ABSTRACT
Some coral-associated bacteria show protective roles for corals against pathogens. However, the distribution of coral-protecting bacteria in seawater is not well known. In addition, compared with the methods for investigating coral pathogens, few methods have been developed to detect coral-protecting bacteria. Here we prepared a simple method for detecting Ruegeria spp., some strains of which inhibit growth of the coral pathogen Vibrio coralliilyticus. We successfully obtained two Ruegeria-targeting primer sets through in silico and in vitro screening. The primer sets r38F-r30R and r445F-r446R, in addition to the newly designed universal primer set U357'F-U515'R, were evaluated in vitro using environmental DNA extracted from seawater collected in Osaka. These methods and primers should contribute to revealing the distribution of Ruegeria spp. in marine environments.
Subject(s)
DNA Primers , Rhodobacteraceae/genetics , Rhodobacteraceae/isolation & purification , Seawater , Animals , Anthozoa/microbiology , Electrophoresis, Polyacrylamide Gel , Polymerase Chain ReactionABSTRACT
Coral microbial flora has been attracting attention because of their potential to protect corals from environmental stresses or pathogens. Although coral-associated bacteria are considered to be acquired from seawater, little is known about the relationships between microbial composition in corals and its surrounding seawater. Here, we tested several methods to identify coral-associated bacteria in coral and its surrounding seawater to detect specific types of Ruegeria species, some of which exhibit growth inhibition activities against the coral pathogen Vibrio coralliilyticus. We first isolated coral-associated bacteria from the reef-building coral Galaxea fascicularis collected at Sesoko Island, Okinawa, Japan, via random colony picking, which showed the existence of varieties of bacteria including Ruegeria species. Using newly constructed primers for colony PCR, several Ruegeria species were successfully isolated from G. fascicularis and seawater. We further investigated the seawater microbiome in association with the distance from coral reefs. By seasonal sampling, it was suggested that the seawater microbiome is more affected by seasonality than the distance from coral reefs. These methods and results may contribute to investigating and understanding the relationships between the presence of corals and microbial diversity in seawater, in addition to the efficient isolation of specific bacterial species from coral or its surrounding seawater.