Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
EMBO J ; 43(7): 1187-1213, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38383863

ABSTRACT

Histone modifications commonly integrate environmental cues with cellular metabolic outputs by affecting gene expression. However, chromatin modifications such as acetylation do not always correlate with transcription, pointing towards an alternative role of histone modifications in cellular metabolism. Using an approach that integrates mass spectrometry-based histone modification mapping and metabolomics with stable isotope tracers, we demonstrate that elevated lipids in acetyltransferase-depleted hepatocytes result from carbon atoms derived from deacetylation of hyperacetylated histone H4 flowing towards fatty acids. Consistently, enhanced lipid synthesis in acetyltransferase-depleted hepatocytes is dependent on histone deacetylases and acetyl-CoA synthetase ACSS2, but not on the substrate specificity of the acetyltransferases. Furthermore, we show that during diet-induced lipid synthesis the levels of hyperacetylated histone H4 decrease in hepatocytes and in mouse liver. In addition, overexpression of acetyltransferases can reverse diet-induced lipogenesis by blocking lipid droplet accumulation and maintaining the levels of hyperacetylated histone H4. Overall, these findings highlight hyperacetylated histones as a metabolite reservoir that can directly contribute carbon to lipid synthesis, constituting a novel function of chromatin in cellular metabolism.


Subject(s)
Carbon , Histones , Animals , Mice , Histones/metabolism , Carbon/metabolism , Lipogenesis , Chromatin , Acetyltransferases/metabolism , Lipids , Acetylation , Histone Acetyltransferases/genetics , Histone Acetyltransferases/metabolism
2.
Mol Cell ; 78(5): 915-925.e7, 2020 06 04.
Article in English | MEDLINE | ID: mdl-32392469

ABSTRACT

Transcriptional memory of gene expression enables adaptation to repeated stimuli across many organisms. However, the regulation and heritability of transcriptional memory in single cells and through divisions remains poorly understood. Here, we combined microfluidics with single-cell live imaging to monitor Saccharomyces cerevisiae galactokinase 1 (GAL1) expression over multiple generations. By applying pedigree analysis, we dissected and quantified the maintenance and inheritance of transcriptional reinduction memory in individual cells through multiple divisions. We systematically screened for loss- and gain-of-memory knockouts to identify memory regulators in thousands of single cells. We identified new loss-of-memory mutants, which affect memory inheritance into progeny. We also unveiled a gain-of-memory mutant, elp6Δ, and suggest that this new phenotype can be mediated through decreased histone occupancy at the GAL1 promoter. Our work uncovers principles of maintenance and inheritance of gene expression states and their regulators at the single-cell level.


Subject(s)
Galactokinase/genetics , Gene Expression Regulation, Fungal/genetics , Transcription, Genetic/genetics , Galactose/metabolism , Gene Expression/genetics , Genes, Fungal/genetics , Heredity/genetics , Histones/metabolism , Promoter Regions, Genetic/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Single-Cell Analysis/methods
3.
J Cell Sci ; 136(7)2023 04 01.
Article in English | MEDLINE | ID: mdl-37013828

ABSTRACT

Histone acetylation involves the addition of acetyl groups to specific amino acid residues. This chemical histone modification is broadly divided into two types - acetylation of the amino group found on the side chain of internal lysine residues (lysine acetylation) or acetylation of the α-amino group at the N-terminal amino acid residue (N-terminal acetylation). Although the former modification is considered a classic epigenetic mark, the biological importance of N-terminal acetylation has been mostly overlooked in the past, despite its widespread occurrence and evolutionary conservation. However, recent studies have now conclusively demonstrated that histone N-terminal acetylation impacts important cellular processes, such as controlling gene expression and chromatin function, and thus ultimately affecting biological phenotypes, such as cellular ageing, metabolic rewiring and cancer. In this Review, we provide a summary of the literature, highlighting current knowledge on the function of this modification, as well as allude to open questions we expect to be the focus of future research on histone N-terminal acetylation.


Subject(s)
Histones , Lysine , Histones/metabolism , Acetylation , Lysine/metabolism , Chromatin , Protein Processing, Post-Translational
4.
BMC Biol ; 20(1): 22, 2022 01 20.
Article in English | MEDLINE | ID: mdl-35057804

ABSTRACT

BACKGROUND: Epigenetic regulation relies on the activity of enzymes that use sentinel metabolites as cofactors to modify DNA or histone proteins. Thus, fluctuations in cellular metabolite levels have been reported to affect chromatin modifications. However, whether epigenetic modifiers also affect the levels of these metabolites and thereby impinge on downstream metabolic pathways remains largely unknown. Here, we tested this notion by investigating the function of N-alpha-acetyltransferase 40 (NAA40), the enzyme responsible for N-terminal acetylation of histones H2A and H4, which has been previously implicated with metabolic-associated conditions such as age-dependent hepatic steatosis and calorie-restriction-mediated longevity. RESULTS: Using metabolomic and lipidomic approaches, we found that depletion of NAA40 in murine hepatocytes leads to significant increase in intracellular acetyl-CoA levels, which associates with enhanced lipid synthesis demonstrated by upregulation in de novo lipogenesis genes as well as increased levels of diglycerides and triglycerides. Consistently, the increase in these lipid species coincide with the accumulation of cytoplasmic lipid droplets and impaired insulin signalling indicated by decreased glucose uptake. However, the effect of NAA40 on lipid droplet formation is independent of insulin. In addition, the induction in lipid synthesis is replicated in vivo in the Drosophila melanogaster larval fat body. Finally, supporting our results, we find a strong association of NAA40 expression with insulin sensitivity in obese patients. CONCLUSIONS: Overall, our findings demonstrate that NAA40 affects the levels of cellular acetyl-CoA, thereby impacting lipid synthesis and insulin signalling. This study reveals a novel path through which histone-modifying enzymes influence cellular metabolism with potential implications in metabolic disorders.


Subject(s)
Histone Acetyltransferases , Histones , N-Terminal Acetyltransferase D/metabolism , Acetyl Coenzyme A/metabolism , Animals , Drosophila melanogaster/metabolism , Epigenesis, Genetic , Histone Acetyltransferases/metabolism , Histones/metabolism , Humans , Insulin/metabolism , Lipids , Lipogenesis , Mice
5.
Curr Genet ; 66(6): 1029-1035, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32686056

ABSTRACT

Transcriptional reinduction memory is a phenomenon whereby cells "remember" their transcriptional response to a previous stimulus such that subsequent encounters with the same stimulus can result in altered gene expression kinetics. Chromatin structure is thought to play a role in certain transcriptional memory mechanisms, leading to questions as to whether and how memory can be actively maintained and inherited to progeny through cell division. Here we summarize efforts towards dissecting chromatin-based transcriptional memory inheritance of GAL genes in Saccharomyces cerevisiae. We focus on methods and analyses of GAL (as well as MAL and INO) memory in single cells and discuss the challenges in unraveling the underlying mechanisms in yeast and higher eukaryotes.


Subject(s)
Galactokinase/genetics , Galactose/genetics , Saccharomyces cerevisiae Proteins/genetics , Transcription, Genetic , Chromatin/genetics , Gene Expression Regulation, Fungal/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Single-Cell Analysis , Sugars/metabolism
6.
EMBO Rep ; 17(12): 1829-1843, 2016 12.
Article in English | MEDLINE | ID: mdl-27799288

ABSTRACT

Changes in histone modifications are an attractive model through which environmental signals, such as diet, could be integrated in the cell for regulating its lifespan. However, evidence linking dietary interventions with specific alterations in histone modifications that subsequently affect lifespan remains elusive. We show here that deletion of histone N-alpha-terminal acetyltransferase Nat4 and loss of its associated H4 N-terminal acetylation (N-acH4) extend yeast replicative lifespan. Notably, nat4Δ-induced longevity is epistatic to the effects of calorie restriction (CR). Consistent with this, (i) Nat4 expression is downregulated and the levels of N-acH4 within chromatin are reduced upon CR, (ii) constitutive expression of Nat4 and maintenance of N-acH4 levels reduces the extension of lifespan mediated by CR, and (iii) transcriptome analysis indicates that nat4Δ largely mimics the effects of CR, especially in the induction of stress-response genes. We further show that nicotinamidase Pnc1, which is typically upregulated under CR, is required for nat4Δ-mediated longevity. Collectively, these findings establish histone N-acH4 as a regulator of cellular lifespan that links CR to increased stress resistance and longevity.


Subject(s)
Caloric Restriction , Gene Expression Regulation, Fungal , Histones/metabolism , N-Terminal Acetyltransferase D/deficiency , N-Terminal Acetyltransferase D/physiology , Saccharomyces cerevisiae Proteins/physiology , Saccharomyces cerevisiae/physiology , Acetylation , Chromatin/metabolism , Down-Regulation , Gene Expression Profiling , Histone Acetyltransferases/metabolism , Longevity , N-Terminal Acetyltransferase D/genetics , Nicotinamidase/genetics , Nicotinamidase/metabolism , Protein Processing, Post-Translational , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Time Factors , Transcriptional Activation
7.
BMC Biol ; 14(1): 106, 2016 12 07.
Article in English | MEDLINE | ID: mdl-27927215

ABSTRACT

BACKGROUND: Transcriptome studies have revealed that many eukaryotic genomes are pervasively transcribed producing numerous long non-coding RNAs (lncRNAs). However, only a few lncRNAs have been ascribed a cellular role thus far, with most regulating the expression of adjacent genes. Even less lncRNAs have been annotated as essential hence implying that the majority may be functionally redundant. Therefore, the function of lncRNAs could be illuminated through systematic analysis of their synthetic genetic interactions (GIs). RESULTS: Here, we employ synthetic genetic array (SGA) in Saccharomyces cerevisiae to identify GIs between long intergenic non-coding RNAs (lincRNAs) and protein-coding genes. We first validate this approach by demonstrating that the telomerase RNA TLC1 displays a GI network that corresponds to its well-described function in telomere length maintenance. We subsequently performed SGA screens on a set of uncharacterised lincRNAs and uncover their connection to diverse cellular processes. One of these lincRNAs, SUT457, exhibits a GI profile associating it to telomere organisation and we consistently demonstrate that SUT457 is required for telomeric overhang homeostasis through an Exo1-dependent pathway. Furthermore, the GI profile of SUT457 is distinct from that of its neighbouring genes suggesting a function independent to its genomic location. Accordingly, we show that ectopic expression of this lincRNA suppresses telomeric overhang accumulation in sut457Δ cells assigning a trans-acting role for SUT457 in telomere biology. CONCLUSIONS: Overall, our work proposes that systematic application of this genetic approach could determine the functional significance of individual lncRNAs in yeast and other complex organisms.


Subject(s)
Genome, Fungal , RNA, Long Noncoding/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/genetics , Telomere/genetics , DNA, Fungal/genetics , Exodeoxyribonucleases/genetics , Exodeoxyribonucleases/metabolism , Gene Expression Profiling , Gene Ontology , Genomics , Saccharomyces cerevisiae Proteins/genetics , Telomerase/genetics , Telomerase/metabolism
8.
Apoptosis ; 21(3): 298-311, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26666750

ABSTRACT

Protein N-terminal acetylation is an abundant post-translational modification in eukaryotes implicated in various fundamental cellular and biochemical processes. This modification is catalysed by evolutionarily conserved N-terminal acetyltransferases (NATs) whose deregulation has been linked to cancer development and thus, are emerging as useful diagnostic and therapeutic targets. Naa40 is a highly selective NAT that acetylates the amino-termini of histones H4 and H2A and acts as a sensor of cell growth in yeast. In the present study, we examine the role of Naa40 in cancer cell survival. We demonstrate that depletion of Naa40 in HCT116 and HT-29 colorectal cancer cells decreases cell survival by enhancing apoptosis, whereas Naa40 reduction in non-cancerous mouse embryonic fibroblasts has no effect on cell viability. Specifically, Naa40 knockdown in colon cancer cells activates the mitochondrial caspase-9-mediated apoptotic cascade. Consistent with this, we show that caspase-9 activation is required for the induced apoptosis because treatment of cells with an irreversible caspase-9 inhibitor impedes apoptosis when Naa40 is depleted. Furthermore, the effect of Naa40-depletion on cell-death is mediated through a p53-independent mechanism since p53-null HCT116 cells still undergo apoptosis upon reduction of the acetyltransferase. Altogether, these findings reveal an anti-apoptotic role for Naa40 and exhibit its potential as a therapeutic target in colorectal cancers.


Subject(s)
Apoptosis/genetics , Carcinogenesis/genetics , Caspase 9/metabolism , Colorectal Neoplasms/genetics , Mitochondria/metabolism , N-Terminal Acetyltransferase D/physiology , Tumor Suppressor Protein p53/metabolism , Acetylation , Animals , Caspase Inhibitors/pharmacology , Cell Survival , Colorectal Neoplasms/pathology , Gene Knockdown Techniques , HCT116 Cells , HT29 Cells , Histones/metabolism , Humans , Mice , N-Terminal Acetyltransferase D/genetics , Protein Processing, Post-Translational/genetics , RNA, Small Interfering/genetics , Signal Transduction , Tumor Suppressor Protein p53/genetics
9.
PLoS Genet ; 9(9): e1003805, 2013.
Article in English | MEDLINE | ID: mdl-24068969

ABSTRACT

Post-translational modifications of histones play a key role in DNA-based processes, like transcription, by modulating chromatin structure. N-terminal acetylation is unique among the numerous histone modifications because it is deposited on the N-alpha amino group of the first residue instead of the side-chain of amino acids. The function of this modification and its interplay with other internal histone marks has not been previously addressed. Here, we identified N-terminal acetylation of H4 (N-acH4) as a novel regulator of arginine methylation and chromatin silencing in Saccharomyces cerevisiae. Lack of the H4 N-alpha acetyltransferase (Nat4) activity results specifically in increased deposition of asymmetric dimethylation of histone H4 arginine 3 (H4R3me2a) and in enhanced ribosomal-DNA silencing. Consistent with this, H4 N-terminal acetylation impairs the activity of the Hmt1 methyltransferase towards H4R3 in vitro. Furthermore, combinatorial loss of N-acH4 with internal histone acetylation at lysines 5, 8 and 12 has a synergistic induction of H4R3me2a deposition and rDNA silencing that leads to a severe growth defect. This defect is completely rescued by mutating arginine 3 to lysine (H4R3K), suggesting that abnormal deposition of a single histone modification, H4R3me2a, can impact on cell growth. Notably, the cross-talk between N-acH4 and H4R3me2a, which regulates rDNA silencing, is induced under calorie restriction conditions. Collectively, these findings unveil a molecular and biological function for H4 N-terminal acetylation, identify its interplay with internal histone modifications, and provide general mechanistic implications for N-alpha-terminal acetylation, one of the most common protein modifications in eukaryotes.


Subject(s)
Chromatin/genetics , DNA, Ribosomal/genetics , Gene Silencing , Histones/genetics , Acetylation , Acetyltransferases/genetics , Acetyltransferases/metabolism , Arginine/genetics , Chromatin/ultrastructure , Histones/metabolism , Lysine/genetics , Methylation , Mutation , Protein Processing, Post-Translational , Saccharomyces cerevisiae/genetics , Substrate Specificity
10.
Biochem Soc Trans ; 41(3): 751-9, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23697934

ABSTRACT

Epigenetic modifications, including those occurring on DNA and on histone proteins, control gene expression by establishing and maintaining different chromatin states. In recent years, it has become apparent that epigenetic modifications do not function alone, but work together in various combinations, and cross-regulate each other in a manner that diversifies their functional states. Arginine methylation is one of the numerous PTMs (post-translational modifications) occurring on histones, catalysed by a family of PRMTs (protein arginine methyltransferases). This modification is involved in the regulation of the epigenome largely by controlling the recruitment of effector molecules to chromatin. Histone arginine methylation associates with both active and repressed chromatin states depending on the residue involved and the configuration of the deposited methyl groups. The present review focuses on the increasing number of cross-talks between histone arginine methylation and other epigenetic modifications, and describe how these cross-talks influence factor binding to regulate transcription. Furthermore, we present models of general cross-talk mechanisms that emerge from the examples of histone arginine methylation and allude to various techniques that help decipher the interplay among epigenetic modifications.


Subject(s)
Arginine/metabolism , Epigenesis, Genetic/physiology , Histones/metabolism , Protein-Arginine N-Methyltransferases/metabolism , Animals , Chromatin Assembly and Disassembly/genetics , Chromatin Assembly and Disassembly/physiology , Histones/chemistry , Humans , Methylation , Protein Processing, Post-Translational/genetics , Signal Transduction/genetics , Signal Transduction/physiology
11.
Nature ; 449(7164): 928-32, 2007 Oct 18.
Article in English | MEDLINE | ID: mdl-17898715

ABSTRACT

Modifications on histones control important biological processes through their effects on chromatin structure. Methylation at lysine 4 on histone H3 (H3K4) is found at the 5' end of active genes and contributes to transcriptional activation by recruiting chromatin-remodelling enzymes. An adjacent arginine residue (H3R2) is also known to be asymmetrically dimethylated (H3R2me2a) in mammalian cells, but its location within genes and its function in transcription are unknown. Here we show that H3R2 is also methylated in budding yeast (Saccharomyces cerevisiae), and by using an antibody specific for H3R2me2a in a chromatin immunoprecipitation-on-chip analysis we determine the distribution of this modification on the entire yeast genome. We find that H3R2me2a is enriched throughout all heterochromatic loci and inactive euchromatic genes and is present at the 3' end of moderately transcribed genes. In all cases the pattern of H3R2 methylation is mutually exclusive with the trimethyl form of H3K4 (H3K4me3). We show that methylation at H3R2 abrogates the trimethylation of H3K4 by the Set1 methyltransferase. The specific effect on H3K4me3 results from the occlusion of Spp1, a Set1 methyltransferase subunit necessary for trimethylation. Thus, the inability of Spp1 to recognize H3 methylated at R2 prevents Set1 from trimethylating H3K4. These results provide the first mechanistic insight into the function of arginine methylation on chromatin.


Subject(s)
Arginine/metabolism , Histones/chemistry , Histones/metabolism , Lysine/metabolism , Saccharomyces cerevisiae/metabolism , Chromatin Immunoprecipitation , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , Euchromatin/genetics , Euchromatin/metabolism , Gene Expression Regulation, Fungal , Genes, Fungal/genetics , Genome, Fungal/genetics , Heterochromatin/genetics , Heterochromatin/metabolism , Histone Deacetylases/metabolism , Histone-Lysine N-Methyltransferase , Methylation , Protein Subunits/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Shelterin Complex , Silent Information Regulator Proteins, Saccharomyces cerevisiae/metabolism , Sirtuin 2 , Sirtuins/metabolism , Telomere-Binding Proteins/metabolism , Transcription Factors/chemistry , Transcription Factors/metabolism
12.
Clin Transl Oncol ; 25(6): 1594-1605, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36650321

ABSTRACT

Hepatocellular carcinoma (HCC) is the prevalent form of liver cancer in adults and the fourth most common cause of cancer-related death worldwide. HCC predominantly arises in the context of cirrhosis as a result of chronic liver disease, injury and inflammation. Full-blown HCC has poor prognosis because it is highly aggressive and resistant to therapy. Consequently, interventions that can prevent or restrain HCC emergence from pre-cancerous diseased liver are a desirable strategy. Histone methylation is a dynamic, reversible epigenetic modification involving the addition or removal of methyl groups from lysine, arginine or glutamine residues. Aberrant activity of histone methylation writers, erases and readers has been implicated in several cancer types, including HCC. In this review, we provide an overview of research on the role of histone methylation in pre-cancerous and cancerous HCC published over the last 5 years. In particular, we present the evidence linking environmental factors such as diet, viral infections and carcinogenic agents with dysregulation of histone methylation during liver cancer progression with the aim to highlight future therapeutic possibilities.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Adult , Humans , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Methylation , Histones/metabolism
13.
Oncogene ; 41(4): 571-585, 2022 01.
Article in English | MEDLINE | ID: mdl-34785778

ABSTRACT

Aberrant function of epigenetic modifiers plays an important role not only in the progression of cancer but also the development of drug resistance. N-alpha-acetyltransferase 40 (NAA40) is a highly specific epigenetic enzyme catalyzing the transfer of an acetyl moiety at the N-terminal end of histones H4 and H2A. Recent studies have illustrated the essential oncogenic role of NAA40 in various cancer types but its role in chemoresistance remains unclear. Here, using transcriptomic followed by metabolomic analysis in colorectal cancer (CRC) cells, we demonstrate that NAA40 controls key one-carbon metabolic genes and corresponding metabolites. In particular, through its acetyltransferase activity NAA40 regulates the methionine cycle thereby affecting global histone methylation and CRC cell survival. Importantly, NAA40-mediated metabolic rewiring promotes resistance of CRC cells to antimetabolite chemotherapy in vitro and in xenograft models. Specifically, NAA40 stimulates transcription of the one-carbon metabolic gene thymidylate synthase (TYMS), whose product is targeted by 5-fluorouracil (5-FU) and accordingly in primary CRC tumours NAA40 expression associates with TYMS levels and poorer 5-FU response. Mechanistically, NAA40 activates TYMS by preventing enrichment of repressive H2A/H4S1ph at the nuclear periphery. Overall, these findings define a novel regulatory link between epigenetics and cellular metabolism mediated by NAA40, which is harnessed by cancer cells to evade chemotherapy.


Subject(s)
Carbon/metabolism , Histones/metabolism , N-Terminal Acetyltransferases/metabolism , Protein Processing, Post-Translational/genetics , Drug Resistance, Neoplasm , Humans
14.
Cell Rep ; 41(7): 111656, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36384120

ABSTRACT

Asymmetric inheritance of cellular content through cell division plays an important role in cell viability and fitness. The dynamics of RNA segregation are so far largely unaddressed. This is partly due to a lack of approaches to follow RNAs over multiple cellular divisions. Here, we establish an approach to quantify RNA dynamics in single cells across several generations in a microfluidics device by tagging RNAs with the diSpinach aptamer. Using S. cerevisiae as a model, we quantitatively characterize intracellular RNA transport from mothers into their buds. Our results suggest that, at cytokinesis, ENO2 diSpinach RNA is preferentially distributed to daughters. This asymmetric RNA segregation depends on the lifespan regulator Sir2 and decreases with increasing replicative age of mothers but does not result from increasing cell size during aging. Overall, our approach opens more opportunities to study RNA dynamics and inheritance in live budding yeast at the single-cell level.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , RNA , Inheritance Patterns , Cell Division
15.
Front Oncol ; 11: 691950, 2021.
Article in English | MEDLINE | ID: mdl-34150665

ABSTRACT

Liver hepatocellular carcinoma (LIHC) is a leading cause of cancer-related mortality. In this study we initially interrogated the Cancer Genome Atlas (TCGA) dataset to determine the implication of N-terminal acetyltransferases (NATs), a family of enzymes that modify the N-terminus of the majority of eukaryotic proteins, in LIHC. This examination unveiled NAA40 as the NAT family member with the most prominent upregulation and significant disease prognosis for this cancer. Focusing on this enzyme, which selectively targets histone proteins, we show that its upregulation occurs from early stages of LIHC and is not specifically correlated with any established risk factors such as viral infection, obesity or alcoholic disease. Notably, in silico analysis of TCGA and other LIHC datasets found that expression of this epigenetic enzyme is associated with high proliferating, poorly differentiating and more aggressive LIHC subtypes. In particular, NAA40 upregulation was preferentially linked to mutational or non-mutational P53 functional inactivation. Accordingly, we observed that high NAA40 expression was associated with worse survival specifically in liver cancer patients with inactivated P53. These findings define NAA40 as a NAT with potentially oncogenic functions in LIHC and uncover its prognostic value for aggressive LIHC subtypes.

16.
Cancers (Basel) ; 12(9)2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32942614

ABSTRACT

N-terminal acetylation (Nt-Ac) is an abundant eukaryotic protein modification, deposited in humans by one of seven N-terminal acetyltransferase (NAT) complexes composed of a catalytic and potentially auxiliary subunits. The involvement of NATs in cancers is being increasingly recognised, but a systematic cross-tumour assessment is currently lacking. To address this limitation, we conducted here a multi-omic data interrogation for NATs. We found that tumour genomic alterations of NATs or of their protein substrates are generally rare events, with some tumour-specific exceptions. In contrast, altered gene expression of NATs in cancers and their association with patient survival constitute a widespread cancer phenomenon. Examination of dependency screens revealed that (i), besides NAA60 and NAA80 and the NatA paralogues NAA11 and NAA16, the other ten NAT genes were within the top 80th percentile of the most dependent genes (ii); NATs act through distinct biological processes. NAA40 (NatD) emerged as a NAT with particularly interesting cancer biology and therapeutic potential, especially in liver cancer where a novel oncogenic role was supported by its increased expression in multiple studies and its association with patient survival. In conclusion, this study generated insights and data that will be of great assistance in guiding further research into the function and therapeutic potential of NATs in cancer.

17.
Epigenetics Chromatin ; 13(1): 29, 2020 07 17.
Article in English | MEDLINE | ID: mdl-32680559

ABSTRACT

Histone proteins are decorated with numerous post-(PTMs) or co-(CTMs) translational modifications mainly on their unstructured tails, but also on their globular domain. For many decades research on histone modifications has been focused almost solely on the biological role of modifications occurring at the side-chain of internal amino acid residues. In contrast, modifications on the terminal N-alpha amino group of histones-despite being highly abundant and evolutionarily conserved-have been largely overlooked. This oversight has been due to the fact that these marks were being considered inert until recently, serving no regulatory functions. However, during the past few years accumulating evidence has drawn attention towards the importance of chemical marks added at the very N-terminal tip of histones and unveiled their role in key biological processes including aging and carcinogenesis. Further elucidation of the molecular mechanisms through which these modifications are regulated and by which they act to influence chromatin dynamics and DNA-based processes like transcription is expected to enlighten our understanding of their emerging role in controlling cellular physiology and contribution to human disease. In this review, we clarify the difference between N-alpha terminal (Nt) and internal (In) histone modifications; provide an overview of the different types of known histone Nt-marks and the associated histone N-terminal transferases (NTTs); and explore how they function to shape gene expression, chromatin architecture and cellular phenotypes.


Subject(s)
Histone Code , Histones/metabolism , Animals , Epigenesis, Genetic , Histones/chemistry , Humans , Protein Domains , Protein Processing, Post-Translational
18.
Data Brief ; 31: 105885, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32637492

ABSTRACT

The introduction of methyl groups on arginine residues is catalysed by Protein Arginine Methyltransferases (PRMTs). However, the regulatory mechanisms that dictate the levels of protein arginine methylation within cells are still not completely understood. We employed Synthetic Dosage Lethality (SDL) screening in Saccharomyces cerevisiae, for the identification of putative regulators of arginine methylation mediated by Hmt1 (HnRNP methyltransferase 1), ortholog of human PRMT1. We developed an SDL array of 4548 yeast strains in which each strain contained a single non-essential gene deletion, in combination with a galactose-inducible construct overexpressing wild-type (WT) Hmt1-HZ tagged protein. We identified 129 consistent SDL interactions for WT Hmt1-HZ which represented genes whose deletion displayed significant growth reduction when combined with WT Hmt1 overexpression. To identify among the SDL interactions those that were dependent on the methyltransferase activity of Hmt1, SDL screens were repeated using an array overexpressing a catalytically inactive Hmt1(G68R)-HZ protein. Furthermore, an additional SDL control screen was performed using an array overexpressing only the protein tag HZ (His6-HA-ZZ) to eliminate false-positive SDL interactions. This analysis has led to a dataset of 50 high-confidence SDL interactions of WT Hmt1 which enrich eight Gene Ontology biological process terms. This dataset can be further exploited in biochemical and functional studies to illuminate which of the SDL interactors of Hmt1 correspond to factors implicated in the regulation of Hmt1-mediated arginine methylation and reveal the underlying molecular mechanisms.

19.
STAR Protoc ; 1(3): 100228, 2020 12 18.
Article in English | MEDLINE | ID: mdl-33377118

ABSTRACT

The budding yeast Saccharomyces cerevisiae is an excellent model organism to dissect the maintenance and inheritance of phenotypes due to its asymmetric division. This requires following individual cells over time as they go through divisions to define pedigrees. Here, we provide a detailed protocol for collecting and analyzing time-lapse imaging data of yeast cells. The microfluidics protocol can achieve improved time resolution for single-cell tracking to enable characterization of maintenance and inheritance of phenotypes. For complete details on the use and execution of this protocol, please refer to Bheda et al. (2020a).


Subject(s)
Cell Tracking/methods , Microfluidics/methods , Single-Cell Analysis/methods , Cell Division , Cell Lineage/physiology , Phenotype , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Time-Lapse Imaging/methods
20.
Front Genet ; 10: 192, 2019.
Article in English | MEDLINE | ID: mdl-30915107

ABSTRACT

Histone modifications are key epigenetic regulators that control chromatin structure and gene transcription, thereby impacting on various important cellular phenotypes. Over the past decade, a growing number of studies have indicated that changes in various histone modifications have a significant influence on the aging process. Furthermore, it has been revealed that the abundance and localization of histone modifications are responsive to various environmental stimuli, such as diet, which can also affect gene expression and lifespan. This supports the notion that histone modifications can serve as a main cellular platform for signal integration. Hence, in this review we focus on the role of histone modifications during aging, report the data indicating that diet affects histone modification levels and explore the idea that histone modifications may function as an intersection through which diet regulates lifespan. A greater understanding of the epigenetic mechanisms that link environmental signals to longevity may provide new strategies for therapeutic intervention in age-related diseases and for promoting healthy aging.

SELECTION OF CITATIONS
SEARCH DETAIL