Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 92
Filter
1.
J Biol Chem ; 300(7): 107471, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38879010

ABSTRACT

Most proteins in the secretory pathway are glycosylated, and N-glycans are estimated to be attached to over 7000 proteins in humans. As structural variation of N-glycans critically regulates the functions of a particular glycoprotein, it is pivotal to understand how structural diversity of N-glycans is generated in cells. One of the major factors conferring structural variation of N-glycans is the variable number of N-acetylglucosamine branches. These branch structures are biosynthesized by dedicated glycosyltransferases, including GnT-III (MGAT3), GnT-IVa (MGAT4A), GnT-IVb (MGAT4B), GnT-V (MGAT5), and GnT-IX (GnT-Vb, MGAT5B). In addition, the presence or absence of core modification of N-glycans, namely, core fucose (included as an N-glycan branch in this manuscript), synthesized by FUT8, also confers large structural variation on N-glycans, thereby crucially regulating many protein-protein interactions. Numerous biochemical and medical studies have revealed that these branch structures are involved in a wide range of physiological and pathological processes. However, the mechanisms regulating the activity of the biosynthetic glycosyltransferases are yet to be fully elucidated. In this review, we summarize the previous findings and recent updates regarding regulation of the activity of these N-glycan branching enzymes. We hope that such information will help readers to develop a comprehensive overview of the complex system regulating mammalian N-glycan maturation.


Subject(s)
Polysaccharides , Humans , Animals , Polysaccharides/metabolism , N-Acetylglucosaminyltransferases/metabolism , Glycosylation
2.
J Biol Chem ; 300(7): 107450, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38844136

ABSTRACT

Structural variation of N-glycans is essential for the regulation of glycoprotein functions. GalNAcƟ1-4GlcNAc (LacdiNAc or LDN), a unique subterminal glycan structure synthesized by B4GALNT3 or B4GALNT4, is involved in the clearance of N-glycoproteins from the blood and maintenance of cell stemness. Such regulation of glycoprotein functions by LDN is largely different from that by the dominant subterminal structure, N-acetyllactosamine (GalƟ1-4GlcNAc, LacNAc). However, the mechanisms by which B4GALNT activity is regulated and how LDN plays different roles from LacNAc remain unclear. Here, we found that B4GALNT3 and four have unique domain organization containing a noncatalytic PA14 domain, which is a putative glycan-binding module. A mutant lacking this domain dramatically decreases the activity toward various substrates, such as N-glycan, O-GalNAc glycan, and glycoproteins, indicating that this domain is essential for enzyme activity and forms part of the catalytic region. In addition, to clarify the mechanism underlying the functional differences between LDN and LacNAc, we examined the effects of LDN on the maturation of N-glycans, focusing on the related glycosyltransferases upstream and downstream of B4GALNT. We revealed that, unlike LacNAc synthesis, prior formation of bisecting GlcNAc in N-glycan almost completely inhibits LDN synthesis by B4GALNT3. Moreover, the presence of LDN negatively impacted the actions of many glycosyltransferases for terminal modifications, including sialylation, fucosylation, and human natural killer-1 synthesis. These findings demonstrate that LDN has significant impacts on N-glycan maturation in a completely different way from LacNAc, which could contribute to obtaining a comprehensive overview of the system regulating complex N-glycan biosynthesis.


Subject(s)
N-Acetylgalactosaminyltransferases , Polysaccharides , Humans , Polysaccharides/metabolism , N-Acetylgalactosaminyltransferases/metabolism , N-Acetylgalactosaminyltransferases/genetics , Protein Domains , Glycoproteins/metabolism , Glycoproteins/genetics , Glycoproteins/chemistry , Lactose/analogs & derivatives
3.
J Biol Chem ; 299(8): 105052, 2023 08.
Article in English | MEDLINE | ID: mdl-37454739

ABSTRACT

Chronic obstructive pulmonary disease (COPD), which includes emphysema and chronic bronchitis, is now the third cause of death worldwide, and COVID-19 infection has been reported as an exacerbation factor of them. In this study, we report that the intratracheal administration of the keratan sulfate-based disaccharide L4 mitigates the symptoms of elastase-induced emphysema in a mouse model. To know the molecular mechanisms, we performed a functional analysis of a C-type lectin receptor, langerin, a molecule that binds L4. Using mouse BMDCs (bone marrow-derived dendritic cells) as langerin-expressing cells, we observed the downregulation of IL-6 and TNFa and the upregulation of IL-10 after incubation with L4. We also identified CapG (a macrophage-capping protein) as a possible molecule that binds langerin by immunoprecipitation combined with a mass spectrometry analysis. We identified a portion of the CapG that was localized in the nucleus and binds to the promoter region of IL-6 and the TNFa gene in BMDCs, suggesting that CapG suppresses the gene expression of IL-6 and TNFa as an inhibitory transcriptional factor. To examine the effects of L4 inĀ vivo, we also generated langerin-knockout mice by means of genome editing technology. In an emphysema mouse model, the administration of L4 did not mitigate the symptoms of emphysema as well as the inflammatory state of the lung in the langerin-knockout mice. These data suggest that the anti-inflammatory effect of L4 through the langerin-CapG axis represents a potential therapeutic target for the treatment of emphysema and COPD.


Subject(s)
Disaccharides , Pulmonary Disease, Chronic Obstructive , Pulmonary Emphysema , Animals , Mice , Disaccharides/pharmacology , Disease Models, Animal , Interleukin-6/genetics , Keratan Sulfate/pharmacology , Mice, Inbred C57BL , Mice, Knockout , Pulmonary Disease, Chronic Obstructive/drug therapy , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Emphysema/drug therapy , Pulmonary Emphysema/genetics , Pulmonary Emphysema/chemically induced , Lectins, C-Type/metabolism
4.
J Biol Chem ; 299(12): 105365, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37865317

ABSTRACT

Glycan structure is often modulated in disease or predisease states, suggesting that such changes might serve as biomarkers. Here, we generated a monoclonal antibody (mAb) against the core fucose of the N-glycan in human IgG. Notably, this mAb can be used in Western blotting and ELISA. ELISA using this mAb revealed a low level of the core fucose of the N-glycan in IgG, suggesting that the level of acore fucosylated (noncore fucosylated) IgG was increased in the sera of the patients with lung cancer, chronic obstructive pulmonary disease, and interstitial pneumonia compared to healthy subjects. In a coculture analysis using human lung adenocarcinoma A549Ā cells and antibody-secreting B cells, the downregulation of the FUT8 (α1,6 fucosyltransferase) gene and a low level of core fucose of the N-glycan in IgG in antibody-secreting B cells were observed after coculture. A dramatic alteration in gene expression profiles for cytokines, chemokines, and their receptors were also observed after coculturing, and we found that the identified C-C motif chemokine 2 was partially involved in the downregulation of the FUT8 gene and the low level of core fucose of the N-glycan in IgG in antibody-secreting B cells. We also developed a latex turbidimetric immunoassay using this mAb. These results suggest that communication with C-C motif chemokine 2 between lung cells and antibody-secreting B cells downregulate the level of core fucose of the N-glycan in IgG, i.e., the increased level of acore fucosylated (noncore fucosylated) IgG, which would be a novel biomarker for the diagnosis of patients with pulmonary diseases.


Subject(s)
Antibodies, Monoclonal , Fucose , Immunoglobulin G , Lung Diseases , Polysaccharides , Humans , A549 Cells , Antibodies, Monoclonal/metabolism , Antibody Specificity , B-Lymphocytes/immunology , Chemokine CCL2/genetics , Chemokine CCL2/metabolism , Chemokines/genetics , Chemokines/metabolism , Fucose/blood , Fucose/metabolism , Fucosyltransferases/genetics , Fucosyltransferases/metabolism , Gene Expression Profiling , Gene Expression Regulation/immunology , Gene Knockout Techniques , Immunoassay/standards , Immunoglobulin G/blood , Immunoglobulin G/immunology , Lung Diseases/diagnosis , Lung Diseases/immunology , Polysaccharides/metabolism , Animals , Mice , CHO Cells , HEK293 Cells , Cricetulus
5.
J Biol Chem ; 299(7): 104905, 2023 07.
Article in English | MEDLINE | ID: mdl-37302553

ABSTRACT

A primary pathology of Alzheimer's disease (AD) is amyloid Ɵ (AƟ) deposition in brain parenchyma and blood vessels, the latter being called cerebral amyloid angiopathy (CAA). Parenchymal amyloid plaques presumably originate from neuronal AƟ precursor protein (APP). Although vascular amyloid deposits' origins remain unclear, endothelial APP expression in APP knock-in mice was recently shown to expand CAA pathology, highlighting endothelial APP's importance. Furthermore, two types of endothelial APP-highly O-glycosylated APP and hypo-O-glycosylated APP-have been biochemically identified, but only the former is cleaved for AƟ production, indicating the critical relationship between APP O-glycosylation and processing. Here, we analyzed APP glycosylation and its intracellular trafficking in neurons and endothelial cells. Although protein glycosylation is generally believed to precede cell surface trafficking, which was true for neuronal APP, we unexpectedly observed that hypo-O-glycosylated APP is externalized to the endothelial cell surface and transported back to the Golgi apparatus, where it then acquires additional O-glycans. Knockdown of genes encoding enzymes initiating APP O-glycosylation significantly reduced AƟ production, suggesting this non-classical glycosylation pathway contributes to CAA pathology and is a novel therapeutic target.


Subject(s)
Acetylgalactosamine , Alzheimer Disease , Amyloid beta-Peptides , Amyloid beta-Protein Precursor , Cerebral Amyloid Angiopathy , Glycosylation , Animals , Mice , Alzheimer Disease/complications , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amyloid beta-Peptides/biosynthesis , Amyloid beta-Peptides/chemistry , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/chemistry , Amyloid beta-Protein Precursor/metabolism , Cerebral Amyloid Angiopathy/complications , Cerebral Amyloid Angiopathy/metabolism , Cerebral Amyloid Angiopathy/pathology , Endothelial Cells/metabolism , Protein Transport , Neurons/metabolism , Golgi Apparatus/metabolism , Acetylgalactosamine/metabolism
6.
Glycobiology ; 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39058648

ABSTRACT

The Human Glycome Atlas (HGA) Project was launched in April 2023, spearheaded by three Japanese institutes: the Tokai National Higher Education and Research System, the National Institutes of Natural Sciences, and Soka University. This was the first time that a field in the life sciences was adopted by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) for a Large-scale Academic Frontiers Promotion Project. This project aims to construct a knowledgebase of human glycans and glycoproteins as a standard for the human glycome. A high-throughput pipeline for comprehensively analyzing 20,000 blood samples in its first five years is planned, at which time an access-controlled version of a human glycomics knowledgebase, called TOHSA, will be released. By the end of the final tenth year, TOHSA will provide a central resource linking human glycan data with other omics data including disease-related information.

7.
Biochem Biophys Res Commun ; 703: 149610, 2024 04 09.
Article in English | MEDLINE | ID: mdl-38359610

ABSTRACT

O-GlcNAc is a unique post-translational modification found in cytoplasmic, nuclear, and mitochondrial proteins. In a limited number of extracellular proteins, O-GlcNAc modifications occur through the action of EOGT, which specifically modifies subsets of epidermal growth factor-like (EGF) domain-containing proteins such as Notch receptors. The abnormalities due to EOGT mutations in mice and humans and the increased EOGT expression in several cancers signify the importance of EOGT pathophysiology and extracellular O-GlcNAc. Unlike intracellular O-GlcNAc monosaccharides, extracellular O-GlcNAc extends to form elongated glycan structures. However, the enzymes involved in the O-GlcNAc glycan extension have not yet been reported. In our study, we comprehensively screened potential galactosyltransferase and sialyltransferase genes related to the canonical O-GlcNAc glycan pathway and revealed the essential roles of B4GALT1 and ST3GAL4 in O-GlcNAc glycan elongation in human HEK293Ā cells. These findings were confirmed by sequential glycosylation of Drosophila EGF20 in vitro by EOGT, Ɵ4GalT-1, and ST3Gal-IV. Thus, the findings from our study throw light on the specific glycosyltransferases that mediate O-GlcNAc glycan elongation in human HEK293Ā cells.


Subject(s)
Acetylglucosamine , Galactosyltransferases , Sialyltransferases , Animals , Humans , Mice , Acetylglucosamine/metabolism , Drosophila/metabolism , Galactosyltransferases/genetics , Glycosyltransferases , HEK293 Cells , Polysaccharides , Receptors, Notch/metabolism , Sialyltransferases/genetics
8.
J Biol Chem ; 298(12): 102676, 2022 12.
Article in English | MEDLINE | ID: mdl-36336076

ABSTRACT

Alpha-1,6-fucosyltransferase (FUT8) synthesizes core fucose in N-glycans, which plays critical roles in various physiological processes. FUT8, as with many other glycosyltransferases, is a type-II membrane protein, and its large C-terminal catalytic domain is linked to the FUT8 stem region, which comprises two α-helices. Although the stem regions of several glycosyltransferases are involved in the regulation of Golgi localization, the functions of the FUT8 stem region have not been clarified as yet. Here, we found that the FUT8 stem region is essential for enzyme oligomerization. We expressed FUT8Δstem mutants, in which the stem region was replaced with glycine/serine linkers, in FUT8-KO HEK293Ā cells. Our immunoprecipitation and native-PAGE analysis showed that FUT8 WT formed a multimer but FUT8Δstem impaired multimer formation in the cells, although the mutants retained specific activity. In addition, the mutant protein had lower steady-state levels, increased endoplasmic reticulum localization, and a shorter half-life than FUT8 WT, suggesting that loss of the stem region destabilized the FUT8 protein. Furthermore, immunoprecipitation analysis of another mutant lacking a part of the stem region revealed that the first helix in the FUT8 stem region is critical for multimer formation. Our findings demonstrated that the FUT8 stem region is essential for multimer formation but not for catalytic activity, providing insights into how the FUT8 protein matures and functions in mammalian cells.


Subject(s)
Fucosyltransferases , Polysaccharides , Humans , Fucose/metabolism , Fucosyltransferases/metabolism , Glycosylation , Glycosyltransferases/metabolism , HEK293 Cells , Mammals/metabolism , Polysaccharides/metabolism , Biocatalysis
9.
J Biol Chem ; 298(9): 102400, 2022 09.
Article in English | MEDLINE | ID: mdl-35988645

ABSTRACT

The N-glycans attached to proteins contain various GlcNAc branches, the aberrant formation of which correlates with various diseases. N-Acetylglucosaminyltransferase-IVa (GnT-IVa or MGAT4A) and Gnt-IVb (or MGAT4B) are isoenzymes that catalyze the formation of the Ɵ1,4-GlcNAc branch in N-glycans. However, the functional differences between these isozymes remain unresolved. Here, using cellular and UDP-Glo enzyme assays, we discovered that GnT-IVa and GnT-IVb have distinct glycoprotein preferences both in cells and inĀ vitro. Notably, we show that GnT-IVb acted efficiently on glycoproteins bearing an N-glycan premodified by GnT-IV. To further understand the mechanism of this reaction, we focused on the noncatalytic C-terminal lectin domain, which selectively recognizes the product glycans. Replacement of a nonconserved amino acid in the GnT-IVb lectin domain with the corresponding residue in GnT-IVa altered the glycoprotein preference of GnT-IVb to resemble that of GnT-IVa. Our findings demonstrate that the C-terminal lectin domain regulates differential substrate selectivity of GnT-IVa and GnT-IVb, highlighting a new mechanism by which N-glycan branches are formed on glycoproteins.


Subject(s)
Glycoproteins , N-Acetylglucosaminyltransferases , Amino Acids , Glycoproteins/metabolism , Isoenzymes/metabolism , Lectins , N-Acetylglucosaminyltransferases/metabolism , Polysaccharides/metabolism , Uridine Diphosphate
10.
J Biol Chem ; 298(10): 102444, 2022 10.
Article in English | MEDLINE | ID: mdl-36055406

ABSTRACT

Newly synthesized proteins in the secretory pathway, including glycosylphosphatidylinositol (GPI)-anchored proteins (GPI-APs), need to be correctly targeted and imported into the endoplasmic reticulum (ER) lumen. GPI-APs are synthesized in the cytosol as preproproteins, which contain an N-terminal signal sequence (SS), mature protein part, and C-terminal GPI-attachment sequence (GPI-AS), and translocated into the ER lumen where SS and GPI-AS are removed, generating mature GPI-APs. However, how various GPI-APs are translocated into the ER lumen in mammalian cells is unclear. Here, we investigated the ER entry pathways of GPI-APs using a panel of KO cells defective in each signal recognition particle-independent ER entry pathway-namely, Sec62, GET, or SND pathway. We found GPI-AP CD59 largely depends on the SND pathway for ER entry, whereas prion protein (Prion) and LY6K depend on both Sec62 and GET pathways. Using chimeric Prion and LY6K constructs in which the N-terminal SS or C-terminal GPI-AS was replaced with that of CD59, we revealed that the hydrophobicity of the SSs and GPI-ASs contributes to the dependence on Sec62 and GET pathways, respectively. Moreover, the ER entry route of chimeric Prion constructs with the C-terminal GPI-ASs replaced with that of CD59 was changed to the SND pathway. Simultaneously, their GPI structures and which oligosaccharyltransferase isoforms modify the constructs were altered without any amino acid change in the mature protein part. Taking these findings together, this study revealed N- and C-terminal sequences of GPI-APs determine the selective ER entry route, which in turn regulates subsequent maturation processes of GPI-APs.


Subject(s)
Endoplasmic Reticulum , GPI-Linked Proteins , Glycosylphosphatidylinositols , Protein Sorting Signals , Humans , Endoplasmic Reticulum/metabolism , Glycosylation , Glycosylphosphatidylinositols/chemistry , Glycosylphosphatidylinositols/metabolism , GPI-Linked Proteins/chemistry , GPI-Linked Proteins/metabolism , Prions/chemistry , Prions/metabolism , Protein Transport
11.
J Biol Chem ; 298(3): 101666, 2022 03.
Article in English | MEDLINE | ID: mdl-35104505

ABSTRACT

N-acetylglucosaminyltransferase-V (GnT-V or MGAT5) catalyzes the formation of an N-glycan Ɵ1,6-GlcNAc branch on selective target proteins in the Golgi apparatus and is involved in cancer malignancy and autoimmune disease etiology. Several three-dimensional structures of GnT-V were recently solved, and the recognition mechanism of the oligosaccharide substrate was clarified. However, it is still unclear how GnT-V selectively acts on glycoprotein substrates. In this study, we focused on an uncharacterized domain at the N-terminal side of the luminal region (N domain) of GnT-V, which was previously identified in a crystal structure, and aimed to reveal its role in GnT-V action. Using lectin blotting and fluorescence assisted cell sorting analysis, we found that a GnT-VΔN mutant lacking the N domain showed impaired biosynthetic activity in cells, indicating that the N domain is required for efficient glycosylation. To clarify this mechanism, we measured the inĀ vitro activity of purified GnT-VΔN toward various kinds of substrates (oligosaccharide, glycohexapeptide, and glycoprotein) using HPLC and a UDP-Glo assay. Surprisingly, GnT-VΔN showed substantially reduced activity toward the glycoprotein substrates, whereas it almost fully maintained its activity toward the oligosaccharides and the glycopeptide substrates. Finally, docking models of GnT-V with substrate glycoproteins suggested that the N domain could interact with the substrate polypeptide directly. Our findings suggest that the N domain of GnT-V plays a critical role in the recognition of glycoprotein substrates, providing new insights into the mechanism of substrate-selective biosynthesis of N-glycans.


Subject(s)
Glycoproteins , N-Acetylglucosaminyltransferases , Glycoproteins/metabolism , Glycosylation , Humans , N-Acetylglucosaminyltransferases/metabolism , Oligosaccharides/metabolism , Polysaccharides/metabolism
12.
J Biol Chem ; 298(3): 101720, 2022 03.
Article in English | MEDLINE | ID: mdl-35151686

ABSTRACT

Glycosylphosphatidylinositol (GPI) is a posttranslational glycolipid modification of proteins that anchors proteins in lipid rafts on the cell surface. Although some GPI-anchored proteins (GPI-APs), including the prion protein PrPC, have a glycan side chain composed of N-acetylgalactosamine (GalNAc)-galactose-sialic acid on the core structure of GPI glycolipid, inĀ vivo functions of this GPI-GalNAc side chain are largely unresolved. Here, we investigated the physiological and pathological roles of the GPI-GalNAc side chain inĀ vivo by knocking out its initiation enzyme, PGAP4, in mice. We show that Pgap4 mRNA is highly expressed in the brain, particularly in neurons, and mass spectrometry analysis confirmed the loss of the GalNAc side chain in PrPC GPI in PGAP4-KO mouse brains. Furthermore, PGAP4-KO mice exhibited various phenotypes, including an elevated blood alkaline phosphatase level, impaired bone formation, decreased locomotor activity, and impaired memory, despite normal expression levels and lipid raft association of various GPI-APs. Thus, we conclude that the GPI-GalNAc side chain is required for inĀ vivo functions of GPI-APs in mammals, especially in bone and the brain. Moreover, PGAP4-KO mice were more vulnerable to prion diseases and died earlier after intracerebral inoculation of the pathogenic prion strains than wildtype mice, highlighting the protective roles of the GalNAc side chain against prion diseases.


Subject(s)
Acetylgalactosamine , Glycosylphosphatidylinositols , Prion Diseases , Prions , Acetylgalactosamine/chemistry , Acetylgalactosamine/metabolism , Animals , Brain/metabolism , Glycosylphosphatidylinositols/chemistry , Glycosylphosphatidylinositols/metabolism , Mice , Osteogenesis , Prion Diseases/metabolism , Prions/metabolism , Structure-Activity Relationship
13.
J Biol Chem ; 296: 100354, 2021.
Article in English | MEDLINE | ID: mdl-33524390

ABSTRACT

Glycosylation, the most common posttranslational modification of proteins, is a stepwise process that relies on tight regulation of subcellular glycosyltransferase location to control the addition of each monosaccharide. Glycosyltransferases primarily reside and function in the endoplasmic reticulum (ER) and the Golgi apparatus; whether and how they traffic beyond the Golgi, how this trafficking is controlled, and how it impacts glycosylation remain unclear. Our previous work identified a connection between N-glycosylation and Rab11, a key player in the post-Golgi transport that connects recycling endosomes and other compartments. To learn more about the specific role of Rab11, we knocked down Rab11 in HeLa cells. Our findings indicate that Rab11 knockdown results in a dramatic enhancement in the sialylation of N-glycans. Structural analyses of glycans using lectins and LC-MS revealed that α2,3-sialylation is selectively enhanced, suggesting that an α2,3-sialyltransferase that catalyzes the sialyation of glycoproteins is activated or upregulated as the result of Rab11 knockdown. ST3GAL4 is the major α2,3-sialyltransferase that acts on N-glycans; we demonstrated that the localization of ST3GAL4, but not the levels of its mRNA, protein, or donor substrate, was altered by Rab11 depletion. In knockdown cells, ST3GAL4 is densely distributed in the trans-Golgi network, compared with the wider distribution in the Golgi and in other peripheral puncta in control cells, whereas the α2,6-sialyltransferase ST6GAL1 is predominantly localized to the Golgi regardless of Rab11 knockdown. This indicates that Rab11 may negatively regulate α2,3-sialylation by transporting ST3GAL4 to post-Golgi compartments (PGCs), which is a novel mechanism of glycosyltransferase regulation.


Subject(s)
Sialyltransferases/metabolism , rab GTP-Binding Proteins/metabolism , Animals , Glycosylation , Golgi Apparatus/metabolism , HeLa Cells , Humans , Protein Transport , Rats , trans-Golgi Network/metabolism
14.
J Biol Chem ; 295(23): 7992-8004, 2020 06 05.
Article in English | MEDLINE | ID: mdl-32350116

ABSTRACT

Core fucose is an N-glycan structure synthesized by α1,6-fucosyltransferase 8 (FUT8) localized to the Golgi apparatus and critically regulates the functions of various glycoproteins. However, how FUT8 activity is regulated in cells remains largely unclear. At the luminal side and uncommon for Golgi proteins, FUT8 has an Src homology 3 (SH3) domain, which is usually found in cytosolic signal transduction molecules and generally mediates protein-protein interactions in the cytosol. However, the SH3 domain has not been identified in other glycosyltransferases, suggesting that FUT8's functions are selectively regulated by this domain. In this study, using truncated FUT8 constructs, immunofluorescence staining, FACS analysis, cell-surface biotinylation, proteomics, and LC-electrospray ionization MS analyses, we reveal that the SH3 domain is essential for FUT8 activity both in cells and in vitro and identified His-535 in the SH3 domain as the critical residue for enzymatic activity of FUT8. Furthermore, we found that although FUT8 is mainly localized to the Golgi, it also partially localizes to the cell surface in an SH3-dependent manner, indicating that the SH3 domain is also involved in FUT8 trafficking. Finally, we identified ribophorin I (RPN1), a subunit of the oligosaccharyltransferase complex, as an SH3-dependent binding protein of FUT8. RPN1 knockdown decreased both FUT8 activity and core fucose levels, indicating that RPN1 stimulates FUT8 activity. Our findings indicate that the SH3 domain critically controls FUT8 catalytic activity and localization and is required for binding by RPN1, which promotes FUT8 activity and core fucosylation.


Subject(s)
Fucose/metabolism , Fucosyltransferases/metabolism , Animals , COS Cells , Cells, Cultured , Chlorocebus aethiops , HEK293 Cells , Humans , Proteasome Endopeptidase Complex/metabolism , Proteomics , src Homology Domains
15.
Mol Cell Proteomics ; 18(10): 2044-2057, 2019 10.
Article in English | MEDLINE | ID: mdl-31375533

ABSTRACT

Glycoproteins are decorated with complex glycans for protein functions. However, regulation mechanisms of complex glycan biosynthesis are largely unclear. Here we found that bisecting GlcNAc, a branching sugar residue in N-glycan, suppresses the biosynthesis of various types of terminal epitopes in N-glycans, including fucose, sialic acid and human natural killer-1. Expression of these epitopes in N-glycan was elevated in mice lacking the biosynthetic enzyme of bisecting GlcNAc, GnT-III, and was conversely suppressed by GnT-III overexpression in cells. Many glycosyltransferases for N-glycan terminals were revealed to prefer a nonbisected N-glycan as a substrate to its bisected counterpart, whereas no up-regulation of their mRNAs was found. This indicates that the elevated expression of the terminal N-glycan epitopes in GnT-III-deficient mice is attributed to the substrate specificity of the biosynthetic enzymes. Molecular dynamics simulations further confirmed that nonbisected glycans were preferentially accepted by those glycosyltransferases. These findings unveil a new regulation mechanism of protein N-glycosylation.


Subject(s)
Acetylglucosamine/metabolism , N-Acetylglucosaminyltransferases/genetics , Polysaccharides/chemistry , Polysaccharides/genetics , Animals , COS Cells , Chlorocebus aethiops , HEK293 Cells , HeLa Cells , Humans , Mice , Molecular Dynamics Simulation , Mutation , N-Acetylglucosaminyltransferases/metabolism , Substrate Specificity
16.
Adv Exp Med Biol ; 1325: 3-24, 2021.
Article in English | MEDLINE | ID: mdl-34495528

ABSTRACT

N-glycosylation is a highly conserved glycan modification, and more than 7000 proteins are N-glycosylated in humans. N-glycosylation has many biological functions such as protein folding, trafficking, and signal transduction. Thus, glycan modification to proteins is profoundly involved in numerous physiological and pathological processes. The N-glycan precursor is biosynthesized in the endoplasmic reticulum (ER) from dolichol phosphate by sequential enzymatic reactions to generate the dolichol-linked oligosaccharide composed of 14 sugar residues, Glc3Man9GlcNAc2. The oligosaccharide is then en bloc transferred to the consensus sequence N-X-S/T (X represents any amino acid except proline) of nascent proteins. Subsequently, the N-glycosylated nascent proteins enter the folding step, in which N-glycans contribute largely to attaining the correct protein fold by recruiting the lectin-like chaperones, calnexin, and calreticulin. Despite the N-glycan-dependent folding process, some glycoproteins do not fold correctly, and these misfolded glycoproteins are destined to degradation by proteasomes in the cytosol. Properly folded proteins are transported to the Golgi, and N-glycans undergo maturation by the sequential reactions of glycosidases and glycosyltransferases, generating complex-type N-glycans. N-Acetylglucosaminyltransferases (GnT-III, GnT-IV, and GnT-V) produce branched N-glycan structures, affording a higher complexity to N-glycans. In this chapter, we provide an overview of the biosynthetic pathway of N-glycans in the ER and Golgi.


Subject(s)
Glycoproteins , Protein Folding , Endoplasmic Reticulum/metabolism , Glycoproteins/metabolism , Glycosylation , Humans , Lectins , Polysaccharides/metabolism
17.
Adv Exp Med Biol ; 1325: 137-149, 2021.
Article in English | MEDLINE | ID: mdl-34495533

ABSTRACT

Extracellular vesicles (EVs), a generic term for any vesicles or particles that are released from cells, play an important role in modulating numerous biological and pathological events, including development, differentiation, aging, thrombus formation, immune responses, neurodegenerative diseases, and tumor progression. During the biogenesis of EVs, they encapsulate biologically active macromolecules (i.e., nucleotides and proteins) and transmit signals for delivering them to neighboring or cells that are located some distance away. In contrast, there are receptor molecules on the surface of EVs that function to mediate EV-to-cell and EV-to-matrix interactions. A growing body of evidence indicates that the EV surface is heavily modified with glycans, the function of which is to regulate the biogenesis and extracellular behaviors of EVs. In this chapter, we introduce the current status of our knowledge concerning EV glycosylation and discuss how it influences EV biology, highlighting the potential roles of EV glycans in clinical applications.


Subject(s)
Exosomes , Extracellular Vesicles , Neurodegenerative Diseases , Exosomes/metabolism , Extracellular Vesicles/metabolism , Glycosylation , Humans , Neurodegenerative Diseases/metabolism
18.
Int J Mol Sci ; 22(16)2021 Aug 09.
Article in English | MEDLINE | ID: mdl-34445285

ABSTRACT

N-glycosylation is essential for many biological processes in mammals. A variety of N-glycan structures exist, of which, the formation of bisecting N-acetylglucosamine (GlcNAc) is catalyzed by N-acetylglucosaminyltransferase-III (GnT-III, encoded by the Mgat3 gene). We previously identified various bisecting GlcNAc-modified proteins involved in Alzheimer's disease and cancer. However, the mechanisms by which GnT-III acts on the target proteins are unknown. Here, we performed comparative glycoproteomic analyses using brain membranes of wild type (WT) and Mgat3-deficient mice. Target glycoproteins of GnT-III were enriched with E4-phytohemagglutinin (PHA) lectin, which recognizes bisecting GlcNAc, and analyzed by liquid chromatograph-mass spectrometry. We identified 32 N-glycosylation sites (Asn-Xaa-Ser/Thr, Xaa ≠ Pro) that were modified with bisecting GlcNAc. Sequence alignment of identified N-glycosylation sites that displayed bisecting GlcNAc suggested that GnT-III does not recognize a specific primary amino acid sequence. The molecular modeling of GluA1 as one of the good cell surface substrates for GnT-III in the brain, indicated that GnT-III acts on N-glycosylation sites located in a highly flexible and mobile loop of GluA1. These results suggest that the action of GnT-III is partially affected by the tertiary structure of target proteins, which can accommodate bisecting GlcNAc that generates a bulky flipped-back conformation of the modified glycans.


Subject(s)
Acetylglucosamine/metabolism , Brain/metabolism , Cell Membrane/metabolism , Peptides/metabolism , Receptors, AMPA/metabolism , Sequence Analysis, Protein , Acetylglucosamine/genetics , Animals , Cell Membrane/genetics , Glycosylation , Mice , Mice, Knockout , N-Acetylglucosaminyltransferases/deficiency , N-Acetylglucosaminyltransferases/metabolism , Peptide Mapping , Peptides/genetics , Receptors, AMPA/genetics
19.
Molecules ; 26(17)2021 Aug 26.
Article in English | MEDLINE | ID: mdl-34500611

ABSTRACT

Human natural killer-1 (HNK-1) is a sulfated glyco-epitope regulating cell adhesion and synaptic functions. HNK-1 and its non-sulfated forms, which are specifically expressed in the brain and the kidney, respectively, are distinctly biosynthesized by two homologous glycosyltransferases: GlcAT-P in the brain and GlcAT-S in the kidney. However, it is largely unclear how the activity of these isozymes is regulated in vivo. We recently found that bisecting GlcNAc, a branching sugar in N-glycan, suppresses both GlcAT-P activity and HNK-1 expression in the brain. Here, we observed that the expression of non-sulfated HNK-1 in the kidney is unexpectedly unaltered in mutant mice lacking bisecting GlcNAc. This suggests that the biosynthesis of HNK-1 in the brain and the kidney are differentially regulated by bisecting GlcNAc. Mechanistically, in vitro activity assays demonstrated that bisecting GlcNAc inhibits the activity of GlcAT-P but not that of GlcAT-S. Furthermore, molecular dynamics simulation showed that GlcAT-P binds poorly to bisected N-glycan substrates, whereas GlcAT-S binds similarly to bisected and non-bisected N-glycans. These findings revealed the difference of the highly homologous isozymes for HNK-1 synthesis, highlighting the novel mechanism of the tissue-specific regulation of HNK-1 synthesis by bisecting GlcNAc.


Subject(s)
CD57 Antigens/biosynthesis , Glucuronosyltransferase/metabolism , Animals , Brain/metabolism , COS Cells , Cell Line , Chlorocebus aethiops , Epitopes/metabolism , Glycosyltransferases/metabolism , HEK293 Cells , Humans , Kidney/metabolism , Mice , Mice, Inbred C57BL , Molecular Dynamics Simulation , Polysaccharides/metabolism
20.
Int J Mol Sci ; 21(2)2020 Jan 09.
Article in English | MEDLINE | ID: mdl-31936666

ABSTRACT

Glycosylation is the most ubiquitous post-translational modification in eukaryotes. N-glycan is attached to nascent glycoproteins and is processed and matured by various glycosidases and glycosyltransferases during protein transport. Genetic and biochemical studies have demonstrated that alternations of the N-glycan structure play crucial roles in various physiological and pathological events including progression of cancer, diabetes, and Alzheimer's disease. In particular, the formation of N-glycan branches regulates the functions of target glycoprotein, which are catalyzed by specific N-acetylglucosaminyltransferases (GnTs) such as GnT-III, GnT-IVs, GnT-V, and GnT-IX, and a fucosyltransferase, FUT8s. Although the 3D structures of all enzymes have not been solved to date, recent progress in structural analysis of these glycosyltransferases has provided insights into substrate recognition and catalytic reaction mechanisms. In this review, we discuss the biological significance and structure-function relationships of these enzymes.


Subject(s)
Glycosyltransferases/chemistry , Glycosyltransferases/metabolism , Models, Molecular , Polysaccharides/metabolism , Animals , Crystallography, X-Ray , Humans , Polysaccharides/chemistry , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL