Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Genes Dev ; 26(18): 2050-62, 2012 Sep 15.
Article in English | MEDLINE | ID: mdl-22987637

ABSTRACT

In eukaryotes, the replication of chromosome DNA is coordinated by a replication timing program that temporally regulates the firing of individual replication origins. However, the molecular mechanism underlying the program remains elusive. Here, we report that the telomere-binding protein Taz1 plays a crucial role in the control of replication timing in fission yeast. A DNA element located proximal to a late origin in the chromosome arm represses initiation from the origin in early S phase. Systematic deletion and substitution experiments demonstrated that two tandem telomeric repeats are essential for this repression. The telomeric repeats recruit Taz1, a counterpart of human TRF1 and TRF2, to the locus. Genome-wide analysis revealed that Taz1 regulates about half of chromosomal late origins, including those in subtelomeres. The Taz1-mediated mechanism prevents Dbf4-dependent kinase (DDK)-dependent Sld3 loading onto the origins. Our results demonstrate that the replication timing program in fission yeast uses the internal telomeric repeats and binding of Taz1.


Subject(s)
DNA Replication/physiology , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces/physiology , Telomere-Binding Proteins/metabolism , Base Sequence , DNA, Fungal/genetics , DNA, Fungal/metabolism , DNA-Binding Proteins/metabolism , Molecular Sequence Data , Protein Binding , Protein Transport , Replication Origin/physiology , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism , Schizosaccharomyces pombe Proteins/genetics , Telomere-Binding Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL