Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Nat Methods ; 18(2): 165-169, 2021 02.
Article in English | MEDLINE | ID: mdl-33432244

ABSTRACT

High-throughput amplicon sequencing of large genomic regions remains challenging for short-read technologies. Here, we report a high-throughput amplicon sequencing approach combining unique molecular identifiers (UMIs) with Oxford Nanopore Technologies (ONT) or Pacific Biosciences circular consensus sequencing, yielding high-accuracy single-molecule consensus sequences of large genomic regions. We applied our approach to sequence ribosomal RNA operon amplicons (~4,500 bp) and genomic sequences (>10,000 bp) of reference microbial communities in which we observed a chimera rate <0.02%. To reach a mean UMI consensus error rate <0.01%, a UMI read coverage of 15× (ONT R10.3), 25× (ONT R9.4.1) and 3× (Pacific Biosciences circular consensus sequencing) is needed, which provides a mean error rate of 0.0042%, 0.0041% and 0.0007%, respectively.


Subject(s)
High-Throughput Nucleotide Sequencing/methods , Microbiota , Nanopores , Workflow
2.
Nature ; 528(7583): 504-9, 2015 Dec 24.
Article in English | MEDLINE | ID: mdl-26610024

ABSTRACT

Nitrification, the oxidation of ammonia via nitrite to nitrate, has always been considered to be a two-step process catalysed by chemolithoautotrophic microorganisms oxidizing either ammonia or nitrite. No known nitrifier carries out both steps, although complete nitrification should be energetically advantageous. This functional separation has puzzled microbiologists for a century. Here we report on the discovery and cultivation of a completely nitrifying bacterium from the genus Nitrospira, a globally distributed group of nitrite oxidizers. The genome of this chemolithoautotrophic organism encodes the pathways both for ammonia and nitrite oxidation, which are concomitantly activated during growth by ammonia oxidation to nitrate. Genes affiliated with the phylogenetically distinct ammonia monooxygenase and hydroxylamine dehydrogenase genes of Nitrospira are present in many environments and were retrieved on Nitrospira-contigs in new metagenomes from engineered systems. These findings fundamentally change our picture of nitrification and point to completely nitrifying Nitrospira as key components of nitrogen-cycling microbial communities.


Subject(s)
Ammonia/metabolism , Bacteria/metabolism , Nitrates/metabolism , Nitrification , Nitrites/metabolism , Bacteria/enzymology , Bacteria/genetics , Bacteria/growth & development , Evolution, Molecular , Genome, Bacterial/genetics , Molecular Sequence Data , Nitrification/genetics , Oxidation-Reduction , Oxidoreductases/genetics , Oxidoreductases/metabolism , Phylogeny
3.
Front Microbiol ; 15: 1408479, 2024.
Article in English | MEDLINE | ID: mdl-38946903

ABSTRACT

Bacterial endophytes dwelling in medicinal plants represent an as yet underexplored source of bioactive natural products with the potential to be developed into drugs against various human diseases. For the first time, several Streptomyces spp. were isolated from the rare and endangered traditional medicinal plant Leontopodium nivale ssp. alpinum, also known as Edelweiss. In the search for novel natural products, nine endophytic Streptomyces spp. from Edelweiss were investigated via genome sequencing and analysis, followed by fermentation in different media and investigation of secondary metabolomes. A total of 214 secondary metabolite biosynthetic gene clusters (BGCs), of which 35 are presumably unique, were identified by the bioinformatics tool antiSMASH in the genomes of these isolates. LC-MS analyses of the secondary metabolomes of these isolates revealed their potential to produce both known and presumably novel secondary metabolites, whereby most of the identified molecules could be linked to their cognate BGCs. This work sets the stage for further investigation of endophytic streptomycetes from Edelweiss aimed at the discovery and characterization of novel bioactive natural products.

4.
ISME J ; 17(11): 2123-2133, 2023 11.
Article in English | MEDLINE | ID: mdl-37749300

ABSTRACT

Nitrospirales, including the genus Nitrospira, are environmentally widespread chemolithoautotrophic nitrite-oxidizing bacteria. These mostly uncultured microorganisms gain energy through nitrite oxidation, fix CO2, and thus play vital roles in nitrogen and carbon cycling. Over the last decade, our understanding of their physiology has advanced through several new discoveries, such as alternative energy metabolisms and complete ammonia oxidizers (comammox Nitrospira). These findings mainly resulted from studies of terrestrial species, whereas less attention has been given to marine Nitrospirales. In this study, we cultured three new marine Nitrospirales enrichments and one isolate. Three of these four NOB represent new Nitrospira species while the fourth represents a novel genus. This fourth organism, tentatively named "Ca. Nitronereus thalassa", represents the first cultured member of a Nitrospirales lineage that encompasses both free-living and sponge-associated nitrite oxidizers, is highly abundant in the environment, and shows distinct habitat distribution patterns compared to the marine Nitrospira species. Partially explaining this, "Ca. Nitronereus thalassa" harbors a unique combination of genes involved in carbon fixation and respiration, suggesting differential adaptations to fluctuating oxygen concentrations. Furthermore, "Ca. Nitronereus thalassa" appears to have a more narrow substrate range compared to many other marine nitrite oxidizers, as it lacks the genomic potential to utilize formate, cyanate, and urea. Lastly, we show that the presumed marine Nitrospirales lineages are not restricted to oceanic and saline environments, as previously assumed.


Subject(s)
Bacteria , Nitrites , Nitrites/metabolism , Oxidation-Reduction , Ammonia/metabolism , Nitrification , Genomics , Phylogeny
5.
bioRxiv ; 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-38014294

ABSTRACT

Increasing evidence shows that many human-targeted drugs alter the gut microbiome, leading to implications for host health. However, much less is known about the mechanisms by which drugs target the microbiome and how drugs affect microbial function. Here we combined quantitative microbiome profiling, long-read metagenomics, stable isotope probing and single-cell chemical imaging to investigate the impact of two widely prescribed nervous system-targeted drugs on the gut microbiome. Ex vivo supplementation of physiologically relevant concentrations of entacapone or loxapine succinate to faecal samples significantly impacted the abundance of up to one third of the microbial species present. Importantly, we demonstrate that the impact of these drugs on microbial metabolism is much more pronounced than their impact on abundances, with low concentrations of drugs reducing the activity, but not the abundance of key microbiome members like Bacteroides, Ruminococcus or Clostridium species. We further demonstrate that entacapone impacts the microbiome due to its ability to complex and deplete available iron, and that microbial growth can be rescued by replenishing levels of microbiota-accessible iron. Remarkably, entacapone-induced iron starvation selected for iron-scavenging organisms carrying antimicrobial resistance and virulence genes. Collectively, our study unveils the impact of two under-investigated drugs on whole microbiomes and identifies metal sequestration as a mechanism of drug-induced microbiome disturbance.

6.
ISME J ; 15(3): 732-745, 2021 03.
Article in English | MEDLINE | ID: mdl-33067588

ABSTRACT

Chemolithoautotrophic nitrite-oxidizing bacteria (NOB) are key players in global nitrogen and carbon cycling. Members of the phylum Nitrospinae are the most abundant, known NOB in the oceans. To date, only two closely affiliated Nitrospinae species have been isolated, which are only distantly related to the environmentally abundant uncultured Nitrospinae clades. Here, we applied live cell sorting, activity screening, and subcultivation on marine nitrite-oxidizing enrichments to obtain novel marine Nitrospinae. Two binary cultures were obtained, each containing one Nitrospinae strain and one alphaproteobacterial heterotroph. The Nitrospinae strains represent two new genera, and one strain is more closely related to environmentally abundant Nitrospinae than previously cultured NOB. With an apparent half-saturation constant of 8.7 ± 2.5 µM, this strain has the highest affinity for nitrite among characterized marine NOB, while the other strain (16.2 ± 1.6 µM) and Nitrospina gracilis (20.1 ± 2.1 µM) displayed slightly lower nitrite affinities. The new strains and N. gracilis share core metabolic pathways for nitrite oxidation and CO2 fixation but differ remarkably in their genomic repertoires of terminal oxidases, use of organic N sources, alternative energy metabolisms, osmotic stress and phage defense. The new strains, tentatively named "Candidatus Nitrohelix vancouverensis" and "Candidatus Nitronauta litoralis", shed light on the niche differentiation and potential ecological roles of Nitrospinae.


Subject(s)
Bacteria , Nitrites , Bacteria/genetics , Genomics , Kinetics , Oceans and Seas , Oxidation-Reduction
7.
Nat Commun ; 12(1): 2009, 2021 03 31.
Article in English | MEDLINE | ID: mdl-33790294

ABSTRACT

Microorganisms play crucial roles in water recycling, pollution removal and resource recovery in the wastewater industry. The structure of these microbial communities is increasingly understood based on 16S rRNA amplicon sequencing data. However, such data cannot be linked to functional potential in the absence of high-quality metagenome-assembled genomes (MAGs) for nearly all species. Here, we use long-read and short-read sequencing to recover 1083 high-quality MAGs, including 57 closed circular genomes, from 23 Danish full-scale wastewater treatment plants. The MAGs account for ~30% of the community based on relative abundance, and meet the stringent MIMAG high-quality draft requirements including full-length rRNA genes. We use the information provided by these MAGs in combination with >13 years of 16S rRNA amplicon sequencing data, as well as Raman microspectroscopy and fluorescence in situ hybridisation, to uncover abundant undescribed lineages belonging to important functional groups.


Subject(s)
Genome, Bacterial/genetics , High-Throughput Nucleotide Sequencing/methods , Metagenome/genetics , Metagenomics/methods , RNA, Ribosomal, 16S/genetics , Sewage/microbiology , Bacteria/classification , Bacteria/genetics , Bioreactors/microbiology , Denmark , Microbiota/genetics , Phylogeny , RNA, Ribosomal, 23S/genetics , RNA, Ribosomal, 5S/genetics , Wastewater/microbiology , Water Purification/methods
8.
ISME J ; 14(2): 597-608, 2020 02.
Article in English | MEDLINE | ID: mdl-31712737

ABSTRACT

Ribosomes are essential to cellular life and the genes for their RNA components are the most conserved and transcribed genes in bacteria and archaea. Ribosomal RNA genes are typically organized into a single operon, an arrangement thought to facilitate gene regulation. In reality, some bacteria and archaea do not share this canonical rRNA arrangement-their 16S and 23S rRNA genes are separated across the genome and referred to as "unlinked". This rearrangement has previously been treated as an anomaly or a byproduct of genome degradation in intracellular bacteria. Here, we leverage complete genome and long-read metagenomic data to show that unlinked 16S and 23S rRNA genes are more common than previously thought. Unlinked rRNA genes occur in many phyla, most significantly within Deinococcus-Thermus, Chloroflexi, and Planctomycetes, and occur in differential frequencies across natural environments. We found that up to 41% of rRNA genes in soil were unlinked, in contrast to the human gut, where all sequenced rRNA genes were linked. The frequency of unlinked rRNA genes may reflect meaningful life history traits, as they tend to be associated with a mix of slow-growing free-living species and intracellular species. We speculate that unlinked rRNA genes may confer selective advantages in some environments, though the specific nature of these advantages remains undetermined and worthy of further investigation. More generally, the prevalence of unlinked rRNA genes in poorly-studied taxa serves as a reminder that paradigms derived from model organisms do not necessarily extend to the broader diversity of bacteria and archaea.


Subject(s)
Archaea/genetics , Bacteria/genetics , rRNA Operon/genetics , Environmental Microbiology , Gastrointestinal Microbiome , Genes, rRNA , Humans , Metagenomics , Phylogeny , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 23S
9.
Nat Biotechnol ; 36(2): 190-195, 2018 02.
Article in English | MEDLINE | ID: mdl-29291348

ABSTRACT

Small subunit ribosomal RNA (SSU rRNA) genes, 16S in bacteria and 18S in eukaryotes, have been the standard phylogenetic markers used to characterize microbial diversity and evolution for decades. However, the reference databases of full-length SSU rRNA gene sequences are skewed to well-studied ecosystems and subject to primer bias and chimerism, which results in an incomplete view of the diversity present in a sample. We combine poly(A)-tailing and reverse transcription of SSU rRNA molecules with synthetic long-read sequencing to generate high-quality, full-length SSU rRNA sequences, without primer bias, at high throughput. We apply our approach to samples from seven different ecosystems and obtain more than a million SSU rRNA sequences from all domains of life, with an estimated raw error rate of 0.17%. We observe a large proportion of novel diversity, including several deeply branching phylum-level lineages putatively related to the Asgard Archaea. Our approach will enable expansion of the SSU rRNA reference databases by orders of magnitude, and contribute to a comprehensive census of the tree of life.


Subject(s)
Metagenome/genetics , Phylogeny , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 18S/genetics , Archaea/classification , Archaea/genetics , Bacteria/classification , Bacteria/genetics , Biodiversity , Eukaryota/classification , Eukaryota/genetics , High-Throughput Nucleotide Sequencing , RNA, Ribosomal, 16S/classification
10.
Front Microbiol ; 9: 193, 2018.
Article in English | MEDLINE | ID: mdl-29491853

ABSTRACT

Ammonia-oxidizing archaea (AOA) within the phylum Thaumarchaeota are the only known aerobic ammonia oxidizers in geothermal environments. Although molecular data indicate the presence of phylogenetically diverse AOA from the Nitrosocaldus clade, group 1.1b and group 1.1a Thaumarchaeota in terrestrial high-temperature habitats, only one enrichment culture of an AOA thriving above 50°C has been reported and functionally analyzed. In this study, we physiologically and genomically characterized a newly discovered thaumarchaeon from the deep-branching Nitrosocaldaceae family of which we have obtained a high (∼85%) enrichment from biofilm of an Icelandic hot spring (73°C). This AOA, which we provisionally refer to as "Candidatus Nitrosocaldus islandicus," is an obligately thermophilic, aerobic chemolithoautotrophic ammonia oxidizer, which stoichiometrically converts ammonia to nitrite at temperatures between 50 and 70°C. "Ca. N. islandicus" encodes the expected repertoire of enzymes proposed to be required for archaeal ammonia oxidation, but unexpectedly lacks a nirK gene and also possesses no identifiable other enzyme for nitric oxide (NO) generation. Nevertheless, ammonia oxidation by this AOA appears to be NO-dependent as "Ca. N. islandicus" is, like all other tested AOA, inhibited by the addition of an NO scavenger. Furthermore, comparative genomics revealed that "Ca. N. islandicus" has the potential for aromatic amino acid fermentation as its genome encodes an indolepyruvate oxidoreductase (iorAB) as well as a type 3b hydrogenase, which are not present in any other sequenced AOA. A further surprising genomic feature of this thermophilic ammonia oxidizer is the absence of DNA polymerase D genes - one of the predominant replicative DNA polymerases in all other ammonia-oxidizing Thaumarchaeota. Collectively, our findings suggest that metabolic versatility and DNA replication might differ substantially between obligately thermophilic and other AOA.

11.
Front Microbiol ; 9: 1004, 2018.
Article in English | MEDLINE | ID: mdl-29875741

ABSTRACT

Enhanced biological phosphorus removal (EBPR) involves the cycling of biomass through carbon-rich (feast) and carbon-deficient (famine) conditions, promoting the activity of polyphosphate accumulating organisms (PAOs). However, several alternate metabolic strategies, without polyphosphate storage, are possessed by other organisms, which can compete with the PAO for carbon at the potential expense of EBPR efficiency. The most studied are the glycogen accumulating organisms (GAOs), which utilize aerobically stored glycogen to energize anaerobic substrate uptake and storage. In full-scale systems the Micropruina spp. are among the most abundant of the proposed GAO, yet little is known about their ecophysiology. In the current study, genomic and metabolomic studies were performed on Micropruina glycogenica str. Lg2T and compared to the in situ physiology of members of the genus in EBPR plants using state-of-the-art single cell techniques. The Micropruina spp. were observed to take up carbon, including sugars and amino acids, under anaerobic conditions, which were partly fermented to lactic acid, acetate, propionate, and ethanol, and partly stored as glycogen for potential aerobic use. Fermentation was not directly demonstrated for the abundant members of the genus in situ, but was strongly supported by the confirmation of anaerobic uptake of carbon and glycogen storage in the absence of detectable polyhydroxyalkanoates or polyphosphate reserves. This physiology is markedly different from the classical GAO model. The amount of carbon stored by fermentative organisms has potentially important implications for phosphorus removal - as they compete for substrates with the Tetrasphaera PAO and stored carbon is not made available to the "Candidatus Accumulibacter" PAO under anaerobic conditions. This study shows that the current models of the competition between PAO and GAO are too simplistic and may need to be revised to take into account the impact of potential carbon storage by fermentative organisms.

12.
Sci Rep ; 7(1): 9343, 2017 08 24.
Article in English | MEDLINE | ID: mdl-28839166

ABSTRACT

Anaerobic digestion is widely applied to treat organic waste at wastewater treatment plants. Characterisation of the underlying microbiology represents a source of information to develop strategies for improved operation. Hence, we investigated microbial communities of thirty-two full-scale anaerobic digesters over a six-year period using 16S rRNA gene amplicon sequencing. Sampling of the sludge fed into these systems revealed that several of the most abundant populations were likely inactive and immigrating with the influent. This observation indicates that a failure to consider immigration will interfere with correlation analysis and give an inaccurate picture of the growing microbial community. Furthermore, several abundant OTUs could not be classified to genus level with commonly applied taxonomies, making inference of their function unreliable and comparison to other studies problematic. As such, the existing MiDAS taxonomy was updated to include these abundant phylotypes. The communities of individual digesters surveyed were remarkably similar - with only 300 OTUs representing 80% of the total reads across all plants, and 15% of these identified as non-growing and possibly inactive immigrating microbes. By identifying abundant and growing taxa in anaerobic digestion, this study paves the way for targeted characterisation of the process-important organisms towards an in-depth understanding of the microbiology.


Subject(s)
Microbiota , Sewage/microbiology , Anaerobiosis , Cluster Analysis , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Denmark , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
13.
Front Microbiol ; 8: 1134, 2017.
Article in English | MEDLINE | ID: mdl-28690595

ABSTRACT

Anaerobic digestion for biogas production is reliant on the tightly coupled synergistic activities of complex microbial consortia. Members of the uncultured A6 phylotype, within the phylum Chloroflexi, are among the most abundant genus-level-taxa of mesophilic anaerobic digester systems treating primary and surplus sludge from wastewater treatment plants, yet are known only by their 16S rRNA gene sequence. This study applied metagenomics to obtain a complete circular genome (2.57 Mbp) from a representative of the A6 taxon. Preliminary annotation of the genome indicates these organisms to be anaerobic chemoorganoheterotrophs with a fermentative metabolism. Given their observed abundance, they are likely important primary fermenters in digester systems. Application of fluorescence in situ hybridisation probes designed in this study revealed their morphology to be short filaments present within the flocs. The A6 were sometimes co-located with the filamentous Archaea Methanosaeta spp. suggesting potential undetermined synergistic relationships. Based on its genome sequence and morphology we propose the species name Brevefilum fermentans gen. nov. sp. nov.

14.
PLoS One ; 10(7): e0132783, 2015.
Article in English | MEDLINE | ID: mdl-26182345

ABSTRACT

DNA extraction and primer choice have a large effect on the observed community structure in all microbial amplicon sequencing analyses. Although the biases are well known, no comprehensive analysis has been conducted in activated sludge communities. In this study we systematically explored the impact of a number of parameters on the observed microbial community: bead beating intensity, primer choice, extracellular DNA removal, and various PCR settings. In total, 176 samples were subjected to 16S rRNA amplicon sequencing, and selected samples were investigated through metagenomics and metatranscriptomics. Quantitative fluorescence in situ hybridization was used as a DNA extraction-independent method for qualitative comparison. In general, an effect on the observed community was found on all parameters tested, although bead beating and primer choice had the largest effect. The effect of bead beating intensity correlated with cell-wall strength as seen by a large increase in DNA from Gram-positive bacteria (up to 400%). However, significant differences were present at lower phylogenetic levels within the same phylum, suggesting that additional factors are at play. The best primer set based on in silico analysis was found to underestimate a number of important bacterial groups. For 16S rRNA gene analysis in activated sludge we recommend using the FastDNA SPIN Kit for Soil with four times the normal bead beating and V1-3 primers.


Subject(s)
DNA, Bacterial/genetics , Gram-Negative Bacteria/genetics , Gram-Positive Bacteria/genetics , Phylogeny , Sewage/microbiology , Solid Phase Extraction/methods , DNA Primers/genetics , DNA, Bacterial/isolation & purification , Gram-Negative Bacteria/classification , Gram-Positive Bacteria/classification , In Situ Hybridization, Fluorescence , Metagenomics , Microbial Consortia/genetics , Polymerase Chain Reaction/methods , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL