Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Circ Res ; 131(2): e51-e69, 2022 07 08.
Article in English | MEDLINE | ID: mdl-35658476

ABSTRACT

BACKGROUND: Epigenetic dysregulation has been proposed as a key mechanism for arsenic-related cardiovascular disease (CVD). We evaluated differentially methylated positions (DMPs) as potential mediators on the association between arsenic and CVD. METHODS: Blood DNA methylation was measured in 2321 participants (mean age 56.2, 58.6% women) of the Strong Heart Study, a prospective cohort of American Indians. Urinary arsenic species were measured using high-performance liquid chromatography coupled to inductively coupled plasma mass spectrometry. We identified DMPs that are potential mediators between arsenic and CVD. In a cross-species analysis, we compared those DMPs with differential liver DNA methylation following early-life arsenic exposure in the apoE knockout (apoE-/-) mouse model of atherosclerosis. RESULTS: A total of 20 and 13 DMPs were potential mediators for CVD incidence and mortality, respectively, several of them annotated to genes related to diabetes. Eleven of these DMPs were similarly associated with incident CVD in 3 diverse prospective cohorts (Framingham Heart Study, Women's Health Initiative, and Multi-Ethnic Study of Atherosclerosis). In the mouse model, differentially methylated regions in 20 of those genes and DMPs in 10 genes were associated with arsenic. CONCLUSIONS: Differential DNA methylation might be part of the biological link between arsenic and CVD. The gene functions suggest that diabetes might represent a relevant mechanism for arsenic-related cardiovascular risk in populations with a high burden of diabetes.


Subject(s)
Arsenic , Atherosclerosis , Cardiovascular Diseases , Animals , Apolipoproteins E , Arsenic/toxicity , Atherosclerosis/chemically induced , Atherosclerosis/genetics , Cardiovascular Diseases/chemically induced , Cardiovascular Diseases/genetics , DNA Methylation , Female , Humans , Male , Mice , Middle Aged , Prospective Studies
2.
EMBO J ; 37(18)2018 09 14.
Article in English | MEDLINE | ID: mdl-30154076

ABSTRACT

DNA double-strand breaks (DSBs) can be repaired by two major pathways: non-homologous end-joining (NHEJ) and homologous recombination (HR). DNA repair pathway choice is governed by the opposing activities of 53BP1, in complex with its effectors RIF1 and REV7, and BRCA1. However, it remains unknown how the 53BP1/RIF1/REV7 complex stimulates NHEJ and restricts HR to the S/G2 phases of the cell cycle. Using a mass spectrometry (MS)-based approach, we identify 11 high-confidence REV7 interactors and elucidate the role of SHLD2 (previously annotated as FAM35A and RINN2) as an effector of REV7 in the NHEJ pathway. FAM35A depletion impairs NHEJ-mediated DNA repair and compromises antibody diversification by class switch recombination (CSR) in B cells. FAM35A accumulates at DSBs in a 53BP1-, RIF1-, and REV7-dependent manner and antagonizes HR by limiting DNA end resection. In fact, FAM35A is part of a larger complex composed of REV7 and SHLD1 (previously annotated as C20orf196 and RINN3), which promotes NHEJ and limits HR Together, these results establish SHLD2 as a novel effector of REV7 in controlling the decision-making process during DSB repair.


Subject(s)
Cell Cycle Proteins/metabolism , DNA Breaks, Double-Stranded , DNA End-Joining Repair , DNA-Binding Proteins/metabolism , Mad2 Proteins/metabolism , Cell Cycle Proteins/genetics , DNA-Binding Proteins/genetics , G2 Phase/genetics , HEK293 Cells , Humans , Mad2 Proteins/genetics , S Phase/genetics , Telomere-Binding Proteins/genetics , Telomere-Binding Proteins/metabolism , Tumor Suppressor p53-Binding Protein 1/genetics , Tumor Suppressor p53-Binding Protein 1/metabolism
3.
Int J Hematol ; 119(3): 275-290, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38285120

ABSTRACT

Diffuse large B-cell lymphoma (DLBCL) relapses in approximately 40% of patients following frontline therapy. We reported that STAT6D419 mutations are enriched in relapsed/refractory DLBCL (rrDLBCL) samples, suggesting that JAK/STAT signaling plays a role in therapeutic resistance. We hypothesized that STAT6D419 mutations can improve DLBCL cell survival by reprogramming the microenvironment to sustain STAT6 activation. Thus, we investigated the role of STAT6D419 mutations on DLBCL cell growth and its microenvironment. We found that phospho-STAT6D419N was retained in the nucleus longer than phospho-STAT6WT following IL-4 stimulation, and STAT6D419N recognized a more restricted DNA-consensus sequence than STAT6WT. Upon IL-4 induction, STAT6D419N expression led to a higher magnitude of gene expression changes, but in a more selective list of gene targets compared with STATWT. The most significantly expressed genes induced by STAT6D419N were those implicated in survival, proliferation, migration, and chemotaxis, in particular CCL17. This chemokine, also known as TARC, attracts helper T-cells to the tumor microenvironment, especially in Hodgkin's lymphoma. To this end, in DLBCL, phospho-STAT6+ rrDLBCL cells had a greater proportion of infiltrating CD4+ T-cells than phospho-STAT6- tumors. Our findings suggest that STAT6D419 mutations in DLBCL lead to cell autonomous changes, enhanced signaling, and altered composition of the tumor microenvironment.


Subject(s)
Lymphoma, Large B-Cell, Diffuse , Tumor Microenvironment , Humans , Tumor Microenvironment/genetics , Interleukin-4/genetics , Interleukin-4/metabolism , Interleukin-4/pharmacology , Neoplasm Recurrence, Local , Lymphoma, Large B-Cell, Diffuse/pathology , Mutation , STAT6 Transcription Factor/genetics , STAT6 Transcription Factor/metabolism
4.
Front Oncol ; 13: 1134763, 2023.
Article in English | MEDLINE | ID: mdl-37124505

ABSTRACT

Background: Ovarian cancer (OC) is the deadliest gynecological cancer, often diagnosed at advanced stages. A fast and accurate diagnostic method for early-stage OC is needed. The tumor marker gangliosides, GD2 and GD3, exhibit properties that make them ideal potential diagnostic biomarkers, but they have never before been quantified in OC. We investigated the diagnostic utility of GD2 and GD3 for diagnosis of all subtypes and stages of OC. Methods: This retrospective study evaluated GD2 and GD3 expression in biobanked tissue and serum samples from patients with invasive epithelial OC, healthy donors, non-malignant gynecological conditions, and other cancers. GD2 and GD3 levels were evaluated in tissue samples by immunohistochemistry (n=299) and in two cohorts of serum samples by quantitative ELISA. A discovery cohort (n=379) showed feasibility of GD2 and GD3 quantitative ELISA for diagnosing OC, and a subsequent model cohort (n=200) was used to train and cross-validate a diagnostic model. Results: GD2 and GD3 were expressed in tissues of all OC subtypes and FIGO stages but not in surrounding healthy tissue or other controls. In serum, GD2 and GD3 were elevated in patients with OC. A diagnostic model that included serum levels of GD2+GD3+age was superior to the standard of care (CA125, p<0.001) in diagnosing OC and early-stage (I/II) OC. Conclusion: GD2 and GD3 expression was associated with high rates of selectivity and specificity for OC. A diagnostic model combining GD2 and GD3 quantification in serum had diagnostic power for all subtypes and all stages of OC, including early stage. Further research exploring the utility of GD2 and GD3 for diagnosis of OC is warranted.

5.
Am J Hypertens ; 34(3): 282-290, 2021 04 02.
Article in English | MEDLINE | ID: mdl-33386395

ABSTRACT

BACKGROUND: The risk that coronavirus disease 2019 (COVID-19) patients develop critical illness that can be fatal depends on their age and immune status and may also be affected by comorbidities like hypertension. The goal of this study was to develop models that predict outcome using parameters collected at admission to the hospital. METHODS AND RESULTS: This is a retrospective single-center cohort study of COVID-19 patients at the Seventh Hospital of Wuhan City, China. Forty-three demographic, clinical, and laboratory parameters collected at admission plus discharge/death status, days from COVID-19 symptoms onset, and days of hospitalization were analyzed. From 157 patients, 120 were discharged and 37 died. Pearson correlations showed that hypertension and systolic blood pressure (SBP) were associated with death and respiratory distress parameters. A penalized logistic regression model efficiently predicts the probability of death with 13 of 43 variables. A regularized Cox regression model predicts the probability of survival with 7 of above 13 variables. SBP but not hypertension was a covariate in both mortality and survival prediction models. SBP was elevated in deceased compared with discharged COVID-19 patients. CONCLUSIONS: Using an unbiased approach, we developed models predicting outcome of COVID-19 patients based on data available at hospital admission. This can contribute to evidence-based risk prediction and appropriate decision-making at hospital triage to provide the most appropriate care and ensure the best patient outcome. High SBP, a cause of end-organ damage and an important comorbid factor, was identified as a covariate in both mortality and survival prediction models.


Subject(s)
Blood Pressure , COVID-19/diagnosis , Critical Illness/mortality , Diagnostic Tests, Routine , Hypertension , Risk Assessment/methods , Blood Pressure Determination/methods , Blood Pressure Determination/statistics & numerical data , COVID-19/epidemiology , COVID-19/physiopathology , COVID-19/therapy , China/epidemiology , Comorbidity , Diagnostic Tests, Routine/methods , Diagnostic Tests, Routine/statistics & numerical data , Female , Humans , Hypertension/diagnosis , Hypertension/epidemiology , Male , Middle Aged , Proportional Hazards Models , SARS-CoV-2/isolation & purification , Survival Analysis
6.
BMC Med Genomics ; 12(1): 144, 2019 10 24.
Article in English | MEDLINE | ID: mdl-31651337

ABSTRACT

BACKGROUND: Systemic sclerosis (SSc) is a rare autoimmune connective tissue disease whose pathogenesis remains incompletely understood. Increasing evidence suggests that both genetic susceptibilities and changes in DNA methylation influence pivotal biological pathways and thereby contribute to the disease. The role of DNA methylation in SSc has not been fully elucidated, because existing investigations of DNA methylation predominantly focused on nucleotide CpGs within restricted genic regions, and were performed on samples containing mixed cell types. METHODS: We performed whole-genome bisulfite sequencing on purified CD4+ T lymphocytes from nine SSc patients and nine controls in a pilot study, and then profiled genome-wide cytosine methylation as well as genetic variations. We adopted robust statistical methods to identify differentially methylated genomic regions (DMRs). We then examined pathway enrichment associated with genes located in these DMRs. We also tested whether changes in CpG methylation were associated with adjacent genetic variation. RESULTS: We profiled DNA methylation at more than three million CpG dinucleotides genome-wide. We identified 599 DMRs associated with 340 genes, among which 54 genes exhibited further associations with adjacent genetic variation. We also found these genes were associated with pathways and functions that are known to be abnormal in SSc, including Wnt/ß-catenin signaling pathway, skin lesion formation and progression, and angiogenesis. CONCLUSION: The CD4+ T cell DNA cytosine methylation landscape in SSc involves crucial genes in disease pathogenesis. Some of the methylation patterns are also associated with genetic variation. These findings provide essential foundations for future studies of epigenetic regulation and genome-epigenome interaction in SSc.


Subject(s)
Genome, Human , Scleroderma, Systemic/pathology , Whole Genome Sequencing/methods , Adult , Aged , CD4-Positive T-Lymphocytes/metabolism , Case-Control Studies , CpG Islands , DNA Methylation , Female , Genetic Variation , Humans , Male , Middle Aged , Pilot Projects , Polymorphism, Single Nucleotide , Scleroderma, Systemic/genetics , Skin/pathology , Sulfites/chemistry , Wnt Signaling Pathway/genetics
7.
Sci Rep ; 9(1): 8838, 2019 06 20.
Article in English | MEDLINE | ID: mdl-31221986

ABSTRACT

Prostate cancer (PCa) is the most common cancer amongst men. A novel androgen receptor (AR) antagonist, enzalutamide (ENZA) has recently been demonstrated to enhance the effect of radiation (XRT) by impairing the DNA damage repair process. This study aimed to identify a radiosensitive gene signature induced by ENZA in the PCa cells and to elucidate the biological pathways which influence this radiosensitivity. We treated LNCaP (AR-positive, hormone-sensitive PCa cells) and C4-2 (AR-positive, hormone-resistant PCa cells) cells with ENZA alone and in combination with androgen deprivation therapy (ADT) and XRT. Using one-way ANOVA on the gene expression profiling, we observed significantly differentially expressed (DE) genes in inflammation-and metabolism-related genes in hormone-sensitive and hormone-resistant PCa cell lines respectively. Survival analysis in both the TCGA PRAD and GSE25136 datasets suggested an association between the expression of these genes and time to recurrence. These results indicated that ENZA alone or in combination with ADT enhanced the effect of XRT through immune and inflammation-related pathways in LNCaP cells and metabolic-related pathways in C4-2 cells. Kaplan-Meier analysis and Cox proportional hazard models showed that low expression of all the candidate genes except for PTPRN2 were associated with tumor progression and recurrence in a PCa cohort.


Subject(s)
Phenylthiohydantoin/analogs & derivatives , Prostatic Neoplasms/pathology , Prostatic Neoplasms/therapy , Radiation Tolerance/drug effects , Benzamides , Cell Line, Tumor , Gene Expression Profiling , Genes, Neoplasm/drug effects , Humans , Inflammation/genetics , Male , Metabolism/genetics , Nitriles , Phenylthiohydantoin/pharmacology , Phenylthiohydantoin/therapeutic use , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/radiotherapy , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/pathology , Prostatic Neoplasms, Castration-Resistant/therapy
8.
Sci Transl Med ; 8(369): 369ra177, 2016 12 14.
Article in English | MEDLINE | ID: mdl-27974665

ABSTRACT

Male gender is independently and significantly associated with poor prognosis in melanoma of all clinical stages. The biological underpinnings of this sex difference remain largely unknown, but we hypothesized that gene expression from gonosomes (sex chromosomes) might play an important role. We demonstrate that loss of the inactivated X chromosome in melanomas arising in females is strongly associated with poor distant metastasis-free survival, suggesting a dosage benefit from two X chromosomes. The gonosomal protein phosphatase 2 regulatory subunit B, beta (PPP2R3B) gene is located on the pseudoautosomal region (PAR) of the X chromosome in females and the Y chromosome in males. We observed that, despite its location on the PAR that predicts equal dosage across genders, PPP2R3B expression was lower in males than in females and was independently correlated with poor clinical outcome. PPP2R3B codes for the PR70 protein, a regulatory substrate-recognizing subunit of protein phosphatase 2A. PR70 decreased melanoma growth by negatively interfering with DNA replication and cell cycle progression through its role in stabilizing the cell division cycle 6 (CDC6)-chromatin licensing and DNA replication factor 1 (CDT1) interaction, which delays the firing of origins of DNA replication. Hence, PR70 functionally behaves as an X-linked tumor suppressor gene.


Subject(s)
Cell Cycle Proteins/metabolism , Melanoma/metabolism , Nuclear Proteins/metabolism , Protein Phosphatase 2/metabolism , Skin Neoplasms/metabolism , Animals , Cell Cycle Proteins/genetics , Cell Line, Tumor , Chromosome Aberrations , Chromosomes, Human, X , DNA Replication , Disease Progression , Disease-Free Survival , Female , Gene Dosage , Gene Expression Regulation, Neoplastic , Genes, Tumor Suppressor , HEK293 Cells , Humans , Male , Melanoma/genetics , Mice , Neoplasm Metastasis , Neoplasm Transplantation , Prognosis , Protein Phosphatase 2/genetics , Sex Factors
SELECTION OF CITATIONS
SEARCH DETAIL