Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 163(7): 1716-29, 2015 Dec 17.
Article in English | MEDLINE | ID: mdl-26686653

ABSTRACT

Cellular lipid requirements are achieved through a combination of biosynthesis and import programs. Using isotope tracer analysis, we show that type I interferon (IFN) signaling shifts the balance of these programs by decreasing synthesis and increasing import of cholesterol and long chain fatty acids. Genetically enforcing this metabolic shift in macrophages is sufficient to render mice resistant to viral challenge, demonstrating the importance of reprogramming the balance of these two metabolic pathways in vivo. Unexpectedly, mechanistic studies reveal that limiting flux through the cholesterol biosynthetic pathway spontaneously engages a type I IFN response in a STING-dependent manner. The upregulation of type I IFNs was traced to a decrease in the pool size of synthesized cholesterol and could be inhibited by replenishing cells with free cholesterol. Taken together, these studies delineate a metabolic-inflammatory circuit that links perturbations in cholesterol biosynthesis with activation of innate immunity.


Subject(s)
Cholesterol/metabolism , Immunity, Innate , Interferon-gamma/metabolism , Signal Transduction , Animals , Cell Line, Tumor , Humans , Interferon beta-1b , Membrane Proteins/metabolism , Mevalonic Acid/metabolism , Mice , Mice, Inbred C57BL , Sterol Regulatory Element Binding Protein 1/metabolism , Sterol Regulatory Element Binding Protein 2/metabolism
2.
Mol Ther ; 32(4): 1000-1015, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38414243

ABSTRACT

Adoptive cell therapy (ACT) using T cells expressing chimeric antigen receptors (CARs) is an area of intense investigation in the treatment of malignancies and chronic viral infections. One of the limitations of ACT-based CAR therapy is the lack of in vivo persistence and maintenance of optimal cell function. Therefore, alternative strategies that increase the function and maintenance of CAR-expressing T cells are needed. In our studies using the humanized bone marrow/liver/thymus (BLT) mouse model and nonhuman primate (NHP) model of HIV infection, we evaluated two CAR-based gene therapy approaches. In the ACT approach, we used cytokine enhancement and preconditioning to generate greater persistence of anti-HIV CAR+ T cells. We observed limited persistence and expansion of anti-HIV CAR T cells, which led to minimal control of the virus. In our stem cell-based approach, we modified hematopoietic stem/progenitor cells (HSPCs) with anti-HIV CAR to generate anti-HIV CAR T cells in vivo. We observed CAR-expressing T cell expansion, which led to better plasma viral load suppression. HSPC-derived CAR cells in infected NHPs showed superior trafficking and persistence in multiple tissues. Our results suggest that a stem cell-based CAR T cell approach may be superior in generating long-term persistence and functional antiviral responses against HIV infection.


Subject(s)
HIV Infections , HIV-1 , Receptors, Chimeric Antigen , Mice , Animals , T-Lymphocytes , Receptors, Chimeric Antigen/genetics , Hematopoietic Stem Cells , Immunotherapy, Adoptive
3.
PLoS Pathog ; 18(1): e1010160, 2022 01.
Article in English | MEDLINE | ID: mdl-34995311

ABSTRACT

Novel therapeutic strategies are needed to attenuate increased systemic and gut inflammation that contribute to morbidity and mortality in chronic HIV infection despite potent antiretroviral therapy (ART). The goal of this study is to use preclinical models of chronic treated HIV to determine whether the antioxidant and anti-inflammatory apoA-I mimetic peptides 6F and 4F attenuate systemic and gut inflammation in chronic HIV. We used two humanized murine models of HIV infection and gut explants from 10 uninfected and 10 HIV infected persons on potent ART, to determine the in vivo and ex vivo impact of apoA-I mimetics on systemic and intestinal inflammation in HIV. When compared to HIV infected humanized mice treated with ART alone, mice on oral apoA-I mimetic peptide 6F with ART had consistently reduced plasma and gut tissue cytokines (TNF-α, IL-6) and chemokines (CX3CL1) that are products of ADAM17 sheddase activity. Oral 6F attenuated gut protein levels of ADAM17 that were increased in HIV-1 infected mice on potent ART compared to uninfected mice. Adding oxidized lipoproteins and endotoxin (LPS) ex vivo to gut explants from HIV infected persons increased levels of ADAM17 in myeloid and intestinal cells, which increased TNF-α and CX3CL1. Both 4F and 6F attenuated these changes. Our preclinical data suggest that apoA-I mimetic peptides provide a novel therapeutic strategy that can target increased protein levels of ADAM17 and its sheddase activity that contribute to intestinal and systemic inflammation in treated HIV. The large repertoire of inflammatory mediators involved in ADAM17 sheddase activity places it as a pivotal orchestrator of several inflammatory pathways associated with morbidity in chronic treated HIV that make it an attractive therapeutic target.


Subject(s)
Apolipoprotein A-I , HIV Infections/pathology , Inflammation/pathology , Intestines/drug effects , Peptides/pharmacology , ADAM17 Protein/drug effects , Animals , Anti-HIV Agents/pharmacology , Humans , Mice
4.
PLoS Pathog ; 17(8): e1009895, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34460861

ABSTRACT

[This corrects the article DOI: 10.1371/journal.ppat.1009404.].

5.
PLoS Pathog ; 17(4): e1009404, 2021 04.
Article in English | MEDLINE | ID: mdl-33793675

ABSTRACT

Due to the durability and persistence of reservoirs of HIV-1-infected cells, combination antiretroviral therapy (ART) is insufficient in eradicating infection. Achieving HIV-1 cure or sustained remission without ART treatment will require the enhanced and persistent effective antiviral immune responses. Chimeric Antigen Receptor (CAR) T-cells have emerged as a powerful immunotherapy and show promise in treating HIV-1 infection. Persistence, trafficking, and maintenance of function remain to be a challenge in many of these approaches, which are based on peripheral T cell modification. To overcome many of these issues, we have previously demonstrated successful long-term engraftment and production of anti-HIV CAR T cells in modified hematopoietic stem cells (HSCs) in vivo. Here we report the development and in vivo testing of second generation CD4-based CARs (CD4CAR) against HIV-1 infection using a HSCs-based approach. We found that a modified, truncated CD4-based CAR (D1D2CAR) allows better CAR-T cell differentiation from gene modified HSCs, and maintains similar CTL activity as compared to the full length CD4-based CAR. In addition, D1D2CAR does not mediate HIV infection or stimulation mediated by IL-16, suggesting lower risk of off-target effects. Interestingly, stimulatory domains of 4-1BB but not CD28 allowed successful hematopoietic differentiation and improved anti-viral function of CAR T cells from CAR modified HSCs. Addition of 4-1BB to CD4 based CARs led to faster suppression of viremia during early untreated HIV-1 infection. D1D2CAR 4-1BB mice had faster viral suppression in combination with ART and better persistence of CAR T cells during ART. In summary, our data indicate that the D1D2CAR-41BB is a superior CAR, showing better HSC differentiation, viral suppression and persistence, and less deleterious functions compared to the original CD4CAR, and should continue to be pursued as a candidate for clinical study.


Subject(s)
HIV Infections/virology , Hematopoietic Stem Cells/cytology , Lymphocyte Activation , Receptors, Antigen, T-Cell/immunology , Receptors, Chimeric Antigen/immunology , Animals , HIV Infections/immunology , HIV-1/immunology , Hematopoietic Stem Cells/immunology , Humans , Lymphocyte Activation/genetics , Lymphocyte Activation/immunology , Mice , Receptors, Antigen, T-Cell/genetics , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/therapeutic use
6.
J Virol ; 93(20)2019 10 15.
Article in English | MEDLINE | ID: mdl-31341054

ABSTRACT

The HIV/AIDS pandemic remains an important threat to human health. We have recently demonstrated that a novel microRNA (miR), miR-128, represses retrotransposon long interspaced element 1 (L1) by a dual mechanism, namely, by directly targeting the coding region of the L1 RNA and by repressing a required nuclear import factor (TNPO1). We have further determined that miR-128 represses the expression of all three TNPO proteins (transportins TNPO1, TNPO2, and TNPO3). Here, we establish that miR-128 also influences HIV-1 replication by repressing TNPO3, a factor that regulates HIV-1 nuclear import and viral; replication of TNPO3 is well established to regulate HIV-1 nuclear import and viral replication. Here, we report that type I interferon (IFN)-inducible miR-128 directly targets two sites in the TNPO3 mRNA, significantly downregulating TNPO3 mRNA and protein expression levels. Challenging miR-modulated Jurkat cells or primary CD4+ T-cells with wild-type (WT), replication-competent HIV-1 demonstrated that miR-128 reduces viral replication and delays spreading of infection. Manipulation of miR-128 levels in HIV-1 target cell lines and in primary CD4+ T-cells by overexpression or knockdown showed that reduction of TNPO3 levels by miR-128 significantly affects HIV-1 replication but not murine leukemia virus (MLV) infection and that miR-128 modulation of HIV-1 replication is reduced with TNPO3-independent HIV-1 virus, suggesting that miR-128-indued TNPO3 repression contributes to the inhibition of HIV-1 replication. Finally, we determine that anti-miR-128 partly neutralizes the IFN-mediated block of HIV-1. Thus, we have established a novel role of miR-128 in antiviral defense in human cells, namely inhibiting HIV-1 replication by altering the cellular milieu through targeting factors that include TNPO3.IMPORTANCE HIV-1 is the causative agent of AIDS. During HIV-1 infection, type I interferons (IFNs) are induced, and their effectors limit HIV-1 replication at multiple steps in its life cycle. However, the cellular targets of INFs are still largely unknown. In this study, we identified the interferon-inducible microRNA (miR) miR-128, a novel antiviral mediator that suppresses the expression of the host gene TNPO3, which is known to modulate HIV-1 replication. Notably, we observe that anti-miR-128 partly neutralizes the IFN-mediated block of HIV-1. Elucidation of the mechanisms through which miR-128 impairs HIV-1 replication may provide novel candidates for the development of therapeutic interventions.


Subject(s)
Gene Expression Regulation/drug effects , HIV Infections/genetics , HIV Infections/virology , HIV-1/physiology , Interferons/pharmacology , MicroRNAs/genetics , Virus Replication , beta Karyopherins/genetics , 3' Untranslated Regions , Cell Line , Host-Pathogen Interactions/drug effects , Host-Pathogen Interactions/genetics , Humans , Models, Biological , RNA Interference
8.
Mol Ther ; 27(5): 960-973, 2019 05 08.
Article in English | MEDLINE | ID: mdl-30962161

ABSTRACT

HIV-1-infected individuals are treated with lifelong antiretroviral drugs to control the infection. A means to strengthen the antiviral T cell response might allow them to control viral loads without antiretroviral drugs. We report the development of a lentiviral vector-based dendritic cell (DC) vaccine in which HIV-1 antigen is co-expressed with CD40 ligand (CD40L) and a soluble, high-affinity programmed cell death 1 (PD-1) dimer. CD40L activates the DCs, whereas PD-1 binds programmed death ligand 1 (PD-L1) to prevent checkpoint activation and strengthen the cytotoxic T lymphocyte (CTL) response. The injection of humanized mice with DCs transduced with vector expressing CD40L and the HIV-1 SL9 epitope induced antigen-specific T cell proliferation and memory differentiation. Upon HIV-1 challenge of vaccinated mice, viral load was suppressed by 2 logs for 6 weeks. Introduction of the soluble PD-1 dimer into a vector that expressed full-length HIV-1 proteins accelerated the antiviral response. The results support development of this approach as a therapeutic vaccine that might allow HIV-1-infected individuals to control virus replication without antiretroviral therapy.


Subject(s)
Dendritic Cells/immunology , HIV Infections/therapy , Programmed Cell Death 1 Receptor/immunology , T-Lymphocytes, Cytotoxic/immunology , Virus Replication/immunology , AIDS Vaccines/immunology , AIDS Vaccines/pharmacology , Animals , CD40 Ligand , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/virology , Epitopes, T-Lymphocyte/immunology , Genetic Vectors/immunology , Genetic Vectors/pharmacology , HIV Infections/immunology , HIV Infections/virology , HIV-1/immunology , HIV-1/pathogenicity , Humans , Lymphocyte Activation/immunology , Mice
9.
PLoS Pathog ; 13(12): e1006753, 2017 12.
Article in English | MEDLINE | ID: mdl-29284044

ABSTRACT

Chimeric Antigen Receptor (CAR) T-cells have emerged as a powerful immunotherapy for various forms of cancer and show promise in treating HIV-1 infection. However, significant limitations are persistence and whether peripheral T cell-based products can respond to malignant or infected cells that may reappear months or years after treatment remains unclear. Hematopoietic Stem/Progenitor Cells (HSPCs) are capable of long-term engraftment and have the potential to overcome these limitations. Here, we report the use of a protective CD4 chimeric antigen receptor (C46CD4CAR) to redirect HSPC-derived T-cells against simian/human immunodeficiency virus (SHIV) infection in pigtail macaques. CAR-containing cells persisted for more than 2 years without any measurable toxicity and were capable of multilineage engraftment. Combination antiretroviral therapy (cART) treatment followed by cART withdrawal resulted in lower viral rebound in CAR animals relative to controls, and demonstrated an immune memory-like response. We found CAR-expressing cells in multiple lymphoid tissues, decreased tissue-associated SHIV RNA levels, and substantially higher CD4/CD8 ratios in the gut as compared to controls. These results show that HSPC-derived CAR T-cells are capable of long-term engraftment and immune surveillance. This study demonstrates for the first time the safety and feasibility of HSPC-based CAR therapy in a large animal preclinical model.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , HIV Infections/immunology , HIV Infections/therapy , Hematopoietic Stem Cells/immunology , Receptors, Antigen, T-Cell/metabolism , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Acquired Immunodeficiency Syndrome/therapy , Animals , CD4-Positive T-Lymphocytes/transplantation , Cell Differentiation/immunology , Cell Lineage/immunology , Disease Models, Animal , Genetic Therapy/methods , HIV Infections/virology , Hematopoietic Stem Cell Transplantation/methods , Immunotherapy/methods , Macaca nemestrina , Male , Receptors, Antigen, T-Cell/genetics , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , Recombinant Fusion Proteins/metabolism , Simian Acquired Immunodeficiency Syndrome/virology
10.
PLoS Pathog ; 12(1): e1005356, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26808628

ABSTRACT

Persistent viral infections are simultaneously associated with chronic inflammation and highly potent immunosuppressive programs mediated by IL-10 and PDL1 that attenuate antiviral T cell responses. Inhibiting these suppressive signals enhances T cell function to control persistent infection; yet, the underlying signals and mechanisms that program immunosuppressive cell fates and functions are not well understood. Herein, we use lymphocytic choriomeningitis virus infection (LCMV) to demonstrate that the induction and functional programming of immunosuppressive dendritic cells (DCs) during viral persistence are separable mechanisms programmed by factors primarily considered pro-inflammatory. IFNγ first induces the de novo development of naive monocytes into DCs with immunosuppressive potential. Type I interferon (IFN-I) then directly targets these newly generated DCs to program their potent T cell immunosuppressive functions while simultaneously inhibiting conventional DCs with T cell stimulating capacity. These mechanisms of monocyte conversion are constant throughout persistent infection, establishing a system to continuously interpret and shape the immunologic environment. MyD88 signaling was required for the differentiation of suppressive DCs, whereas inhibition of stimulatory DCs was dependent on MAVS signaling, demonstrating a bifurcation in the pathogen recognition pathways that promote distinct elements of IFN-I mediated immunosuppression. Further, a similar suppressive DC origin and differentiation was also observed in Mycobacterium tuberculosis infection, HIV infection and cancer. Ultimately, targeting the underlying mechanisms that induce immunosuppression could simultaneously prevent multiple suppressive signals to further restore T cell function and control persistent infections.


Subject(s)
Dendritic Cells/immunology , Immune Tolerance/immunology , Interferons/immunology , Virus Diseases/immunology , Animals , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , HIV , HIV Infections/immunology , Lymphocytic Choriomeningitis/immunology , Lymphocytic choriomeningitis virus , Mice , Mice, Inbred C57BL , Mice, Knockout , Neoplasms/immunology , Oligonucleotide Array Sequence Analysis , Real-Time Polymerase Chain Reaction , T-Lymphocytes/immunology , Tuberculosis/immunology
11.
J Virol ; 90(15): 6999-7006, 2016 08 01.
Article in English | MEDLINE | ID: mdl-27226366

ABSTRACT

UNLABELLED: Although the use of chimeric antigen receptors (CARs) based on single-chain antibodies for gene immunotherapy of cancers is increasing due to promising recent results, the earliest CAR therapeutic trials were done for HIV-1 infection in the late 1990s. This approach utilized a CAR based on human CD4 as a binding domain and was abandoned for a lack of efficacy. The growing number of HIV-1 broadly neutralizing antibodies (BNAbs) offers the opportunity to generate novel CARs that may be more active and revisit this modality for HIV-1 immunotherapy. We used sequences from seven well-defined BNAbs varying in binding sites and generated single-chain-antibody-based CARs. These CARs included 10E8, 3BNC117, PG9, PGT126, PGT128, VRC01, and X5. Each novel CAR exhibited conformationally relevant expression on the surface of transduced cells, mediated specific proliferation and killing in response to HIV-1-infected cells, and conferred potent antiviral activity (reduction of viral replication in log10 units) to transduced CD8(+) T lymphocytes. The antiviral activity of these CARs was reproducible but varied according to the strain of virus. These findings indicated that BNAbs are excellent candidates for developing novel CARs to consider for the immunotherapeutic treatment of HIV-1. IMPORTANCE: While chimeric antigen receptors (CARs) using single-chain antibodies as binding domains are growing in popularity for gene immunotherapy of cancers, the earliest human trials of CARs were done for HIV-1 infection. However, those trials failed, and the approach was abandoned for HIV-1. The only tested CAR against HIV-1 was based on the use of CD4 as the binding domain. The growing availability of HIV-1 broadly neutralizing antibodies (BNAbs) affords the opportunity to revisit gene immunotherapy for HIV-1 using novel CARs based on single-chain antibodies. Here we construct and test a panel of seven novel CARs based on diverse BNAb types and show that all these CARs are functional against HIV-1.


Subject(s)
Antibodies, Neutralizing/immunology , HIV Antibodies/immunology , HIV-1/immunology , Receptors, Antigen/immunology , Receptors, HIV/immunology , T-Lymphocytes/immunology , Amino Acid Sequence , Antibodies, Monoclonal/immunology , HIV Infections/immunology , HIV Infections/virology , Humans , Jurkat Cells , Sequence Homology, Amino Acid , Single-Chain Antibodies/immunology
12.
Mol Ther ; 23(8): 1358-1367, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26050990

ABSTRACT

The human immunodeficiency virus (HIV)-specific cytotoxic T lymphocyte (CTL) response is critical in controlling HIV infection. Since the immune response does not eliminate HIV, it would be beneficial to develop ways to enhance the HIV-specific CTL response to allow long-term viral suppression or clearance. Here, we report the use of a protective chimeric antigen receptor (CAR) in a hematopoietic stem/progenitor cell (HSPC)-based approach to engineer HIV immunity. We determined that CAR-modified HSPCs differentiate into functional T cells as well as natural killer (NK) cells in vivo in humanized mice and these cells are resistant to HIV infection and suppress HIV replication. These results strongly suggest that stem cell-based gene therapy with a CAR may be feasible and effective in treating chronic HIV infection and other morbidities.


Subject(s)
HIV Infections/immunology , Hematopoietic Stem Cells/cytology , Receptors, Antigen/chemistry , Animals , Antigens, CD34/metabolism , CD4-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/cytology , Cell Differentiation , Cytokines/metabolism , Genetic Engineering/methods , Genetic Therapy/methods , Genetic Vectors , HEK293 Cells , HIV-1 , Humans , Killer Cells, Natural/immunology , Mice , Receptors, Antigen, T-Cell/metabolism , Spleen/metabolism , Spleen/virology , T-Lymphocytes, Cytotoxic/immunology
13.
J Virol ; 88(17): 9934-46, 2014 Sep 01.
Article in English | MEDLINE | ID: mdl-24942581

ABSTRACT

UNLABELLED: A unique aspect of human monocytes, compared to monocytes from many other species, is that they express the CD4 molecule. However, the role of the CD4 molecule in human monocyte development and function is not known. We determined that the activation of CD4 via interaction with major histocompatibility complex class II (MHC-II) triggers cytokine expression and the differentiation of human monocytes into functional mature macrophages. Importantly, we determined that CD4 activation induces intracellular signaling in monocytes and that inhibition of the MAPK and Src family kinase pathways blocked the ability of CD4 ligation to trigger macrophage differentiation. We observed that ligation of CD4 by MHC-II on activated endothelial cells induced CD4-mediated macrophage differentiation of blood monocytes. Finally, CD4 ligation by MHC-II increases the susceptibility of blood-derived monocytes to HIV binding and subsequent infection. Altogether, our studies have identified a novel function for the CD4 molecule on peripheral monocytes and suggest that a unique set of events that lead to innate immune activation differ between humans and mice. Further, these events can have effects on HIV infection and persistence in the macrophage compartment. IMPORTANCE: The CD4 molecule, as the primary receptor for HIV, plays an important role in HIV pathogenesis. There are many cell types that express CD4 other than the primary HIV target, the CD4(+) T cell. Other than allowing HIV infection, the role of the CD4 molecule on human monocytes or macrophages is not known. We were interested in determining the role of CD4 in human monocyte/macrophage development and function and the potential effects of this on HIV infection. We identified a role for the CD4 molecule in triggering the activation and development of a monocyte into a macrophage following its ligation. Activation of the monocyte through the CD4 molecule in this manner increases the ability of monocytes to bind to and become infected with HIV. Our studies have identified a novel function for the CD4 molecule on peripheral monocytes in triggering macrophage development that has direct consequences for HIV infection.


Subject(s)
CD4 Antigens/metabolism , Cell Differentiation , HIV Infections/immunology , Histocompatibility Antigens Class II/metabolism , Macrophages/physiology , Monocytes/physiology , Adult , Cytokines/metabolism , Humans , Macrophages/immunology , Monocytes/immunology , Protein Binding , Signal Transduction
14.
PLoS Pathog ; 8(4): e1002649, 2012.
Article in English | MEDLINE | ID: mdl-22511873

ABSTRACT

The HIV-specific cytotoxic T lymphocyte (CTL) response is a critical component in controlling viral replication in vivo, but ultimately fails in its ability to eradicate the virus. Our intent in these studies is to develop ways to enhance and restore the HIV-specific CTL response to allow long-term viral suppression or viral clearance. In our approach, we sought to genetically manipulate human hematopoietic stem cells (HSCs) such that they differentiate into mature CTL that will kill HIV infected cells. To perform this, we molecularly cloned an HIV-specific T cell receptor (TCR) from CD8+ T cells that specifically targets an epitope of the HIV-1 Gag protein. This TCR was then used to genetically transduce HSCs. These HSCs were then introduced into a humanized mouse containing human fetal liver, fetal thymus, and hematopoietic progenitor cells, and were allowed to differentiate into mature human CD8+ CTL. We found human, HIV-specific CTL in multiple tissues in the mouse. Thus, genetic modification of human HSCs with a cloned TCR allows proper differentiation of the cells to occur in vivo, and these cells migrate to multiple anatomic sites, mimicking what is seen in humans. To determine if the presence of the transgenic, HIV-specific TCR has an effect on suppressing HIV replication, we infected with HIV-1 mice expressing the transgenic HIV-specific TCR and, separately, mice expressing a non-specific control TCR. We observed significant suppression of HIV replication in multiple organs in the mice expressing the HIV-specific TCR as compared to control, indicating that the presence of genetically modified HIV-specific CTL can form a functional antiviral response in vivo. These results strongly suggest that stem cell based gene therapy may be a feasible approach in the treatment of chronic viral infections and provide a foundation towards the development of this type of strategy.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Cell Engineering , Genetic Therapy , HIV Core Protein p24/immunology , HIV Infections/therapy , HIV-1/physiology , Hematopoietic Stem Cells/immunology , Receptors, Antigen, T-Cell/immunology , Virus Replication/physiology , Animals , CD8-Positive T-Lymphocytes/metabolism , Female , HIV Core Protein p24/genetics , HIV Core Protein p24/metabolism , HIV Infections/genetics , HIV Infections/immunology , HIV Infections/metabolism , Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells/metabolism , Humans , Male , Mice , Mice, Transgenic , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/metabolism , Transplantation, Heterologous
15.
Viruses ; 16(2)2024 01 31.
Article in English | MEDLINE | ID: mdl-38399994

ABSTRACT

Chronic Human Immunodeficiency Virus (HIV) infection remains a significant challenge to global public health. Despite advances in antiretroviral therapy (ART), which has transformed HIV infection from a fatal disease into a manageable chronic condition, a definitive cure remains elusive. One of the key features of HIV infection is chronic immune activation and inflammation, which are strongly associated with, and predictive of, HIV disease progression, even in patients successfully treated with suppressive ART. Chronic inflammation is characterized by persistent inflammation, immune cell metabolic dysregulation, and cellular exhaustion and dysfunction. This review aims to summarize current knowledge of the interplay between chronic inflammation, immune metabolism, and T cell dysfunction in HIV infection, and also discusses the use of humanized mice models to study HIV immune pathogenesis and develop novel therapeutic strategies.


Subject(s)
HIV Infections , HIV-1 , Humans , Animals , Mice , HIV-1/physiology , Inflammation/pathology , T-Lymphocytes/metabolism
16.
Mol Ther Methods Clin Dev ; 30: 276-287, 2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37575091

ABSTRACT

Hematopoietic stem cell gene therapy has been successfully used for a number of genetic diseases and is also being explored for HIV. However, toxicity of the conditioning regimens has been a major concern. Here we compared current conditioning approaches in a clinically relevant nonhuman primate model. We first customized various aspects of the therapeutic approach, including mobilization and cell collection protocols, conditioning regimens that support engraftment with minimal collateral damage, and cell manufacturing and infusing schema that reflect and build on current clinical approaches. Through a series of iterative in vivo experiments in two macaque species, we show that busulfan conditioning significantly spares lymphocytes and maintains a superior immune response to mucosal challenge with simian/human immunodeficiency virus, compared to total body irradiation and melphalan regimens. Comparative mobilization experiments demonstrate higher cell yield relative to our historical standard, primed bone marrow and engraftment of CRISPR-edited hematopoietic stem and progenitor cells (HSPCs) after busulfan conditioning. Our findings establish a detailed workflow for preclinical HSPC gene therapy studies in the nonhuman primate model, which in turn will support testing of novel conditioning regimens and more advanced HSPC gene editing techniques tailored to any disease of interest.

17.
Res Sq ; 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38168407

ABSTRACT

Neurocognitive deficits are prevalent among people living with HIV, likely due to chronic inflammation and oxidative stress in the brain. To date, no pharmaceutical treatments beyond antiretroviral therapy (ARV) has been shown to reduce risk for, or severity of, HIV-associated neurocognitive disorder. Here we investigate a novel compound, CDDO-Me, with documented neuroprotective effects via activation of the nrf2 and inhibition of the NFkB pathways. Methods: We conducted three studies to assess the efficacy of CDDO-Me alone or in combination with antiretroviral therapy in humanized mice infected with HIV; behavioral, histopathological, and immunohistochemical. Results: CDDO-Me in combination with ARV rescued social interaction deficits; however, only ARV was associated with preserved functioning in other behaviors, and CDDO-Me may have attenuated those benefits. A modest neuroprotective effect was found for CDDO-Me when administered with ARV, via preservation of PSD-95 expression; however, ARV alone had a more consistent protective effect. No significant changes in antioxidant enzyme expression levels were observed in CDDO-Me-treated animals. Only ARV use seemed to affect some antioxidant levels, indicating that it is ARV rather than CDDO-Me that is the major factor providing neuroprotection in this animal model. Finally, immunohistochemical analysis found that several cellular markers in various brain regions varied due to ARV rather than CDDO-Me. Conclusion: Limited benefit of CDDO-Me on behavior and neuroprotection were observed. Instead, ARV was shown to be the more beneficial treatment. These experiments support the future use of this chimeric mouse for behavioral experiments in neuroHIV research.

18.
Front Immunol ; 14: 1100594, 2023.
Article in English | MEDLINE | ID: mdl-36860850

ABSTRACT

Introduction: While antibodies raised by SARS-CoV-2 mRNA vaccines have had compromised efficacy to prevent breakthrough infections due to both limited durability and spike sequence variation, the vaccines have remained highly protective against severe illness. This protection is mediated through cellular immunity, particularly CD8+ T cells, and lasts at least a few months. Although several studies have documented rapidly waning levels of vaccine-elicited antibodies, the kinetics of T cell responses have not been well defined. Methods: Interferon (IFN)-γ enzyme-linked immunosorbent spot (ELISpot) assay and intracellular cytokine staining (ICS) were utilized to assess cellular immune responses (in isolated CD8+ T cells or whole peripheral blood mononuclear cells, PBMCs) to pooled peptides spanning spike. ELISA was performed to quantitate serum antibodies against the spike receptor binding domain (RBD). Results: In two persons receiving primary vaccination, tightly serially evaluated frequencies of anti-spike CD8+ T cells using ELISpot assays revealed strikingly short-lived responses, peaking after about 10 days and becoming undetectable by about 20 days after each dose. This pattern was also observed in cross-sectional analyses of persons after the first and second doses during primary vaccination with mRNA vaccines. In contrast, cross-sectional analysis of COVID-19-recovered persons using the same assay showed persisting responses in most persons through 45 days after symptom onset. Cross-sectional analysis using IFN-γ ICS of PBMCs from persons 13 to 235 days after mRNA vaccination also demonstrated undetectable CD8+ T cells against spike soon after vaccination, and extended the observation to include CD4+ T cells. However, ICS analyses of the same PBMCs after culturing with the mRNA-1273 vaccine in vitro showed CD4+ and CD8+ T cell responses that were readily detectable in most persons out to 235 days after vaccination. Discussion: Overall, we find that detection of spike-targeted responses from mRNA vaccines using typical IFN-γ assays is remarkably transient, which may be a function of the mRNA vaccine platform and an intrinsic property of the spike protein as an immune target. However, robust memory, as demonstrated by capacity for rapid expansion of T cells responding to spike, is maintained at least several months after vaccination. This is consistent with the clinical observation of vaccine protection from severe illness lasting months. The level of such memory responsiveness required for clinical protection remains to be defined.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , 2019-nCoV Vaccine mRNA-1273 , Cross-Sectional Studies , Leukocytes, Mononuclear , COVID-19/prevention & control , Vaccination , Cytokines , Antibodies, Viral , Enzyme-Linked Immunospot Assay
19.
J Vis Exp ; (188)2022 10 06.
Article in English | MEDLINE | ID: mdl-36282697

ABSTRACT

The human immunodeficiency virus (HIV-1) pandemic continues to spread unabated worldwide, and currently, there is no vaccine available against HIV. Although combinational antiretroviral therapy (cART) has been successful in suppressing viral replication, it cannot completely eradicate the reservoir from HIV-infected individuals. A safe and effective cure strategy for HIV infection will require multipronged methods, and therefore the advancements of animal models for HIV-1 infection are pivotal for the development of HIV cure research. Humanized mice recapitulate key features of HIV-1 infection. The humanized mouse model can be infected by HIV-1 and viral replication can be controlled with cART regimens. Moreover, cART interruption results in a prompt viral rebound in humanized mice. However, administration of cART to the animal can be ineffective, difficult, or toxic, and many clinically relevant cART regimens are unable to be optimally utilized. Along with being potentially unsafe for researchers, administration of cART by a commonly used intensive daily injection procedure induces stress by physical restraint of the animal. The novel oral cART method to treat HIV-1 infected humanized mice described in this article resulted in suppression of viremia below the detection level, increased rate of CD4+ restoration, and improved overall health in HIV-1 infected humanized mice.


Subject(s)
HIV Infections , HIV-1 , Mice , Humans , Animals , HIV Infections/drug therapy , Anti-Retroviral Agents/therapeutic use , Anti-Retroviral Agents/pharmacology , Viremia/drug therapy , Virus Replication , Viral Load , CD4-Positive T-Lymphocytes
20.
Article in English | MEDLINE | ID: mdl-37067894

ABSTRACT

Aim: A peripheral inflammatory response can drive neuroinflammation in a number of infections including human immunodeficiency virus (HIV). Monocyte/macrophage (M/Mφ) activation is a hallmark of acute HIV infection and a source of chronic inflammation in a subset of HIV-infected individuals. We sought to decrease peripheral inflammation and M/Mφ transmigration after HIV infection by engineering extracellular vesicles (EV) to antagonize a microRNA (miR) associated with inflammation. We hypothesized that induced pluripotent stem cell (iPSC)-derived monocyte EVs (mEVs), engineered to contain an antagomir to miR-155 (αmiR mEV) would target monocyte inflammation and influence neuroinflammation in an HIV-infected humanized mice. Methods: mEVs were characterized by tetraspanins, nanoparticle tracking analysis, electron microscopy, and their preferential entry into circulating monocytes as well as testing for endogenous selected miRNAs. HIV-infected humanized mice were treated with control or antagomir155 mEVs. Plasma viral load was measured plus activation markers on lymphocytes and monocytes and the number of macrophages in the brain was quantified. Results: mEVs preferentially entered peripheral monocytes. HIV infection increased C-C chemokine receptor type 5 (CCR5) and major histocompatibility complex, class II, DR (HLA-DR) expression on T cells and monocytes. Treatments with mEVs did not decrease plasma HIV viral load; however, mEVs alone resulted in a decrease in %CCR5+ and %HLA-DR+ on T cells and an increase in %CCR5+ monocytes. αmiR mEVs decreased %CCR5 on M/Mφ. The mEV-treated HIV-infected mice did not show an increase in macrophage transmigration to the brain. Conclusion: mEVs alone caused an unexpected decrease in lymphocyte activation and increase in monocyte %CCR5; however, this did not translate to an increase in macrophage transmigration to the brain.

SELECTION OF CITATIONS
SEARCH DETAIL