Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 177(2): 463-477.e15, 2019 04 04.
Article in English | MEDLINE | ID: mdl-30951672

ABSTRACT

To develop a map of cell-cell communication mediated by extracellular RNA (exRNA), the NIH Extracellular RNA Communication Consortium created the exRNA Atlas resource (https://exrna-atlas.org). The Atlas version 4P1 hosts 5,309 exRNA-seq and exRNA qPCR profiles from 19 studies and a suite of analysis and visualization tools. To analyze variation between profiles, we apply computational deconvolution. The analysis leads to a model with six exRNA cargo types (CT1, CT2, CT3A, CT3B, CT3C, CT4), each detectable in multiple biofluids (serum, plasma, CSF, saliva, urine). Five of the cargo types associate with known vesicular and non-vesicular (lipoprotein and ribonucleoprotein) exRNA carriers. To validate utility of this model, we re-analyze an exercise response study by deconvolution to identify physiologically relevant response pathways that were not detected previously. To enable wide application of this model, as part of the exRNA Atlas resource, we provide tools for deconvolution and analysis of user-provided case-control studies.


Subject(s)
Cell Communication/physiology , RNA/metabolism , Adult , Body Fluids/chemistry , Cell-Free Nucleic Acids/metabolism , Circulating MicroRNA/metabolism , Extracellular Vesicles/metabolism , Female , Humans , Male , Reproducibility of Results , Sequence Analysis, RNA/methods , Software
2.
Arterioscler Thromb Vasc Biol ; 43(2): 330-349, 2023 02.
Article in English | MEDLINE | ID: mdl-36453275

ABSTRACT

BACKGROUND: Atherosclerosis is an inflammatory vascular disease marked by hyperlipidemia and hematopoietic stem cell expansion. Activin A, a member of the Activin/GDF/TGFß/BMP (growth/differentiation factor/transforming growth factor beta/bone morphogenetic protein) family is broadly expressed and increases in human atherosclerosis, but its functional effects in vivo in this context remain unclear. METHODS: We studied LDLR-/- mice on a Western diet for 12 weeks and used adeno-associated viral vectors with a liver-specific TBG (thyroxine-binding globulin) promoter to express Activin A or GFP (control). Atherosclerotic lesions were analyzed by oil red staining. Blood lipid profiling was performed by high-performance liquid chromatography, and immune cells were evaluated by flow cytometry. Liver RNA-sequencing was performed to explore the underlying mechanisms. RESULTS: Activin A expression decreased in both livers and aortae from LDLR-/- mice fed a Western diet compared with standard laboratory diet. Adenoassociated virus-TBG-Activin A increased Activin A hepatic expression ≈10-fold at 12 weeks; P<0.001) and circulating Activin A levels ≈2000 pg/ml versus ≈50 pg/ml; P<0.001, compared with controls). Hepatic Activin A expression decreased plasma total and LDL (low-density lipoprotein) cholesterol ≈60% and ≈40%, respectively), reduced inflammatory cells in aortae and proliferating hematopoietic stem cells in bone marrow, and reduced atherosclerotic lesion and necrotic core area in aortae. Activin A also attenuated liver steatosis and expression of the lipogenesis genes, Srebp1 and Srebp2. RNA sequencing revealed Activin A not only blocked expression of genes involved in hepatic de novo lipogenesis but also fatty acid uptake and liver inflammation. In addition, Activin A expressed in the liver also reduced white fat tissue accumulation, decreased adipocyte size, and improved glucose tolerance. CONCLUSIONS: Our studies reveal hepatic Activin A expression reduces inflammation, hematopoietic stem cell expansion, liver steatosis, circulating cholesterol, and fat accumulation, which likely all contribute to the observed protection against atherosclerosis. The reduced Activin A observed in LDLR-/- mice on a Western diet seems maladaptive and deleterious for atherogenesis.


Subject(s)
Atherosclerosis , Fatty Liver , Humans , Animals , Mice , Liver/metabolism , Inflammation/genetics , Inflammation/prevention & control , Inflammation/metabolism , Atherosclerosis/genetics , Atherosclerosis/prevention & control , Atherosclerosis/metabolism , Activins/genetics , Activins/metabolism , Fatty Liver/genetics , Fatty Liver/prevention & control , Cholesterol/metabolism , Metabolic Networks and Pathways , Receptors, LDL/genetics , Receptors, LDL/metabolism , Mice, Knockout , Mice, Inbred C57BL
3.
Circ Res ; 128(1): e1-e23, 2021 01 08.
Article in English | MEDLINE | ID: mdl-33092465

ABSTRACT

RATIONALE: Previous translational studies implicate plasma extracellular microRNA-30d (miR-30d) as a biomarker in left ventricular remodeling and clinical outcome in heart failure (HF) patients, although precise mechanisms remain obscure. OBJECTIVE: To investigate the mechanism of miR-30d-mediated cardioprotection in HF. METHODS AND RESULTS: In rat and mouse models of ischemic HF, we show that miR-30d gain of function (genetic, lentivirus, or agomiR-mediated) improves cardiac function, decreases myocardial fibrosis, and attenuates cardiomyocyte (CM) apoptosis. Genetic or locked nucleic acid-based knock-down of miR-30d expression potentiates pathological left ventricular remodeling, with increased dysfunction, fibrosis, and cardiomyocyte death. RNA sequencing of in vitro miR-30d gain and loss of function, together with bioinformatic prediction and experimental validation in cardiac myocytes and fibroblasts, were used to identify and validate direct targets of miR-30d. miR-30d expression is selectively enriched in cardiomyocytes, induced by hypoxic stress and is acutely protective, targeting MAP4K4 (mitogen-associate protein kinase 4) to ameliorate apoptosis. Moreover, miR-30d is secreted primarily in extracellular vesicles by cardiomyocytes and inhibits fibroblast proliferation and activation by directly targeting integrin α5 in the acute phase via paracrine signaling to cardiac fibroblasts. In the chronic phase of ischemic remodeling, lower expression of miR-30d in the heart and plasma extracellular vesicles is associated with adverse remodeling in rodent models and human subjects and is linked to whole-blood expression of genes implicated in fibrosis and inflammation, consistent with observations in model systems. CONCLUSIONS: These findings provide the mechanistic underpinning for the cardioprotective association of miR-30d in human HF. More broadly, our findings support an emerging paradigm involving intercellular communication of extracellular vesicle-contained miRNAs (microRNAs) to transregulate distinct signaling pathways across cell types. Functionally validated RNA biomarkers and their signaling networks may warrant further investigation as novel therapeutic targets in HF.


Subject(s)
MicroRNAs/metabolism , Myocardial Infarction/metabolism , Myocardium/metabolism , Paracrine Communication , Ventricular Function, Left , Ventricular Remodeling , Animals , Apoptosis , Cells, Cultured , Disease Models, Animal , Extracellular Vesicles/genetics , Extracellular Vesicles/metabolism , Extracellular Vesicles/pathology , Fibroblasts/metabolism , Fibroblasts/pathology , Fibrosis , Gene Expression Regulation , Male , Mice, Inbred C57BL , Mice, Transgenic , MicroRNAs/genetics , Myocardial Infarction/genetics , Myocardial Infarction/pathology , Myocardial Infarction/physiopathology , Myocardium/pathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Rats, Sprague-Dawley , Rats, Transgenic , Signal Transduction , NF-kappaB-Inducing Kinase
4.
Mol Cell ; 59(5): 858-66, 2015 Sep 03.
Article in English | MEDLINE | ID: mdl-26340425

ABSTRACT

We describe a chemical method to label and purify 4-thiouridine (s(4)U)-containing RNA. We demonstrate that methanethiosulfonate (MTS) reagents form disulfide bonds with s(4)U more efficiently than the commonly used HPDP-biotin, leading to higher yields and less biased enrichment. This increase in efficiency allowed us to use s(4)U labeling to study global microRNA (miRNA) turnover in proliferating cultured human cells without perturbing global miRNA levels or the miRNA processing machinery. This improved chemistry will enhance methods that depend on tracking different populations of RNA, such as 4-thiouridine tagging to study tissue-specific transcription and dynamic transcriptome analysis (DTA) to study RNA turnover.


Subject(s)
MicroRNAs/chemistry , Biotin/analogs & derivatives , Cell Proliferation , Disulfides , Gene Expression Profiling/methods , HEK293 Cells , Humans , Indicators and Reagents , Mesylates , MicroRNAs/genetics , MicroRNAs/metabolism , Organic Chemistry Phenomena , RNA Processing, Post-Transcriptional , Thiouridine/chemistry
5.
Diabetologia ; 65(4): 657-674, 2022 04.
Article in English | MEDLINE | ID: mdl-35041022

ABSTRACT

AIMS/HYPOTHESIS: The aim of this work was to define metabolic correlates and pathways of diabetes pathogenesis in young adults during a subclinical latent phase of diabetes development. METHODS: We studied 2083 young adults of Black and White ethnicity in the prospective observational cohort Coronary Artery Risk Development in Young Adults (CARDIA) study (mean ± SD age 32.1 ± 3.6 years; 43.9% women; 42.7% Black; mean ± SD BMI 25.6 ± 4.9 kg/m2) and 1797 Framingham Heart Study (FHS) participants (mean ± SD age 54.7 ± 9.7 years; 52.1% women; mean ± SD BMI 27.4 ± 4.8 kg/m2), examining the association of comprehensive metabolite profiles with endophenotypes of diabetes susceptibility (adipose and muscle tissue phenotypes and systemic inflammation). Statistical learning techniques and Cox regression were used to identify metabolite signatures of incident diabetes over a median of nearly two decades of follow-up across both cohorts. RESULTS: We identified known and novel metabolites associated with endophenotypes that delineate the complex pathophysiological architecture of diabetes, spanning mechanisms of muscle insulin resistance, inflammatory lipid signalling and beta cell metabolism (e.g. bioactive lipids, amino acids and microbe- and diet-derived metabolites). Integrating endophenotypes of diabetes susceptibility with the metabolome generated two multi-parametric metabolite scores, one of which (a proinflammatory adiposity score) was associated with incident diabetes across the life course in participants from both the CARDIA study (young adults; HR in a fully adjusted model 2.10 [95% CI 1.72, 2.55], p<0.0001) and FHS (middle-aged and older adults; HR 1.33 [95% CI 1.14, 1.56], p=0.0004). A metabolite score based on the outcome of diabetes was strongly related to diabetes in CARDIA study participants (fully adjusted HR 3.41 [95% CI 2.85, 4.07], p<0.0001) but not in the older FHS population (HR 1.15 [95% CI 0.99, 1.33], p=0.07). CONCLUSIONS/INTERPRETATION: Selected metabolic abnormalities in young adulthood identify individuals with heightened diabetes risk independent of race, sex and traditional diabetes risk factors. These signatures replicate across the life course.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Adult , Aged , Cohort Studies , Coronary Vessels , Diabetes Mellitus, Type 2/epidemiology , Female , Humans , Male , Middle Aged , Risk Factors , Young Adult
6.
Circ Res ; 127(5): 631-646, 2020 08 14.
Article in English | MEDLINE | ID: mdl-32418505

ABSTRACT

RATIONALE: Cardiac CITED4 (CBP/p300-interacting transactivators with E [glutamic acid]/D [aspartic acid]-rich-carboxylterminal domain4) is induced by exercise and is sufficient to cause physiological hypertrophy and mitigate adverse ventricular remodeling after ischemic injury. However, the role of endogenous CITED4 in response to physiological or pathological stress is unknown. OBJECTIVE: To investigate the role of CITED4 in murine models of exercise and pressure overload. METHODS AND RESULTS: We generated cardiomyocyte-specific CITED4 knockout mice (C4KO) and subjected them to an intensive swim exercise protocol as well as transverse aortic constriction (TAC). Echocardiography, Western blotting, qPCR, immunohistochemistry, immunofluorescence, and transcriptional profiling for mRNA and miRNA (microRNA) expression were performed. Cellular crosstalk was investigated in vitro. CITED4 deletion in cardiomyocytes did not affect baseline cardiac size or function in young adult mice. C4KO mice developed modest cardiac dysfunction and dilation in response to exercise. After TAC, C4KOs developed severe heart failure with left ventricular dilation, impaired cardiomyocyte growth accompanied by reduced mTOR (mammalian target of rapamycin) activity and maladaptive cardiac remodeling with increased apoptosis, autophagy, and impaired mitochondrial signaling. Interstitial fibrosis was markedly increased in C4KO hearts after TAC. RNAseq revealed induction of a profibrotic miRNA network. miR30d was decreased in C4KO hearts after TAC and mediated crosstalk between cardiomyocytes and fibroblasts to modulate fibrosis. miR30d inhibition was sufficient to increase cardiac dysfunction and fibrosis after TAC. CONCLUSIONS: CITED4 protects against pathological cardiac remodeling by regulating mTOR activity and a network of miRNAs mediating cardiomyocyte to fibroblast crosstalk. Our findings highlight the importance of CITED4 in response to both physiological and pathological stimuli.


Subject(s)
Cardiomegaly, Exercise-Induced , Hypertrophy, Left Ventricular/metabolism , Myocytes, Cardiac/metabolism , Transcription Factors/metabolism , Ventricular Function, Left , Ventricular Remodeling , Animals , Cell Communication , Cells, Cultured , Disease Models, Animal , Fibroblasts/metabolism , Fibroblasts/pathology , Fibrosis , Gene Expression Regulation , Heart Failure/genetics , Heart Failure/pathology , Heart Failure/physiopathology , Hypertrophy, Left Ventricular/genetics , Hypertrophy, Left Ventricular/pathology , Hypertrophy, Left Ventricular/physiopathology , Male , Mice, Knockout , MicroRNAs/genetics , MicroRNAs/metabolism , Myocytes, Cardiac/pathology , Rats , Signal Transduction , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Transcription Factors/deficiency , Transcription Factors/genetics , Transcriptome
7.
Arterioscler Thromb Vasc Biol ; 41(2): 854-864, 2021 02.
Article in English | MEDLINE | ID: mdl-33297754

ABSTRACT

OBJECTIVE: Adiposity is associated with oxidative stress, inflammation, and glucose intolerance. Previous data suggest that platelet gene expression is associated with key cardiometabolic phenotypes, including body mass index but stable in healthy individuals over time. However, modulation of gene expression in platelets in response to metabolic shifts (eg, weight reduction) is unknown and may be important to defining mechanism. Approach and Results: Platelet RNA sequencing and aggregation were performed from 21 individuals with massive weight loss (>45 kg) following bariatric surgery. Based on RNA sequencing data, we measured the expression of 67 genes from isolated platelet RNA using high-throughput quantitative reverse transcription quantitative PCR in 1864 FHS (Framingham Heart Study) participants. Many transcripts not previously studied in platelets were differentially expressed with bariatric surgical weight loss, appeared specific to platelets (eg, not differentially expressed in leukocytes), and were enriched for a nonalcoholic fatty liver disease pathway. Platelet aggregation studies did not detect alteration in platelet function after significant weight loss. Linear regression models demonstrated several platelet genes modestly associated with cross-sectional cardiometabolic phenotypes, including body mass index. There were no associations between studied transcripts and incident diabetes or cardiovascular end points. CONCLUSIONS: In summary, while there is no change in platelet aggregation function after significant weight loss, the human platelet experiences a dramatic transcriptional shift that implicates pathways potentially relevant to improved cardiometabolic risk postweight loss (eg, nonalcoholic fatty liver disease). Further studies are needed to determine the mechanistic importance of these observations.


Subject(s)
Blood Platelets/metabolism , Cardiovascular Diseases/genetics , Obesity/genetics , Transcriptome , Weight Loss/genetics , Adult , Aged , Bariatric Surgery , Cardiometabolic Risk Factors , Cardiovascular Diseases/blood , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/prevention & control , Female , Gene Expression Profiling , Gene Expression Regulation , Gene Regulatory Networks , High-Throughput Nucleotide Sequencing , Humans , Incidence , Longitudinal Studies , Male , Middle Aged , Obesity/blood , Obesity/epidemiology , Obesity/surgery , Platelet Aggregation , Prospective Studies , RNA-Seq , Risk Assessment , Time Factors , Treatment Outcome , Young Adult
8.
Circulation ; 142(22): 2110-2127, 2020 12.
Article in English | MEDLINE | ID: mdl-33073606

ABSTRACT

BACKGROUND: Whereas cardiovascular disease (CVD) metrics define risk in individuals >40 years of age, the earliest lesions of CVD appear well before this age. Despite the role of metabolism in CVD antecedents, studies in younger, biracial populations to define precise metabolic risk phenotypes are lacking. METHODS: We studied 2330 White and Black young adults (mean age, 32 years; 45% Black) in the CARDIA study (Coronary Artery Risk Development in Young Adults) to identify metabolite profiles associated with an adverse CVD phenome (myocardial structure/function, fitness, vascular calcification), mechanisms, and outcomes over 2 decades. Statistical learning methods (elastic nets/principal components analysis) and Cox regression generated parsimonious, metabolite-based risk scores validated in >1800 individuals in the Framingham Heart Study. RESULTS: In the CARDIA study, metabolite profiles quantified in early adulthood were associated with subclinical CVD development over 20 years, specifying known and novel pathways of CVD (eg, transcriptional regulation, brain-derived neurotrophic factor, nitric oxide, renin-angiotensin). We found 2 multiparametric, metabolite-based scores linked independently to vascular and myocardial health, with metabolites included in each score specifying microbial metabolism, hepatic steatosis, oxidative stress, nitric oxide modulation, and collagen metabolism. The metabolite-based vascular scores were lower in men, and myocardial scores were lower in Black participants. Over a nearly 25-year median follow-up in CARDIA, the metabolite-based vascular score (hazard ratio, 0.68 per SD [95% CI, 0.50-0.92]; P=0.01) and myocardial score (hazard ratio, 0.60 per SD [95% CI, 0.45-0.80]; P=0.0005) in the third and fourth decades of life were associated with clinical CVD with a synergistic association with outcome (Pinteraction=0.009). We replicated these findings in 1898 individuals in the Framingham Heart Study over 2 decades, with a similar association with outcome (including interaction), reclassification, and discrimination. In the Framingham Heart Study, the metabolite scores exhibited an age interaction (P=0.0004 for a combined myocardial-vascular score with incident CVD), such that young adults with poorer metabolite-based health scores had highest hazard of future CVD. CONCLUSIONS: Metabolic signatures of myocardial and vascular health in young adulthood specify known/novel pathways of metabolic dysfunction relevant to CVD, associated with outcome in 2 independent cohorts. Efforts to include precision measures of metabolic health in risk stratification to interrupt CVD at its earliest stage are warranted.


Subject(s)
Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/metabolism , Metabolome/physiology , Metabolomics/methods , Phenotype , Adolescent , Adult , Aged , Cardiovascular Diseases/epidemiology , Cohort Studies , Female , Humans , Male , Middle Aged , Prospective Studies , Risk Factors , Young Adult
9.
BMC Infect Dis ; 21(1): 580, 2021 Jun 16.
Article in English | MEDLINE | ID: mdl-34134647

ABSTRACT

BACKGROUND: COVID-19 has resulted in significant morbidity and mortality worldwide. Lateral flow assays can detect anti-Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) antibodies to monitor transmission. However, standardized evaluation of their accuracy and tools to aid in interpreting results are needed. METHODS: We evaluated 20 IgG and IgM assays selected from available tests in April 2020. We evaluated the assays' performance using 56 pre-pandemic negative and 56 SARS-CoV-2-positive plasma samples, collected 10-40 days after symptom onset, confirmed by a molecular test and analyzed by an ultra-sensitive immunoassay. Finally, we developed a user-friendly web app to extrapolate the positive predictive values based on their accuracy and local prevalence. RESULTS: Combined IgG + IgM sensitivities ranged from 33.9 to 94.6%, while combined specificities ranged from 92.6 to 100%. The highest sensitivities were detected in Lumiquick for IgG (98.2%), BioHit for both IgM (96.4%), and combined IgG + IgM sensitivity (94.6%). Furthermore, 11 LFAs and 8 LFAs showed perfect specificity for IgG and IgM, respectively, with 15 LFAs showing perfect combined IgG + IgM specificity. Lumiquick had the lowest estimated limit-of-detection (LOD) (0.1 µg/mL), followed by a similar LOD of 1.5 µg/mL for CareHealth, Cellex, KHB, and Vivachek. CONCLUSION: We provide a public resource of the accuracy of select lateral flow assays with potential for home testing. The cost-effectiveness, scalable manufacturing process, and suitability for self-testing makes LFAs an attractive option for monitoring disease prevalence and assessing vaccine responsiveness. Our web tool provides an easy-to-use interface to demonstrate the impact of prevalence and test accuracy on the positive predictive values.


Subject(s)
Antibodies, Viral/blood , COVID-19 Serological Testing/methods , COVID-19/diagnosis , Immunoglobulin G/blood , Immunoglobulin M/blood , SARS-CoV-2/immunology , Adult , Aged , COVID-19/blood , Female , Humans , Limit of Detection , Male , Middle Aged , Predictive Value of Tests , Prevalence , Sensitivity and Specificity , User-Centered Design , User-Computer Interface
10.
Nature ; 512(7515): 445-8, 2014 Aug 28.
Article in English | MEDLINE | ID: mdl-25164755

ABSTRACT

The transcriptome is the readout of the genome. Identifying common features in it across distant species can reveal fundamental principles. To this end, the ENCODE and modENCODE consortia have generated large amounts of matched RNA-sequencing data for human, worm and fly. Uniform processing and comprehensive annotation of these data allow comparison across metazoan phyla, extending beyond earlier within-phylum transcriptome comparisons and revealing ancient, conserved features. Specifically, we discover co-expression modules shared across animals, many of which are enriched in developmental genes. Moreover, we use expression patterns to align the stages in worm and fly development and find a novel pairing between worm embryo and fly pupae, in addition to the embryo-to-embryo and larvae-to-larvae pairings. Furthermore, we find that the extent of non-canonical, non-coding transcription is similar in each organism, per base pair. Finally, we find in all three organisms that the gene-expression levels, both coding and non-coding, can be quantitatively predicted from chromatin features at the promoter using a 'universal model' based on a single set of organism-independent parameters.


Subject(s)
Caenorhabditis elegans/genetics , Drosophila melanogaster/genetics , Gene Expression Profiling , Transcriptome/genetics , Animals , Caenorhabditis elegans/embryology , Caenorhabditis elegans/growth & development , Chromatin/genetics , Cluster Analysis , Drosophila melanogaster/growth & development , Gene Expression Regulation, Developmental/genetics , Histones/metabolism , Humans , Larva/genetics , Larva/growth & development , Models, Genetic , Molecular Sequence Annotation , Promoter Regions, Genetic/genetics , Pupa/genetics , Pupa/growth & development , RNA, Untranslated/genetics , Sequence Analysis, RNA
11.
Nucleic Acids Res ; 46(7): 3326-3338, 2018 04 20.
Article in English | MEDLINE | ID: mdl-29562350

ABSTRACT

Upstream open reading frames (uORFs) latent in mRNA transcripts are thought to modify translation of coding sequences by altering ribosome activity. Not all uORFs are thought to be active in such a process. To estimate the impact of uORFs on the regulation of translation in humans, we first circumscribed the universe of all possible uORFs based on coding gene sequence motifs and identified 1.3 million unique uORFs. To determine which of these are likely to be biologically relevant, we built a simple Bayesian classifier using 89 attributes of uORFs labeled as active in ribosome profiling experiments. This allowed us to extrapolate to a comprehensive catalog of likely functional uORFs. We validated our predictions using in vivo protein levels and ribosome occupancy from 46 individuals. This is a substantially larger catalog of functional uORFs than has previously been reported. Our ranked list of likely active uORFs allows researchers to test their hypotheses regarding the role of uORFs in health and disease. We demonstrate several examples of biological interest through the application of our catalog to somatic mutations in cancer and disease-associated germline variants in humans.


Subject(s)
Open Reading Frames/genetics , Protein Biosynthesis/genetics , RNA, Messenger/genetics , Ribosomes/genetics , Bayes Theorem , Computational Biology , Humans , Mutation/genetics
12.
J Proteome Res ; 17(10): 3431-3444, 2018 10 05.
Article in English | MEDLINE | ID: mdl-30125121

ABSTRACT

Cellular control of gene expression is a complex process that is subject to multiple levels of regulation, but ultimately it is the protein produced that determines the biosynthetic state of the cell. One way that a cell can regulate the protein output from each gene is by expressing alternate isoforms with distinct amino acid sequences. These isoforms may exhibit differences in localization and binding interactions that can have profound functional implications. High-throughput liquid chromatography tandem mass spectrometry proteomics (LC-MS/MS) relies on enzymatic digestion and has lower coverage and sensitivity than transcriptomic profiling methods such as RNA-seq. Digestion results in predictable fragmentation of a protein, which can limit the generation of peptides capable of distinguishing between isoforms. Here we exploit transcript-level expression from RNA-seq to set prior likelihoods and enable protein isoform abundances to be directly estimated from LC-MS/MS, an approach derived from the principle that most genes appear to be expressed as a single dominant isoform in a given cell type or tissue. Through this deep integration of RNA-seq and LC-MS/MS data from the same sample, we show that a principal isoform can be identified in >80% of gene products in homogeneous HEK293 cell culture and >70% of proteins detected in complex human brain tissue. We demonstrate that the incorporation of translatome data from ribosome profiling further refines this process. Defining isoforms in experiments with matched RNA-seq/translatome and proteomic data increases the functional relevance of such data sets and will further broaden our understanding of multilevel control of gene expression.


Subject(s)
Gene Expression Profiling/methods , High-Throughput Nucleotide Sequencing/methods , Proteome/metabolism , Proteomics/methods , Algorithms , Alternative Splicing , Chromatography, Liquid/methods , HEK293 Cells , Humans , Protein Biosynthesis/genetics , Protein Isoforms/genetics , Protein Isoforms/metabolism , Proteome/genetics , Reproducibility of Results , Ribosomes/genetics , Ribosomes/metabolism , Tandem Mass Spectrometry/methods
13.
Stroke ; 48(4): 828-834, 2017 04.
Article in English | MEDLINE | ID: mdl-28289238

ABSTRACT

BACKGROUND AND PURPOSE: There is increasing interest in extracellular RNAs (ex-RNAs), with numerous reports of associations between selected microRNAs (miRNAs) and a variety of cardiovascular disease phenotypes. Previous studies of ex-RNAs in relation to risk for cardiovascular disease have investigated small numbers of patients and assayed only candidate miRNAs. No human studies have investigated links between novel ex-RNAs and stroke. METHODS: We conducted unbiased next-generation sequencing using plasma from 40 participants of the FHS (Framingham Heart Study; Offspring Cohort Exam 8) followed by high-throughput polymerase chain reaction of 471 ex-RNAs. The reverse transcription quantitative polymerase chain reaction included 331 of the most abundant miRNAs, 43 small nucleolar RNAs, and 97 piwi-interacting RNAs in 2763 additional FHS participants and explored the relations of ex-RNAs and prevalent (n=63) and incident (n=51) stroke and coronary heart disease (prevalent=286, incident=69). RESULTS: After adjustment for multiple cardiovascular disease risk factors, 7 ex-RNAs were associated with stroke prevalence or incidence; there were no ex-RNA associated with prevalent or incident coronary heart disease. Statistically significant ex-RNA associations with stroke were specific, with no overlap between prevalent and incident events. CONCLUSIONS: This is the largest study of ex-RNAs in relation to stroke using an unbiased approach in an observational cohort and the first large study to examine human small noncoding RNAs beyond miRNAs. These results demonstrate that when studied in a large observational cohort, extracellular miRNAs are associated with stroke risk.


Subject(s)
Coronary Disease/blood , MicroRNAs/blood , RNA, Small Interfering/blood , RNA, Small Nucleolar/blood , Stroke/blood , Aged , Cohort Studies , Coronary Disease/epidemiology , Female , High-Throughput Nucleotide Sequencing , Humans , Incidence , Male , Massachusetts/epidemiology , Middle Aged , Prevalence , Stroke/epidemiology
15.
Proteomics ; 15(7): 1202-14, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25476245

ABSTRACT

We present a comprehensive workflow for large scale (>1000 transitions/run) label-free LC-MRM proteome assays. Innovations include automated MRM transition selection, intelligent retention time scheduling that improves S/N by twofold, and automatic peak modeling. Improvements to data analysis include a novel Q/C metric, normalized group area ratio, MLR normalization, weighted regression analysis, and data dissemination through the Yale protein expression database. As a proof of principle we developed a robust 90 min LC-MRM assay for mouse/rat postsynaptic density fractions which resulted in the routine quantification of 337 peptides from 112 proteins based on 15 observations per protein. Parallel analyses with stable isotope dilution peptide standards (SIS), demonstrate very high correlation in retention time (1.0) and protein fold change (0.94) between the label-free and SIS analyses. Overall, our method achieved a technical CV of 11.4% with >97.5% of the 1697 transitions being quantified without user intervention, resulting in a highly efficient, robust, and single injection LC-MRM assay.


Subject(s)
Nerve Tissue Proteins/chemistry , Proteome/chemistry , Synapses/chemistry , Animals , Brain Chemistry , Chromatography, High Pressure Liquid , Nerve Tissue Proteins/isolation & purification , Post-Synaptic Density/chemistry , Proteome/isolation & purification , Proteomics , Rats , Tandem Mass Spectrometry
16.
Nat Commun ; 15(1): 2817, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38561399

ABSTRACT

Osteoarthritis (OA) is increasing in prevalence and has a severe impact on patients' lives. However, our understanding of biomarkers driving OA risk remains limited. We developed a model predicting the five-year risk of OA diagnosis, integrating retrospective clinical, lifestyle and biomarker data from the UK Biobank (19,120 patients with OA, ROC-AUC: 0.72, 95%CI (0.71-0.73)). Higher age, BMI and prescription of non-steroidal anti-inflammatory drugs contributed most to increased OA risk prediction ahead of diagnosis. We identified 14 subgroups of OA risk profiles. These subgroups were validated in an independent set of patients evaluating the 11-year OA risk, with 88% of patients being uniquely assigned to one of the 14 subgroups. Individual OA risk profiles were characterised by personalised biomarkers. Omics integration demonstrated the predictive importance of key OA genes and pathways (e.g., GDF5 and TGF-ß signalling) and OA-specific biomarkers (e.g., CRTAC1 and COL9A1). In summary, this work identifies opportunities for personalised OA prevention and insights into its underlying pathogenesis.


Subject(s)
Osteoarthritis , Humans , Retrospective Studies , Osteoarthritis/diagnosis , Osteoarthritis/genetics , Osteoarthritis/drug therapy , Biomarkers , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Machine Learning , Calcium-Binding Proteins
17.
Sci Transl Med ; 16(743): eadi0077, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38630848

ABSTRACT

Peripartum cardiomyopathy (PPCM) is an idiopathic form of pregnancy-induced heart failure associated with preeclampsia. Circulating factors in late pregnancy are thought to contribute to both diseases, suggesting a common underlying pathophysiological process. However, what drives this process remains unclear. Using serum proteomics, we identified the senescence-associated secretory phenotype (SASP), a marker of cellular senescence associated with biological aging, as the most highly up-regulated pathway in young women with PPCM or preeclampsia. Placentas from women with preeclampsia displayed multiple markers of amplified senescence and tissue aging, as well as overall increased gene expression of 28 circulating proteins that contributed to SASP pathway enrichment in serum samples from patients with preeclampsia or PPCM. The most highly expressed placental SASP factor, activin A, was associated with cardiac dysfunction or heart failure severity in women with preeclampsia or PPCM. In a murine model of PPCM induced by cardiomyocyte-specific deletion of the gene encoding peroxisome proliferator-activated receptor γ coactivator-1α, inhibiting activin A signaling in the early postpartum period with a monoclonal antibody to the activin type II receptor improved heart function. In addition, attenuating placental senescence with the senolytic compound fisetin in late pregnancy improved cardiac function in these animals. These findings link senescence biology to cardiac dysfunction in pregnancy and help to elucidate the pathogenesis underlying cardiovascular diseases of pregnancy.


Subject(s)
Cardiomyopathies , Heart Diseases , Heart Failure , Pre-Eclampsia , Humans , Pregnancy , Female , Mice , Animals , Peripartum Period , Placenta , Transcription Factors
18.
Front Neurol ; 14: 1258216, 2023.
Article in English | MEDLINE | ID: mdl-37900599

ABSTRACT

Background: Frequent digital monitoring of cognition is a promising approach for assessing endpoints in prevention and treatment trials of Alzheimer's disease and related dementias (ADRD). This study evaluated the feasibility of the MIND GamePack© for recurrent semi-passive assessment of cognition across a longitudinal interval. Methods: The MIND GamePack consists of four iPad-based games selected to be both familiar and enjoyable: Word Scramble, Block Drop, FreeCell, and Memory Match. Participants were asked to play 20 min/day for 5 days (100 min) for 4 months. Feasibility of use by older adults was assessed by measuring gameplay time and game performance. We also evaluated compliance through semi-structured surveys. A linear generalized estimating equation (GEE) model was used to analyze changes in gameplay time, and a regression tree model was employed to estimate the days it took for game performance to plateau. Subjective and environmental factors associated with gameplay time and performance were examined, including daily self-reported questions of memory and thinking ability, mood, sleep, energy, current location, and distractions prior to gameplay. Results: Twenty-six cognitively-unimpaired older adults participated (mean age ± SD = 71.9 ± 8.6; 73% female). Gameplay time remained stable throughout the 4-months, with an average compliance rate of 91% ± 11% (1946 days of data across all participants) and weekly average playtime of 210 ± 132 min per participant. We observed an initial learning curve of improving game performance which on average, plateaued after 22-39 days, depending on the game. Higher levels of self-reported memory and thinking ability were associated with more gameplay time and sessions. Conclusion: MIND GamePack is a feasible and well-designed semi-passive cognitive assessment platform which may provide complementary data to traditional neuropsychological testing in research on aging and dementia.

19.
Neurooncol Adv ; 5(1): vdad104, 2023.
Article in English | MEDLINE | ID: mdl-37811539

ABSTRACT

Background: Glioblastoma (GBM) is a highly aggressive and invasive brain tumor associated with high patient mortality. A large fraction of GBM tumors have been identified as epidermal growth factor receptor (EGFR) amplified and ~50% also are EGFRvIII mutant positive. In a previously reported multicenter phase II study, we have described the response of recurrent GBM (rGBM) patients to dacomitinib, an EGFR tyrosine kinase inhibitor (TKI). As a continuation of that report, we leverage the tumor cargo-encapsulating extracellular vesicles (EVs) and explore their genetic composition as carriers of tumor biomarker. Methods: Serum samples were longitudinally collected from EGFR-amplified rGBM patients who clinically benefitted from dacomitinib therapy (responders) and those who did not (nonresponders), as well as from a healthy cohort of individuals. The serum EV transcriptome was evaluated to map the RNA biotype distribution and distinguish GBM disease. Results: Using long RNA sequencing, we show enriched detection of over 10 000 coding RNAs from serum EVs. The EV transcriptome yielded a unique signature that facilitates differentiation of GBM patients from healthy donors. Further analysis revealed genetic enrichment that enables stratification of responders from nonresponders prior to dacomitinib treatment as well as following administration. Conclusion: This study demonstrates that genetic composition analysis of serum EVs may aid in therapeutic stratification to identify patients with dacomitinib-responsive GBM.

20.
JHEP Rep ; 5(5): 100693, 2023 May.
Article in English | MEDLINE | ID: mdl-37122688

ABSTRACT

Background & Aims: Non-alcoholic fatty liver disease (NAFLD) has a prevalence of ∼25% worldwide, with significant public health consequences yet few effective treatments. Human genetics can help elucidate novel biology and identify targets for new therapeutics. Genetic variants in mitochondrial amidoxime-reducing component 1 (MTARC1) have been associated with NAFLD and liver-related mortality; however, its pathophysiological role and the cell type(s) mediating these effects remain unclear. We aimed to investigate how MTARC1 exerts its effects on NAFLD by integrating human genetics with in vitro and in vivo studies of mARC1 knockdown. Methods: Analyses including multi-trait colocalisation and Mendelian randomisation were used to assess the genetic associations of MTARC1. In addition, we established an in vitro long-term primary human hepatocyte model with metabolic readouts and used the Gubra Amylin NASH (GAN)-diet non-alcoholic steatohepatitis mouse model treated with hepatocyte-specific N-acetylgalactosamine (GalNAc)-siRNA to understand the in vivo impacts of MTARC1. Results: We showed that genetic variants within the MTARC1 locus are associated with liver enzymes, liver fat, plasma lipids, and body composition, and these associations are attributable to the same causal variant (p.A165T, rs2642438 G>A), suggesting a shared mechanism. We demonstrated that increased MTARC1 mRNA had an adverse effect on these traits using Mendelian randomisation, implying therapeutic inhibition of mARC1 could be beneficial. In vitro mARC1 knockdown decreased lipid accumulation and increased triglyceride secretion, and in vivo GalNAc-siRNA-mediated knockdown of mARC1 lowered hepatic but increased plasma triglycerides. We found alterations in pathways regulating lipid metabolism and decreased secretion of 3-hydroxybutyrate upon mARC1 knockdown in vitro and in vivo. Conclusions: Collectively, our findings from human genetics, and in vitro and in vivo hepatocyte-specific mARC1 knockdown support the potential efficacy of hepatocyte-specific targeting of mARC1 for treatment of NAFLD. Impact and implications: We report that genetically predicted increases in MTARC1 mRNA associate with poor liver health. Furthermore, knockdown of mARC1 reduces hepatic steatosis in primary human hepatocytes and a murine NASH model. Together, these findings further underscore the therapeutic potential of targeting hepatocyte MTARC1 for NAFLD.

SELECTION OF CITATIONS
SEARCH DETAIL