e1698, 2017 Sep 18.
Article in English | MEDLINE | ID: mdl-29159005

ABSTRACT

This report aims to propose and present an evaluation of a robust pencil beam scanning proton multi-field optimized treatment planning technique for postmastectomy radiation of breast cancer patients with implanted tissue expanders containing an internal metal port. Field-specific split targets were created for optimization to prevent spots from traveling through the metal port, while providing uniform coverage of the target with the use of a multi-field intensity modulated optimization approach. Two beam angles were strategically selected to provide complementary target coverage and plan robustness. The plan was compared with an independently developed photon plan and evaluated for robustness with respect to isocenter shifts, range shifts, and variation of the water-equivalent thickness of the port. The proton plan resulted in clinically acceptable target coverage and dosage to neighboring normal tissues. The D95% coverage was 95.3% in the nominal proton plan, with a worst-case coverage of 90.1% (when considering 0.3 cm isocenter shifts combined with 3.5% range uncertainty), and the coverage varied less than 1% under a hypothetically extreme variation of the port density. The proton plan had improved dose homogeneity compared with the photon plan, and reduced ipsilateral lung and mean heart doses. We demonstrated that a practical, field-specific intensity-modulated proton therapy (IMPT) optimization technique can be used to deal with the challenge of metal port in breast cancer patients with tissue expanders. The resulting proton plan has superior dosimetric characteristics over the best-case scenario photon plan, and is also robust to setup and proton range uncertainties.

13.
Med Dosim ; 42(1): 7-11, 2017.
Article in English | MEDLINE | ID: mdl-27839693

ABSTRACT

Patients diagnosed with head and neck cancer are traditionally treated with photon radiotherapy. Proton therapy is currently being used clinically and may potentially reduce treatment-related toxicities by minimizing the dose to normal organs in the treatment of postoperative oropharyngeal cancer. The finite range of protons has the potential to significantly reduce normal tissue toxicity compared to photon radiotherapy. Seven patients were planned with both proton and photon modalities. The planning goal for both modalities was achieving the prescribed dose to 95% of the planning target volume (PTV). Dose-volume histograms were compared in which all cases met the target coverage goals. Mean doses were significantly lower in the proton plans for the oral cavity (1771cGy photon vs 293cGy proton, p < 0.001), contralateral parotid (1796cGy photon vs 1358 proton, p < 0.001), and the contralateral submandibular gland (3608cGy photon vs 3251cGy proton, p = 0.03). Average total integral dose was 9.1% lower in proton plans. The significant dosimetric sparing seen with proton therapy may lead to reduced side effects such as pain, weight loss, taste changes, and dry mouth. Prospective comparisons of protons vs photons for disease control, toxicity, and patient-reported outcomes are therefore warranted and currently being pursued.


Subject(s)
Carcinoma, Squamous Cell/radiotherapy , Oropharyngeal Neoplasms/radiotherapy , Proton Therapy/methods , Aged , Carcinoma, Squamous Cell/surgery , Humans , Male , Middle Aged , Oropharyngeal Neoplasms/surgery , Radiotherapy Planning, Computer-Assisted , Radiotherapy, Intensity-Modulated
14.
Int J Part Ther ; 3(2): 320-326, 2016.
Article in English | MEDLINE | ID: mdl-28989947

ABSTRACT

Primary or recurrent gynecologic cancers in operable patients with a history of prior pelvic radiation are typically treated with surgery based on the risk of late toxicities historically associated with reirradiation. A number of studies have demonstrated that, compared with conventional radiation therapy (RT) using photons, proton therapy (PT) offers dosimetric advantages for patients with gynecologic cancers by reducing radiation dose to healthy tissues. Thereby, we expect that, in appropriately selected cases, PT may reduce long-term treatment-related morbidities without compromising treatment efficacy. Herein, we describe the treatment planning, technique, and long-term follow-up of a patient who was treated with PT for a primary vaginal carcinoma nearly 30 years after a prior course of pelvic RT. Using this case, we illustrate the utility and advantages of PT in the treatment of cancers that occur at less favorable sites, adjacent to normal structures with low radiation tolerance, or in paients with a history of prior irradiation. Additionally, we provide a brief discussion and review of literature of prior case series of pelvic reirradiation, illustrating the value of identifying treatment approaches that can reduce treatment-related morbidities, particularly late treatment toxicities.

15.
Phys Med Biol ; 61(21): N565-N574, 2016 11 07.
Article in English | MEDLINE | ID: mdl-27740944

ABSTRACT

The development of rotational proton therapy plans based on a pencil-beam-scanning (PBS) system has been limited, among several other factors, by the energy-switching time between layers, a system-dependent parameter that ranges between a fraction of a second and several seconds. We are investigating mono- and bi-energetic rotational proton modulated arc therapy (PMAT) solutions that would not be affected by long energy switching times. In this context, a systematic selection of the optimal proton energy for each arc is vital. We present a treatment planning comparison of four different range selection methods, analyzing the dosimetric outcomes of the resulting treatment plans created with the ranges obtained. Given the patient geometry and arc definition (gantry and couch trajectories, snout elevation) our in-house treatment planning system (TPS) FoCa was used to find the maximum, medial and minimum water-equivalent thicknesses (WETs) of the target viewed from all possible field orientations. Optimal ranges were subsequently determined using four methods: (1) by dividing the max/min WET interval into equal steps, (2) by taking the average target midpoints from each field, (3) by taking the average WET of all voxels from all field orientations, and (4) by minimizing the fraction of the target which cannot be reached from any of the available angles. After the range (for mono-energetic plans) or ranges (for bi-energetic plans) were selected, the commercial clinical TPS in use in our institution (Varian Eclipse™) was used to produce the PMAT plans using multifield optimization. Linear energy transfer (LET) distributions of all plans were also calculated using FoCa and compared among the different methods. Mono- and bi-energetic PMAT plans, composed of a single 180° arc, were created for two patient geometries: a C-shaped target located in the mediastinal area of a thoracic tissue-equivalent phantom and a small brain tumor located directly above the brainstem. All plans were optimized using the same procedure to (1) achieve target coverage, (2) reduce dose to OAR and (3) limit dose hot spots in the target. Final outcomes were compared in terms of the resulting dose and LET distributions. Data shows little significant differences among the four studied methods, with superior results obtained with mono-energetic plans. A streamlined systematic method has been implemented in an in-house TPS to find the optimal range to maximize target coverage with rotational mono- or bi-energetic PBS rotational plans by minimizing the fraction of the target that cannot be reached by any direction.


Subject(s)
Brain Neoplasms/radiotherapy , Phantoms, Imaging , Proton Therapy , Radiotherapy Planning, Computer-Assisted/standards , Radiotherapy, Intensity-Modulated/standards , Humans , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods
16.
Int J Part Ther ; 2(4): 525-532, 2016 Mar.
Article in English | MEDLINE | ID: mdl-31772964

ABSTRACT

PURPOSE: To report the dosimetric advantages of a comparison between pencil beam scanning (PBS) proton therapy versus intensity-modulated radiation therapy (IMRT) for parotid gland cancers. PATIENTS AND METHODS: This was a retrospective, dosimetric comparison of 8 patients who received external beam radiation therapy at our institution between 2009 and 2011. Two separate plans were generated for each patient: 1 IMRT and 1 PBS plan. The prescription dose for each plan was 60 Gy for IMRT and 60 Gy (RBE) for PBS. We measured dose-volume relationships for target volumes and organs at risk with each treatment technique. Dosimetric comparisons for each organ at risk were made by using the Wilcoxon signed rank test. All tests were 2-tailed, with P values < .05 considered statistically significant. RESULTS: The mean patient planning target volume was 160.9 cm3 (SD 74.6). Pencil beam scanning, compared to IMRT, significantly reduced the mean dose to the following structures: ipsilateral temporal lobe (2.86 versus 9.59 Gy (RBE), P = .01), oral cavity (0.58 versus 13.48 Gy (RBE), P = .01), mandible (V50: 7.4% versus 12.8%, P = .01), contralateral parotid gland (0.003 versus 4.64 Gy (RBE), P = .01), ipsilateral submandibular gland (16.59 versus 38.94 Gy (RBE), P = .03), and contralateral submandibular gland (0.02 versus 5.34 Gy (RBE), P = .01). Pencil beam scanning also significantly reduced the maximum dose delivered to the brainstem (7.1 versus 30.9 Gy (RBE), P = .01). CONCLUSION: Pencil beam scanning allows for superior normal tissue sparing while still maintaining excellent target coverage in patients with resected parotid gland cancers. These findings suggest that PBS may allow for an improved therapeutic index for these patients. Clinical outcomes with PBS should be evaluated prospectively, with a focus on disease outcomes as well as treatment-related toxicities and patient quality of life.

17.
Int J Radiat Oncol Biol Phys ; 95(1): 181-189, 2016 May 01.
Article in English | MEDLINE | ID: mdl-26372435

ABSTRACT

PURPOSE: To report the acute toxicities associated with pencil beam scanning proton beam radiation therapy (PBS) for whole pelvis radiation therapy in women with gynecologic cancers and the results of a dosimetric comparison of PBS versus intensity modulated radiation therapy (IMRT) plans. METHODS AND MATERIALS: Eleven patients with posthysterectomy gynecologic cancer received PBS to the whole pelvis. The patients received a dose of 45 to 50.4 Gy relative biological effectiveness (RBE) in 1.8 Gy (RBE) daily fractions. Acute toxicity was scored according to the Common Terminology Criteria for Adverse Events, version 4. A dosimetric comparison between a 2-field posterior oblique beam PBS and an IMRT plan was conducted. The Wilcoxon signed rank test was used to assess the potential dosimetric differences between the 2 plans and PBS target coverage robustness relative to setup uncertainties. RESULTS: The median patient age was 55 years (range 23-76). The primary site was cervical in 7, vaginal in 1, and endometrial in 3. Of the 11 patients, 7 received concurrent cisplatin, 1 each received sandwich carboplatin and paclitaxel chemotherapy, both sandwich and concurrent chemotherapy, and concurrent and adjuvant chemotherapy, and 1 received no chemotherapy. All patients completed treatment. Of the 9 patients who received concurrent chemotherapy, the rate of grade 2 and 3 hematologic toxicities was 33% and 11%, respectively. One patient (9%) developed grade 3 acute gastrointestinal toxicity; no patient developed grade ≥3 genitourinary toxicity. The volume of pelvic bone marrow, bladder, and small bowel receiving 10 to 30 Gy was significantly lower with PBS than with intensity modulated radiation therapy (P<.001). The target coverage for all PBS plans was robust relative to the setup uncertainties (P>.05) with the clinical target volume mean dose percentage received by 95% and 98% of the target volume coverage changes within 2% for the individual plans. CONCLUSIONS: Our results have demonstrated the clinical feasibility of PBS and the dosimetric advantages, especially for the low-dose sparing of normal tissues in the pelvis with the target robustness maintained relative to the setup uncertainties. Future studies with larger patient numbers are planned to further validate our preliminary findings.


Subject(s)
Endometrial Neoplasms/radiotherapy , Proton Therapy/methods , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Uterine Cervical Neoplasms/radiotherapy , Vaginal Neoplasms/radiotherapy , Adult , Aged , Antineoplastic Agents/therapeutic use , Endometrial Neoplasms/diagnostic imaging , Endometrial Neoplasms/surgery , Feasibility Studies , Female , Humans , Hysterectomy , Intestine, Small/radiation effects , Lymphatic Irradiation/methods , Middle Aged , Organ Sparing Treatments/adverse effects , Organ Sparing Treatments/methods , Organs at Risk/radiation effects , Pelvic Bones/radiation effects , Pelvis , Postoperative Period , Prospective Studies , Proton Therapy/adverse effects , Radiography , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/adverse effects , Radiotherapy, Intensity-Modulated/adverse effects , Re-Irradiation/statistics & numerical data , Relative Biological Effectiveness , Urinary Bladder/radiation effects , Uterine Cervical Neoplasms/surgery , Vaginal Neoplasms/diagnostic imaging , Vaginal Neoplasms/surgery
18.
Med Phys ; 43(8): 4693, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27487886

ABSTRACT

PURPOSE: To quantitatively assess the advantages of energy-layer specific dynamic collimation system (DCS) versus a per-field fixed aperture for spot scanning proton therapy (SSPT). METHODS: Five brain cancer patients previously planned and treated with SSPT were replanned using an in-house treatment planning system capable of modeling collimated and uncollimated proton beamlets. The uncollimated plans, which served as a baseline for comparison, reproduced the target coverage and organ-at-risk sparing of the clinically delivered plans. The collimator opening for the fixed aperture-based plans was determined from the combined cross sections of the target in the beam's eye view over all energy layers which included an additional margin equivalent to the maximum beamlet displacement for the respective energy of that energy layer. The DCS-based plans were created by selecting appropriate collimator positions for each row of beam spots during a Raster-style scanning pattern which were optimized to maximize the dose contributions to the target and limited the dose delivered to adjacent normal tissue. RESULTS: The reduction of mean dose to normal tissue adjacent to the target, as defined by a 10 mm ring surrounding the target, averaged 13.65% (range: 11.8%-16.9%) and 5.18% (2.9%-7.1%) for the DCS and fixed aperture plans, respectively. The conformity index, as defined by the ratio of the volume of the 50% isodose line to the target volume, yielded an average improvement of 21.35% (19.4%-22.6%) and 8.38% (4.7%-12.0%) for the DCS and fixed aperture plans, respectively. CONCLUSIONS: The ability of the DCS to provide collimation to each energy layer yielded better conformity in comparison to fixed aperture plans.


Subject(s)
Brain Neoplasms/radiotherapy , Proton Therapy , Radiotherapy Planning, Computer-Assisted/methods , Humans
19.
Int J Part Ther ; 2(4): 544-554, 2016 Mar.
Article in English | MEDLINE | ID: mdl-31772966

ABSTRACT

PURPOSE: Interest in using collimation for spot scanning proton therapy has recently increased in an attempt to improve the lateral penumbra. To investigate the advantages of such an approach for complex targets, a plan comparison between uncollimated and collimated beam spots was performed for patients with head and neck cancer. PATIENTS AND METHODS: For 10 patients with head and neck cancer, previously treated with spot scanning proton therapy, uncollimated and collimated treatment plans were created using an in-house treatment-planning system capable of modeling asymmetric-beamlet dose distributions resulting from the use of a dynamic collimation system. Both uncollimated and collimated plans reproduced clinically delivered plans in terms of target coverage. A relative plan comparison was performed using both physical and radiobiological metrics on the organs at risk. RESULTS: The dynamic collimation system improved dose-distribution conformity while preserving target coverage. The median reduction of the mean dose to the esophagus, uninvolved larynx, and uninvolved parotids were -11.9% (minimum to maximum, -6.4% to -24.1%), -7.2% (-0.8% to -60.1%), and -5.2% (-0.2% to -21.5%), respectively, and depended on the organ location relative to the target and radiation beam angle. The collimation did not improve dose to some organs at risk surrounded by the target or located upstream of Bragg peaks because of the priority on the target coverage. CONCLUSION: In spot scanning proton therapy, the dynamic collimation system generally affords better target conformity, which results in improvement in organ-at-risk sparing in the head and neck region while preserving target coverage. However, the benefits of collimation and the increased complexity should be considered for each patient. Patients with large bilateral targets or organs at risk surrounded by the target showed the least benefit.

20.
Int J Radiat Oncol Biol Phys ; 95(1): 171-180, 2016 May 01.
Article in English | MEDLINE | ID: mdl-26614424

ABSTRACT

PURPOSE: To quantify the dosimetric benefit of using a dynamic collimation system (DCS) for penumbra reduction during the treatment of brain tumors by pencil beam scanning proton therapy (PBS PT). METHODS AND MATERIALS: Collimated and uncollimated brain treatment plans were created for 5 patients previously treated with PBS PT and retrospectively enrolled in an institutional review board-approved study. The in-house treatment planning system, RDX, was used to generate the plans because it is capable of modeling both collimated and uncollimated beamlets. The clinically delivered plans were reproduced with uncollimated plans in terms of target coverage and organ at risk (OAR) sparing to ensure a clinically relevant starting point, and collimated plans were generated to improve the OAR sparing while maintaining target coverage. Physical and biological comparison metrics, such as dose distribution conformity, mean and maximum doses, normal tissue complication probability, and risk of secondary brain cancer, were used to evaluate the plans. RESULTS: The DCS systematically improved the dose distribution conformity while preserving the target coverage. The average reduction of the mean dose to the 10-mm ring surrounding the target and the healthy brain were 13.7% (95% confidence interval [CI] 11.6%-15.7%; P<.0001) and 25.1% (95% CI 16.8%-33.4%; P<.001), respectively. This yielded an average reduction of 24.8% (95% CI 0.8%-48.8%; P<.05) for the brain necrosis normal tissue complication probability using the Flickinger model, and 25.1% (95% CI 16.8%-33.4%; P<.001) for the risk of secondary brain cancer. A general improvement of the OAR sparing was also observed. CONCLUSION: The lateral penumbra reduction afforded by the DCS increases the normal tissue sparing capabilities of PBS PT for brain cancer treatment while preserving target coverage.


Subject(s)
Brain Neoplasms/radiotherapy , Proton Therapy/methods , Radiotherapy Planning, Computer-Assisted/methods , Algorithms , Brain/pathology , Brain/radiation effects , Humans , Necrosis , Organ Sparing Treatments/instrumentation , Organ Sparing Treatments/methods , Organs at Risk/radiation effects , Proton Therapy/instrumentation , Radiation Injuries/prevention & control , Radiotherapy Dosage , Radiotherapy, Intensity-Modulated/instrumentation , Radiotherapy, Intensity-Modulated/methods , Retrospective Studies , Scattering, Radiation , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL