Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 99
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38895981

ABSTRACT

Retinol saturase (RetSat) is an oxidoreductase involved in lipid metabolism and the cellular sensitivity to peroxides. RetSat is highly expressed in metabolic organs like liver and adipose tissue and its global loss in mice increases body weight and adiposity. The regulation of RetSat expression and its function in the intestine are unexplored. Here, we show that RetSat is present in different segments of the digestive system, localizes to intestinal epithelial cells, and is upregulated by feeding mice high-fat diet (HFD). Intestine-specific RetSat deletion in adult mice did not affect nutrient absorption and energy homeostasis basally, but lowered body weight gain and fat mass of HFD-fed mice, potentially via increasing locomotor activity. Moreover, jejunal expression of genes related to ß-oxidation and cholesterol efflux were decreased and colonic cholesterol content reduced upon RetSat deletion. In colitis, which we show to downregulate intestinal RetSat expression in humans and mice, RetSat ablation improved epithelial architecture of the murine colon. Thus, intestinal RetSat expression is regulated by dietary interventions and inflammation, and its loss reduces weight gain upon HFD-feeding and alleviates epithelial damage upon injury.

2.
EMBO Rep ; 21(3): e48804, 2020 03 04.
Article in English | MEDLINE | ID: mdl-32026535

ABSTRACT

Mitochondrial dysfunction promotes metabolic stress responses in a cell-autonomous as well as organismal manner. The wasting hormone growth differentiation factor 15 (GDF15) is recognized as a biomarker of mitochondrial disorders, but its pathophysiological function remains elusive. To test the hypothesis that GDF15 is fundamental to the metabolic stress response during mitochondrial dysfunction, we investigated transgenic mice (Ucp1-TG) with compromised muscle-specific mitochondrial OXPHOS capacity via respiratory uncoupling. Ucp1-TG mice show a skeletal muscle-specific induction and diurnal variation of GDF15 as a myokine. Remarkably, genetic loss of GDF15 in Ucp1-TG mice does not affect muscle wasting or transcriptional cell-autonomous stress response but promotes a progressive increase in body fat mass. Furthermore, muscle mitochondrial stress-induced systemic metabolic flexibility, insulin sensitivity, and white adipose tissue browning are fully abolished in the absence of GDF15. Mechanistically, we uncovered a GDF15-dependent daytime-restricted anorexia, whereas GDF15 is unable to suppress food intake at night. Altogether, our evidence suggests a novel diurnal action and key pathophysiological role of mitochondrial stress-induced GDF15 in the regulation of systemic energy metabolism.


Subject(s)
Anorexia , Growth Differentiation Factor 15 , Adipose Tissue, White/metabolism , Animals , Anorexia/genetics , Anorexia/metabolism , Energy Metabolism , Growth Differentiation Factor 15/genetics , Growth Differentiation Factor 15/metabolism , Mice , Mitochondria/metabolism
3.
Cell Mol Life Sci ; 78(7): 3369-3384, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33464381

ABSTRACT

The mammalian system of energy balance regulation is intrinsically rhythmic with diurnal oscillations of behavioral and metabolic traits according to the 24 h day/night cycle, driven by cellular circadian clocks and synchronized by environmental or internal cues such as metabolites and hormones associated with feeding rhythms. Mitochondria are crucial organelles for cellular energy generation and their biology is largely under the control of the circadian system. Whether mitochondrial status might also feed-back on the circadian system, possibly via mitokines that are induced by mitochondrial stress as endocrine-acting molecules, remains poorly understood. Here, we describe our current understanding of the diurnal regulation of systemic energy balance, with focus on fibroblast growth factor 21 (FGF21) and growth differentiation factor 15 (GDF15), two well-known endocrine-acting metabolic mediators. FGF21 shows a diurnal oscillation and directly affects the output of the brain master clock. Moreover, recent data demonstrated that mitochondrial stress-induced GDF15 promotes a day-time restricted anorexia and systemic metabolic remodeling as shown in UCP1-transgenic mice, where both FGF21 and GDF15 are induced as myomitokines. In this mouse model of slightly uncoupled skeletal muscle mitochondria GDF15 proved responsible for an increased metabolic flexibility and a number of beneficial metabolic adaptations. However, the molecular mechanisms underlying energy balance regulation by mitokines are just starting to emerge, and more data on diurnal patterns in mouse and man are required. This will open new perspectives into the diurnal nature of mitokines and action both in health and disease.


Subject(s)
Circadian Rhythm , Energy Metabolism , Fibroblast Growth Factors/metabolism , Growth Differentiation Factor 15/metabolism , Hormones/metabolism , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Animals , Humans , Metabolome
4.
FASEB J ; 34(7): 9727-9739, 2020 07.
Article in English | MEDLINE | ID: mdl-32506644

ABSTRACT

Dairy intake, as a source of branched-chain amino acids (BCAA), has been linked to a lower incidence of type-2-diabetes and increased circulating odd-chain fatty acids (OCFA). To understand this connection, we aimed to investigate differences in BCAA metabolism of leucine and valine, a possible source of OCFA, and their role in hepatic metabolism. Male mice were fed a high-fat diet supplemented with leucine and valine for 1 week and phenotypically characterized with a focus on lipid metabolism. Mouse primary hepatocytes were treated with the BCAA or a Pparα activator WY-14643 to systematically examine direct hepatic effects and their mechanisms. Here, we show that only valine supplementation was able to increase hepatic and circulating OCFA levels via two pathways; a PPARα-dependent induction of α-oxidation and an increased supply of propionyl-CoA for de novo lipogenesis. Meanwhile, we were able to confirm leucine-mediated effects on the inhibition of food intake and transport of fatty acids, as well as induction of S6 ribosomal protein phosphorylation. Taken together, these data illustrate differential roles of the BCAA in lipid metabolism and provide preliminary evidence that exclusively valine contributes to the endogenous formation of OCFA which is important for a better understanding of these metabolites in metabolic health.


Subject(s)
Fatty Acids/metabolism , Hepatocytes/metabolism , Leucine/pharmacology , Lipid Metabolism/drug effects , Liver/metabolism , Valine/pharmacology , Animals , Hepatocytes/drug effects , Liver/drug effects , Male , Mice , Mice, Inbred C57BL , PPAR alpha/metabolism
5.
Int J Mol Sci ; 22(7)2021 Mar 30.
Article in English | MEDLINE | ID: mdl-33808081

ABSTRACT

In the present investigation, we examined whether a change in whole body energy fluxes could affect ovarian follicular development, employing mice ectopically expressing uncoupling protein 1 in skeletal muscle (UCP1-TG). Female UCP1-TG and wild-type (WT) mice were dissected at the age of 12 weeks. Energy intake and expenditure, activity, body weight and length, and body composition were measured. Plasma insulin, glucose, leptin, plasma fibroblast growth factor 21 (FGF21) and plasma insulin-like growth factor 1 (IGF1) levels were analyzed and ovarian follicle and corpus luteum numbers were counted. IGF1 signaling was analyzed by immunohistochemical staining for the activation of insulin receptor substrate 1/2 (IRS1/2) and AKT. UCP1-TG female mice had increased energy expenditure, reduced body size, maintained adiposity, and decreased IGF1 concentrations compared to their WT littermates, while preantral and antral follicle numbers were reduced by 40% and 60%, respectively. Corpora lutea were absent in 40% of the ovaries of UCP1-TG mice. Phospho-IRS1, phospho-AKT -Ser473 and -Thr308 immunostaining was present in the granulosa cells of antral follicles in WT ovaries, but faint to absent in the antral follicles of UCP1-TG mice. In conclusion, the reduction in circulating IGF1 levels due to the ectopic expression of UCP1 is associated with reduced immunostaining of the IRS1-PI3/AKT pathway, which may negatively affect ovarian follicle development and ovulation.


Subject(s)
Energy Metabolism , Ovarian Follicle/growth & development , Ovarian Follicle/metabolism , Uncoupling Protein 1/metabolism , Animals , Blood Glucose/metabolism , Body Weight , Energy Intake/physiology , Female , Fibroblast Growth Factors/genetics , Fibroblast Growth Factors/metabolism , Granulosa Cells/metabolism , Insulin Receptor Substrate Proteins/metabolism , Insulin-Like Growth Factor I/metabolism , Mice , Mice, Transgenic , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Uncoupling Protein 1/genetics
6.
Curr Opin Clin Nutr Metab Care ; 23(2): 145-150, 2020 03.
Article in English | MEDLINE | ID: mdl-31895244

ABSTRACT

PURPOSE OF REVIEW: Plant-based diets are associated with better health and longevity. Veganism is a strict form of vegetarianism, which has gained increasing attention in recent years. This review will focus on studies addressing mortality and health-span in vegans and vegetarians and discuss possible longevity-enhancing mechanisms. RECENT FINDINGS: Studies in vegans are still limited. Epidemiologic studies consistently show lower disease rates, such as lower incidence of cancer and cardiovascular disease, but mortality rates are comparable with rates in vegetarians and occasional meat eaters. Reasons for following strict vegan diets differ, which may affect diet quality, and thus health and life-span. New insights into some characteristics of veganism, such as protein restriction or restriction in certain amino acids (leucine or methionine) show potentially life-span-enhancing potential. Veganism improves insulin resistance and dyslipidemia and associated abnormalities. Gut microbiota as mediator of dietary impact on host metabolism is more diverse in vegans and has been suggested to be a health-promoting factor. Vegan diets do not fulfill the requirements of children, pregnant women or old individuals who should receive adequate supplements. SUMMARY: There is substantial evidence that plant-based diets are associated with better health but not necessarily lower mortality rates. The exact mechanisms of health promotion by vegan diets are still not entirely clear but most likely multifactorial. Reasons for and quality of the vegan diet should be assessed in longevity studies.


Subject(s)
Aging/physiology , Diet, Vegan/mortality , Diet, Vegetarian/mortality , Longevity/physiology , Nutritional Requirements/physiology , Diet, Protein-Restricted/methods , Diet, Protein-Restricted/mortality , Diet, Vegan/methods , Diet, Vegetarian/methods , Gastrointestinal Microbiome/physiology , Humans
7.
Liver Int ; 40(12): 2982-2997, 2020 12.
Article in English | MEDLINE | ID: mdl-32652799

ABSTRACT

BACKGROUND AND AIMS: Non-alcoholic fatty liver disease (NAFLD) is becoming increasingly prevalent and nutrition intervention remains the most important therapeutic approach for NAFLD. Our aim was to investigate whether low- (LP) or high-protein (HP) diets are more effective in reducing liver fat and reversing NAFLD and which mechanisms are involved. METHODS: 19 participants with morbid obesity undergoing bariatric surgery were randomized into two hypocaloric (1500-1600 kcal/day) diet groups, a low protein (10E% protein) and a high protein (30E% protein), for three weeks prior to surgery. Intrahepatic lipid levels (IHL) and serum fibroblast growth factor 21 (FGF21) were measured before and after the dietary intervention. Autophagy flux, histology, mitochondrial activity and gene expression analyses were performed in liver samples collected during surgery. RESULTS: IHL levels decreased by 42.6% in the HP group, but were not significantly changed in the LP group despite similar weight loss. Hepatic autophagy flux and serum FGF21 increased by 66.7% and 42.2%, respectively, after 3 weeks in the LP group only. Expression levels of fat uptake and lipid biosynthesis genes were lower in the HP group compared with those in the LP group. RNA-seq analysis revealed lower activity of inflammatory pathways upon HP diet. Hepatic mitochondrial activity and expression of ß-oxidation genes did not increase in the HP group. CONCLUSIONS: HP diet more effectively reduces hepatic fat than LP diet despite of lower autophagy and FGF21. Our data suggest that liver fat reduction upon HP diets result primarily from suppression of fat uptake and lipid biosynthesis.


Subject(s)
Diet, High-Protein , Diet, Protein-Restricted , Autophagy , Diet , Diet, High-Fat , Dietary Proteins , Fibroblast Growth Factors , Humans , Liver
8.
Gastroenterology ; 152(3): 571-585.e8, 2017 02.
Article in English | MEDLINE | ID: mdl-27765690

ABSTRACT

BACKGROUND & AIMS: Nonalcoholic fatty liver disease (NAFLD) is associated with increased risk of hepatic, cardiovascular, and metabolic diseases. High-protein diets, rich in methionine and branched chain amino acids (BCAAs), apparently reduce liver fat, but can induce insulin resistance. We investigated the effects of diets high in animal protein (AP) vs plant protein (PP), which differ in levels of methionine and BCAAs, in patients with type 2 diabetes and NAFLD. We examined levels of liver fat, lipogenic indices, markers of inflammation, serum levels of fibroblast growth factor 21 (FGF21), and activation of signaling pathways in adipose tissue. METHODS: We performed a prospective study of individuals with type 2 diabetes and NAFLD at a tertiary medical center in Germany from June 2013 through March 2015. We analyzed data from 37 subjects placed on a diet high in AP (rich in meat and dairy foods; n = 18) or PP (mainly legume protein; n = 19) without calorie restriction for 6 weeks. The diets were isocaloric with the same macronutrient composition (30% protein, 40% carbohydrates, and 30% fat). Participants were examined at the start of the study and after the 6-week diet period for body mass index, body composition, hip circumference, resting energy expenditure, and respiratory quotient. Body fat and intrahepatic fat were detected by magnetic resonance imaging and spectroscopy, respectively. Levels of glucose, insulin, liver enzymes, and inflammation markers, as well as individual free fatty acids and free amino acids, were measured in collected blood samples. Hyperinsulinemic euglycemic clamps were performed to determine whole-body insulin sensitivity. Subcutaneous adipose tissue samples were collected and analyzed for gene expression patterns and phosphorylation of signaling proteins. RESULTS: Postprandial levels of BCAAs and methionine were significantly higher in subjects on the AP vs the PP diet. The AP and PP diets each reduced liver fat by 36%-48% within 6 weeks (for AP diet P = .0002; for PP diet P = .001). These reductions were unrelated to change in body weight, but correlated with down-regulation of lipolysis and lipogenic indices. Serum level of FGF21 decreased by 50% in each group (for AP diet P < .0002; for PP diet P < .0002); decrease in FGF21 correlated with loss of hepatic fat. In gene expression analyses of adipose tissue, expression of the FGF21 receptor cofactor ß-klotho was associated with reduced expression of genes encoding lipolytic and lipogenic proteins. In patients on each diet, levels of hepatic enzymes and markers of inflammation decreased, insulin sensitivity increased, and serum level of keratin 18 decreased. CONCLUSIONS: In a prospective study of patients with type 2 diabetes, we found diets high in protein (either animal or plant) significantly reduced liver fat independently of body weight, and reduced markers of insulin resistance and hepatic necroinflammation. The diets appear to mediate these changes via lipolytic and lipogenic pathways in adipose tissue. Negative effects of BCAA or methionine were not detectable. FGF21 level appears to be a marker of metabolic improvement. ClinicalTrials.gov ID NCT02402985.


Subject(s)
Dairy Products , Diabetes Mellitus, Type 2/drug therapy , Hypoglycemic Agents/therapeutic use , Liver/diagnostic imaging , Meat , Non-alcoholic Fatty Liver Disease/diet therapy , Plant Proteins, Dietary/therapeutic use , Adiponectin/metabolism , Adipose Tissue , Aged , Animals , Body Composition , Chemokine CCL2/metabolism , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/metabolism , Dietary Proteins , Down-Regulation , Energy Metabolism , Enzyme-Linked Immunosorbent Assay , Female , Fibroblast Growth Factors/metabolism , Glucose Clamp Technique , Humans , Inflammation , Insulin/metabolism , Insulin Resistance , Interleukin-18/metabolism , Lipid Metabolism , Lipogenesis , Liver/metabolism , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy , Male , Middle Aged , Non-alcoholic Fatty Liver Disease/complications , Non-alcoholic Fatty Liver Disease/diagnostic imaging , Non-alcoholic Fatty Liver Disease/metabolism , Prospective Studies
9.
FASEB J ; 29(4): 1314-28, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25491309

ABSTRACT

Recent studies on mouse and human skeletal muscle (SM) demonstrated the important link between mitochondrial function and the cellular metabolic adaptation. To identify key compensatory molecular mechanisms in response to chronic mitochondrial distress, we analyzed mice with ectopic SM respiratory uncoupling in uncoupling protein 1 transgenic (UCP1-TG) mice as model of muscle-specific compromised mitochondrial function. Here we describe a detailed metabolic reprogramming profile associated with mitochondrial perturbations in SM, triggering an increased protein turnover and amino acid metabolism with induced biosynthetic serine/1-carbon/glycine pathway and the longevity-promoting polyamine spermidine as well as the trans-sulfuration pathway. This is related to an induction of NADPH-generating pathways and glutathione metabolism as an adaptive mitohormetic response and defense against increased oxidative stress. Strikingly, consistent muscle retrograde signaling profiles were observed in acute stress states such as muscle cell starvation and lipid overload, muscle regeneration, and heart muscle inflammation, but not in response to exercise. We provide conclusive evidence for a key compensatory stress-signaling network that preserves cellular function, oxidative stress tolerance, and survival during conditions of increased SM mitochondrial distress, a metabolic reprogramming profile so far only demonstrated for cancer cells and heart muscle.


Subject(s)
Glycine/metabolism , Mitochondria, Muscle/metabolism , Muscle Fibers, Skeletal/metabolism , Serine/metabolism , Animals , Cell Survival/physiology , Hormesis , Humans , Ion Channels/genetics , Ion Channels/metabolism , Metabolic Networks and Pathways , Mice , Mice, Transgenic , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Muscle Fibers, Fast-Twitch/metabolism , Muscle Proteins/metabolism , Oxidative Stress , Signal Transduction , Transcriptome , Uncoupling Protein 1
10.
Am J Physiol Endocrinol Metab ; 306(5): E469-82, 2014 Mar 01.
Article in English | MEDLINE | ID: mdl-24347058

ABSTRACT

UCP1-Tg mice with ectopic expression of uncoupling protein 1 (UCP1) in skeletal muscle (SM) are a model of improved substrate metabolism and increased longevity. Analysis of myokine expression showed an induction of fibroblast growth factor 21 (FGF21) in SM, resulting in approximately fivefold elevated circulating FGF21 in UCP1-Tg mice. Despite a reduced muscle mass, UCP1-Tg mice showed no evidence for a myopathy or muscle autophagy deficiency but an activation of integrated stress response (ISR; eIF2α/ATF4) in SM. Targeting mitochondrial function in vitro by treating C2C12 myoblasts with the uncoupler FCCP resulted in a dose-dependent activation of ISR, which was associated with increased expression of FGF21, which was also observed by treatment with respiratory chain inhibitors antimycin A and myxothiazol. The cofactor required for FGF21 action, ß-klotho, was expressed in white adipose tissue (WAT) of UCP1-Tg mice, which showed an increased browning of WAT similar to what occurred in altered adipocyte morphology, increased brown adipocyte markers (UCP1, CIDEA), lipolysis (HSL phosphorylation), and respiratory capacity. Importantly, treatment of primary white adipocytes with serum of transgenic mice resulted in increased UCP1 expression. Additionally, UCP1-Tg mice showed reduced body length through the suppressed IGF-I-GH axis and decreased bone mass. We conclude that the induction of FGF21 as a myokine is coupled to disturbance of mitochondrial function and ISR activation in SM. FGF21 released from SM has endocrine effects leading to increased browning of WAT and can explain the healthy metabolic phenotype of UCP1-Tg mice. These results confirm muscle as an important endocrine regulator of whole body metabolism.


Subject(s)
Fibroblast Growth Factors/metabolism , Ion Channels/metabolism , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Muscle, Skeletal/metabolism , Adipose Tissue, White/drug effects , Adipose Tissue, White/metabolism , Animals , Body Composition/physiology , Bone Density/physiology , Carbonyl Cyanide p-Trifluoromethoxyphenylhydrazone/pharmacology , Cell Line , Energy Metabolism/drug effects , Ion Channels/genetics , Mice , Mice, Transgenic , Mitochondria/drug effects , Mitochondrial Proteins/genetics , Muscle, Skeletal/drug effects , Myoblasts/drug effects , Myoblasts/metabolism , Phosphorylation , Uncoupling Agents/pharmacology , Uncoupling Protein 1
11.
Int J Mol Sci ; 15(1): 1374-91, 2014 Jan 20.
Article in English | MEDLINE | ID: mdl-24447927

ABSTRACT

High-protein diets have been shown to prevent the development of diet-induced obesity and can improve associated metabolic disorders in mice. Dietary leucine supplementation can partially mimic this effect. However, the molecular mechanisms triggering these preventive effects remain to be satisfactorily explained. Here we review studies showing a connection between high protein or total amino nitrogen intake and obligatory water intake. High amino nitrogen intake may possibly lower lipid storage, and prevent insulin resistance. Suggestions are made for further systematical studies to explore the relationship between water consumption, satiety, and energy expenditure. Moreover, these examinations should better distinguish between leucine-specific and unspecific effects. Research in this field can provide important information to justify dietary recommendations and strategies in promoting long-term weight loss and may help to reduce health problems associated with the comorbidities of obesity.


Subject(s)
Amino Acids/metabolism , Dietary Proteins/metabolism , Obesity/metabolism , Amino Acids/therapeutic use , Animals , Diet Therapy , Diet, High-Fat/adverse effects , Dietary Proteins/therapeutic use , Humans , Nitrogen/metabolism , Obesity/etiology , Obesity/prevention & control , Water/metabolism
12.
Article in English | MEDLINE | ID: mdl-39010299

ABSTRACT

BACKGROUND: The ability of skeletal muscle to respond adequately to changes in nutrient availability, known as metabolic flexibility, is essential for the maintenance of metabolic health and loss of flexibility contributes to the development of diabetes and obesity. The tumour suppressor protein, p53, has been linked to the control of energy metabolism. We assessed its role in the acute control of nutrient allocation in skeletal muscle in the context of limited nutrient availability. METHODS: A mouse model with inducible deletion of the p53-encoding gene, Trp53, in skeletal muscle was generated using the Cre-loxP-system. A detailed analysis of nutrient metabolism in mice with control and knockout genotypes was performed under ad libitum fed and fasting conditions and in exercised mice. RESULTS: Acute deletion of p53 in myofibres of mice activated catabolic nutrient usage pathways even under ad libitum fed conditions, resulting in significantly increased overall energy expenditure (+10.6%; P = 0.0385) and a severe nutrient deficit in muscle characterized by depleted intramuscular glucose and glycogen levels (-62,0%; P < 0.0001 and -52.7%; P < 0.0001, respectively). This was accompanied by changes in marker gene expression patterns of circadian rhythmicity and hyperactivity (+57.4%; P = 0.0068). These metabolic changes occurred acutely, within 2-3 days after deletion of Trp53 was initiated, suggesting a rapid adaptive response to loss of p53, which resulted in a transient increase in lactate release to the circulation (+46.6%; P = 0.0115) from non-exercised muscle as a result of elevated carbohydrate mobilization. Conversely, an impairment of proteostasis and amino acid metabolism was observed in knockout mice during fasting. During endurance exercise testing, mice with acute, muscle-specific Trp53 inactivation displayed an early exhaustion phenotype with a premature shift in fuel usage and reductions in multiple performance parameters, including a significantly reduced running time and distance (-13.8%; P = 0.049 and -22.2%; P = 0.0384, respectively). CONCLUSIONS: These findings suggest that efficient nutrient conservation is a key element of normal metabolic homeostasis that is sustained by p53. The homeostatic state in metabolic tissues is actively maintained to coordinate efficient energy conservation and metabolic flexibility towards nutrient stress. The acute deletion of Trp53 unlocks mechanisms that suppress the activity of nutrient catabolic pathways, causing substantial loss of intramuscular energy stores, which contributes to a fasting-like state in muscle tissue. Altogether, these findings uncover a novel function of p53 in the short-term regulation of nutrient metabolism in skeletal muscle and show that p53 serves to maintain metabolic homeostasis and efficient energy conservation.

13.
Geroscience ; 46(2): 1657-1669, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37715843

ABSTRACT

Growth differentiation factor-15 (GDF15) might be involved in the development of cognitive frailty and depression. Therefore, we evaluated cross-sectional associations of plasma GDF15 with combined cognitive-frailty-and-depression in older (i.e. ≥ 55 years) and younger adults of the MARK-AGE study. In the present work, samples and data of MARK-AGE ("European study to establish bioMARKers of human AGEing") participants (N = 2736) were analyzed. Cognitive frailty was determined by the global cognitive functioning score (GCF) and depression by the Self-Rating Depression Scale (SDS score). Adults were classified into three groups: (I) neither-cognitive-frailty-nor-depression, (II) either-cognitive-frailty-or-depression or (III) both-cognitive-frailty-and-depression. Cross-sectional associations were determined by unadjusted and by age, BMI, sex, comorbidities and hsCRP-adjusted linear and logistic regression analyses. Cognitive frailty, depression, age and GDF15 were significantly related within the whole study sample. High GDF15 levels were significantly associated with both-cognitive-frailty-and-depression (adjusted ß = 0.177 [0.044 - 0.310], p = 0.009), and with low GCF scores and high SDS scores. High GDF15 concentrations and quartiles were significantly associated with higher odds to have both-cognitive-frailty-and-depression (adjusted odds ratio = 2.353 [1.267 - 4.372], p = 0.007; and adjusted odds ratio = 1.414 [1.025 - 1.951], p = 0.035, respectively) independent of age, BMI, sex, comorbidities and hsCRP. These associations remained significant when evaluating older adults. We conclude that plasma GDF15 concentrations are significantly associated with combined cognitive-frailty-and-depression status and, with cognitive frailty and depressive symptoms separately in old as well as young community-dwelling adults.


Subject(s)
Frailty , Humans , Aged , Frail Elderly/psychology , Depression/epidemiology , C-Reactive Protein , Cross-Sectional Studies , Cognition , Growth Differentiation Factor 15
14.
Amino Acids ; 44(2): 519-28, 2013 Feb.
Article in English | MEDLINE | ID: mdl-22847780

ABSTRACT

High-protein diets have been shown to alleviate detrimental effects of high-fat diets and this effect can be partially mimicked by dietary L-leucine supplementation. Here, we aimed to elucidate the early mechanisms and the specificity of leucine effects. We performed a 1-week trial with male C57BL/6 mice fed ad libitum with semisynthetic high-fat diets containing an adequate (10 % w/w, AP) or high (50 % w/w, HP) amount of whey protein, or supplemented with L-leucine corresponding to the leucine content within the HP diet (Leu) or supplemented with equimolar L-alanine (Ala). Food and water intake were monitored continuously using a computer-controlled monitor system and body composition changes were assessed using quantitative NMR. HP completely prevented the AP-induced accumulation of body fat. Leu and Ala resulted in a similar reduction of body fat accumulation which was intermediate between AP and HP. There were no significant effects on plasma glucose or insulin. Triacylglycerol content and gene expression of lipogenesis enzymes in liver as well as plasma cholesterol were reduced by HP compared to AP with Leu and Ala again showing intermediate effects. Body fat gain and liver triacylglycerols were strongly correlated with total energy intake. Water intake was rapidly increased by HP feeding and total water intake correlated strongly with total amino nitrogen intake. We concluded that the positive effects of high-protein diets on metabolic syndrome associated traits are acutely due to effects on satiety possibly linked to amino nitrogen intake and on the subsequent suppression of liver lipogenesis without evidence for a specific leucine effect.


Subject(s)
Alanine/administration & dosage , Dietary Supplements/analysis , Leucine/administration & dosage , Obesity/prevention & control , Animals , Blood Glucose/metabolism , Diet, High-Fat/adverse effects , Dietary Proteins/metabolism , Humans , Insulin/metabolism , Male , Mice , Mice, Inbred C57BL , Obesity/drug therapy , Obesity/metabolism
15.
Redox Biol ; 59: 102574, 2023 02.
Article in English | MEDLINE | ID: mdl-36521306

ABSTRACT

Mice with ectopic expression of uncoupling protein-1 (UCP1) in skeletal muscle exhibit a healthy aging phenotype with increased longevity and resistance to impaired metabolic health. This may be achieved by decreasing protein glycation by the reactive metabolite, methylglyoxal (MG). We investigated protein glycation and oxidative damage in skeletal muscle of mice with UCP1 expression under control of the human skeletal actin promoter (HSA-mUCP1) at age 12 weeks (young) and 70 weeks (aged). We found both young and aged HSA-mUCP1 mice had decreased advanced glycation endproducts (AGEs) formed from MG, lysine-derived Nε(1-carboxyethyl)lysine (CEL) and arginine-derived hydroimidazolone, MG-H1, whereas protein glycation by glucose forming Nε-fructosyl-lysine (FL) was increased ca. 2-fold, compared to wildtype controls. There were related increases in FL-linked AGEs, Nε-carboxymethyl-lysine (CML) and 3-deoxylglucosone-derived hydroimidazolone 3DG-H, and minor changes in protein oxidative and nitration adducts. In aged HSA-mUCP1 mice, urinary MG-derived AGEs/FL ratio was decreased ca. 60% whereas there was no change in CML/FL ratio - a marker of oxidative damage. This suggests that, normalized for glycemic status, aged HSA-mUCP1 mice had a lower flux of whole body MG-derived AGE exposure compared to wildtype controls. Proteomics analysis of skeletal muscle revealed a shift to increased heat shock proteins and mechanoprotection and repair in HSA-mUCP1 mice. Decreased MG-derived AGE protein content in skeletal muscle of aged HSA-mUCP1 mice is therefore likely produced by increased proteolysis of MG-modified proteins and increased proteostasis surveillance of the skeletal muscle proteome. From this and previous transcriptomic studies, signaling involved in enhanced removal of MG-modified protein is likely increased HSPB1-directed HUWE1 ubiquitination through eIF2α-mediated, ATF5-induced increased expression of HSPB1. Decreased whole body exposure to MG-derived AGEs may be linked to increased weight specific physical activity of HSA-mUCP1 mice. Decreased formation and increased clearance of MG-derived AGEs may be associated with healthy aging in the HSA-mUCP1 mouse.


Subject(s)
Glycation End Products, Advanced , Healthy Aging , Humans , Mice , Animals , Aged , Infant , Glycation End Products, Advanced/metabolism , Lysine/metabolism , Pyruvaldehyde/metabolism , Maillard Reaction , Uncoupling Protein 1/metabolism , Ectopic Gene Expression , Proteins/metabolism , Muscle, Skeletal/metabolism , Tumor Suppressor Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism
16.
Nutrients ; 15(9)2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37432205

ABSTRACT

Epidemiological studies found that the intake of dairy products is associated with an increased amount of circulating odd-chain fatty acids (OCFA, C15:0 and C17:0) in humans and further indicate that especially C17:0 is associated with a lower incidence of type 2 diabetes. However, causal relationships are not elucidated. To provide a mechanistic link, mice were fed high-fat (HF) diets supplemented with either milk fat or C17:0 for 20 weeks. Cultured primary mouse hepatocytes were used to distinguish differential effects mediated by C15:0 or C17:0. Despite an induction of OCFA after both dietary interventions, neither long-term milk fat intake nor C17:0 supplementation improved diet-induced hepatic lipid accumulation and insulin resistance in mice. HF feeding with milk fat actually deteriorates liver inflammation. Treatment of primary hepatocytes with C15:0 and C17:0 suppressed JAK2/STAT3 signaling, but only C15:0 enhanced insulin-stimulated phosphorylation of AKT. Overall, the data indicate that the intake of milk fat and C17:0 do not mediate health benefits, whereas C15:0 might be promising in further studies.


Subject(s)
Diabetes Mellitus, Type 2 , Fatty Liver , Insulin Resistance , Humans , Animals , Mice , Diabetes Mellitus, Type 2/prevention & control , Fatty Acids , Diet, High-Fat/adverse effects
17.
Front Endocrinol (Lausanne) ; 14: 1277866, 2023.
Article in English | MEDLINE | ID: mdl-37941910

ABSTRACT

Mitochondria play multifaceted roles in cellular function, and impairments across domains of mitochondrial biology are known to promote cellular integrated stress response (ISR) pathways as well as systemic metabolic adaptations. However, the temporal dynamics of specific mitochondrial ISR related to physiological variations in tissue-specific energy demands remains unknown. Here, we conducted a comprehensive 24-hour muscle and plasma profiling of male and female mice with ectopic mitochondrial respiratory uncoupling in skeletal muscle (mUcp1-transgenic, TG). TG mice are characterized by increased muscle ISR, elevated oxidative stress defense, and increased secretion of FGF21 and GDF15 as ISR-induced myokines. We observed a temporal signature of both cell-autonomous and systemic ISR in the context of endocrine myokine signaling and cellular redox balance, but not of ferroptotic signature which was also increased in TG muscle. We show a progressive increase of muscle ISR on transcriptional level during the active phase (night time), with a subsequent peak in circulating FGF21 and GDF15 in the early resting phase. Moreover, we found highest levels of muscle oxidative defense (GPX and NQO1 activity) between the late active to early resting phase, which could aim to counteract excessive iron-dependent lipid peroxidation and ferroptosis in muscle of TG mice. These findings highlight the temporal dynamics of cell-autonomous and endocrine ISR signaling under skeletal muscle mitochondrial uncoupling, emphasizing the importance of considering such dissociation in translational strategies and sample collection for diagnostic biomarker analysis.


Subject(s)
Ferroptosis , Mice , Male , Female , Animals , Mice, Transgenic , Mitochondria/metabolism , Muscle, Skeletal/metabolism , Oxidation-Reduction
18.
Handb Exp Pharmacol ; (209): 251-73, 2012.
Article in English | MEDLINE | ID: mdl-22249818

ABSTRACT

The human gut harbors a highly diverse microbial ecosystem of approximately 400 different species, which is characterized by a high interindividual variability. The intestinal microbiota has recently been suggested to contribute to the development of obesity and the metabolic syndrome. Transplantation of gut microbiota from obese mice to nonobese, germ-free mice resulted in transfer of metabolic syndrome-associated features from the donor to the recipient. Proposed mechanisms for the role of gut microbiota include the provision of additional energy by the conversion of dietary fiber to short-chain fatty acids, effects on gut-hormone production, and increased intestinal permeability causing elevated systemic levels of lipopolysaccharides (LPS). This metabolic endotoxemia is suggested to contribute to low-grade inflammation, a characteristic trait of obesity and the metabolic syndrome. Finally, activation of the endocannabinoid system by LPS and/or high-fat diets is discussed as another causal factor. In conclusion, there is ample evidence for a role of gut microbiota in the development of obesity in rodents. However, the magnitude of its contribution to human obesity is still unknown.


Subject(s)
Bacteria/metabolism , Intestines/microbiology , Obesity/microbiology , Angiopoietins/metabolism , Animals , Bacteria/classification , Cannabinoid Receptor Modulators/metabolism , Diet, High-Fat/adverse effects , Energy Metabolism , Humans , Inflammation/metabolism , Inflammation/microbiology , Intestinal Mucosa/metabolism , Lipopolysaccharides/blood , Metabolic Syndrome/metabolism , Metabolic Syndrome/microbiology , Obesity/metabolism , Obesity/prevention & control
19.
Nutrients ; 14(19)2022 Sep 30.
Article in English | MEDLINE | ID: mdl-36235718

ABSTRACT

Growth differentiation factor 15 (GDF15) is a stress signal that can be induced by protein restriction and is associated with reduced food intake. Anorexia of aging, insufficient protein intake as well as high GDF15 concentrations often occur in older age, but it is unknown whether GDF15 concentrations change acutely after meal ingestion and affect appetite in older individuals. After an overnight fast, appetite was assessed in older (n = 20; 73.7 ± 6.30 years) and younger (n = 20; 25.7 ± 4.39 years) women with visual analogue scales, and concentrations of circulating GDF15 and glucagon-like peptide-1 (GLP-1) were quantified before and at 1, 2 and 4 h after ingestion of either dextrose (182 kcal) or a mixed protein-rich meal (450 kcal). In response to dextrose ingestion, appetite increased in both older and younger women, whereas GDF15 concentrations increased only in the older group. In older women, appetite response was negatively correlated with the GDF15 response (rho = -0.802, p = 0.005). Following high-protein ingestion, appetite increased in younger women, but remained low in the old, while GDF15 concentrations did not change significantly in either age group. GLP-1 concentrations did not differ between age groups or test meals. In summary, acute GDF15 response differed between older and younger women. Associations of postprandial appetite and GDF15 following dextrose ingestion in older women suggest a reduced appetite response when the GDF15 response is high, thus supporting the proposed anorectic effects of high GDF15 concentrations.


Subject(s)
Appetite , Dietary Proteins , Glucose , Growth Differentiation Factor 15 , Adult , Aged , Cross-Over Studies , Dietary Proteins/administration & dosage , Eating , Energy Intake , Female , Glucagon-Like Peptide 1/blood , Glucose/administration & dosage , Growth Differentiation Factor 15/blood , Humans , Postprandial Period , Young Adult
20.
Life Sci Alliance ; 5(11)2022 11.
Article in English | MEDLINE | ID: mdl-36271504

ABSTRACT

Growth differentiation factor 15 (GDF15) is a mitochondrial stress-induced cytokine that modulates energy balance in an endocrine manner. However, the importance of its brainstem-restricted receptor GDNF family receptor alpha-like (GFRAL) to mediate endocrine GDF15 signaling to the brain upon mitochondrial dysfunction is still unknown. Using a mouse model with muscle-specific mitochondrial dysfunction, we here show that GFRAL is required for activation of systemic energy metabolism via daytime-restricted anorexia but not responsible for muscle wasting. We further find that muscle mitochondrial stress response involves a GFRAL-dependent induction of hypothalamic corticotropin-releasing hormone, without elevated corticosterone levels. Finally, we identify that GFRAL signaling governs an anxiety-like behavior in male mice with muscle mitochondrial dysfunction, with females showing a less robust GFRAL-dependent anxiety-like phenotype. Together, we here provide novel evidence of a mitochondrial stress-induced muscle-brain crosstalk via the GDF15-GFRAL axis to modulate food intake and anxiogenic behavior.


Subject(s)
Growth Differentiation Factor 15 , Obesity , Female , Male , Humans , Growth Differentiation Factor 15/genetics , Growth Differentiation Factor 15/metabolism , Growth Differentiation Factor 15/pharmacology , Glial Cell Line-Derived Neurotrophic Factor Receptors/metabolism , Obesity/metabolism , Corticotropin-Releasing Hormone , Corticosterone , Glial Cell Line-Derived Neurotrophic Factor , Eating/genetics , Anxiety
SELECTION OF CITATIONS
SEARCH DETAIL