ABSTRACT
Teneurins are ancient metazoan cell adhesion receptors that control brain development and neuronal wiring in higher animals. The extracellular C terminus binds the adhesion GPCR Latrophilin, forming a trans-cellular complex with synaptogenic functions. However, Teneurins, Latrophilins, and FLRT proteins are also expressed during murine cortical cell migration at earlier developmental stages. Here, we present crystal structures of Teneurin-Latrophilin complexes that reveal how the lectin and olfactomedin domains of Latrophilin bind across a spiraling beta-barrel domain of Teneurin, the YD shell. We couple structure-based protein engineering to biophysical analysis, cell migration assays, and in utero electroporation experiments to probe the importance of the interaction in cortical neuron migration. We show that binding of Latrophilins to Teneurins and FLRTs directs the migration of neurons using a contact repulsion-dependent mechanism. The effect is observed with cell bodies and small neurites rather than their processes. The results exemplify how a structure-encoded synaptogenic protein complex is also used for repulsive cell guidance.
Subject(s)
Nerve Tissue Proteins/ultrastructure , Receptors, Peptide/metabolism , Tenascin/metabolism , Animals , Cell Adhesion/physiology , Crystallography, X-Ray/methods , HEK293 Cells , Humans , K562 Cells , Leucine-Rich Repeat Proteins , Membrane Glycoproteins/metabolism , Membrane Glycoproteins/ultrastructure , Membrane Proteins/metabolism , Membrane Proteins/ultrastructure , Mice , Mice, Inbred C57BL/embryology , Nerve Tissue Proteins/metabolism , Neurites/metabolism , Neurogenesis/physiology , Neurons/metabolism , Platelet Glycoprotein GPIb-IX Complex/metabolism , Platelet Glycoprotein GPIb-IX Complex/ultrastructure , Protein Binding/physiology , Proteins/metabolism , Proteins/ultrastructure , Receptors, Cell Surface/metabolism , Receptors, Peptide/ultrastructure , Synapses/metabolism , Tenascin/ultrastructureABSTRACT
The folding of the mammalian cerebral cortex into sulci and gyri is thought to be favored by the amplification of basal progenitor cells and their tangential migration. Here, we provide a molecular mechanism for the role of migration in this process by showing that changes in intercellular adhesion of migrating cortical neurons result in cortical folding. Mice with deletions of FLRT1 and FLRT3 adhesion molecules develop macroscopic sulci with preserved layered organization and radial glial morphology. Cortex folding in these mutants does not require progenitor cell amplification but is dependent on changes in neuron migration. Analyses and simulations suggest that sulcus formation in the absence of FLRT1/3 results from reduced intercellular adhesion, increased neuron migration, and clustering in the cortical plate. Notably, FLRT1/3 expression is low in the human cortex and in future sulcus areas of ferrets, suggesting that intercellular adhesion is a key regulator of cortical folding across species.
Subject(s)
Cell Movement , Cerebral Cortex/physiology , Membrane Glycoproteins/metabolism , Neurons/cytology , Animals , Cells, Cultured , Cerebral Cortex/cytology , Embryo, Mammalian/cytology , Embryo, Mammalian/metabolism , Ferrets , Humans , Membrane Glycoproteins/genetics , Membrane Proteins/analysis , Mice , Mice, Knockout , Pyramidal Cells/metabolismABSTRACT
Expression of many disease-related aggregation-prone proteins results in cytotoxicity and the formation of large intracellular inclusion bodies. To gain insight into the role of inclusions in pathology and the in situ structure of protein aggregates inside cells, we employ advanced cryo-electron tomography methods to analyze the structure of inclusions formed by polyglutamine (polyQ)-expanded huntingtin exon 1 within their intact cellular context. In primary mouse neurons and immortalized human cells, polyQ inclusions consist of amyloid-like fibrils that interact with cellular endomembranes, particularly of the endoplasmic reticulum (ER). Interactions with these fibrils lead to membrane deformation, the local impairment of ER organization, and profound alterations in ER membrane dynamics at the inclusion periphery. These results suggest that aberrant interactions between fibrils and endomembranes contribute to the deleterious cellular effects of protein aggregation. VIDEO ABSTRACT.
Subject(s)
Huntington Disease/pathology , Inclusion Bodies/pathology , Neurons/pathology , Neurons/ultrastructure , Peptides/metabolism , Amyloid/chemistry , Animals , Cryoelectron Microscopy , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/pathology , Female , HeLa Cells , Humans , Huntingtin Protein/genetics , Huntingtin Protein/metabolism , Inclusion Bodies/chemistry , Male , Mice , Mice, Inbred C57BL , Microscopy, Electron, Transmission , Mutation , Protein Aggregation, Pathological , Tomography/methodsABSTRACT
Axon guidance relies on a combinatorial code of receptor and ligand interactions that direct adhesive/attractive and repulsive cellular responses. Recent structural data have revealed many of the molecular mechanisms that govern these interactions and enabled the design of sophisticated mutant tools to dissect their biological functions. Here, we discuss the structure/function relationships of four major classes of guidance cues (ephrins, semaphorins, slits, netrins) and examples of morphogens (Wnt, Shh) and of cell adhesion molecules (FLRT). These cell signaling systems rely on specific modes of receptor-ligand binding that are determined by selective binding sites; however, defined structure-encoded receptor promiscuity also enables cross talk between different receptor/ligand families and can also involve extracellular matrix components. A picture emerges in which a multitude of highly context-dependent structural assemblies determines the finely tuned cellular behavior required for nervous system development.
Subject(s)
Axon Guidance , Nerve Tissue Proteins/metabolism , Animals , Humans , Models, Biological , Receptors, Cell Surface/metabolism , Signal TransductionABSTRACT
Eph receptor Tyr kinases and their membrane-tethered ligands, the ephrins, elicit short-distance cell-cell signalling and thus regulate many developmental processes at the interface between pattern formation and morphogenesis, including cell sorting and positioning, and the formation of segmented structures and ordered neural maps. Their roles extend into adulthood, when ephrin-Eph signalling regulates neuronal plasticity, homeostatic events and disease processes. Recently, new insights have been gained into the mechanisms of ephrin-Eph signalling in different cell types, and into the physiological importance of ephrin-Eph in different organs and in disease, raising questions for future research directions.
Subject(s)
Ephrins/physiology , Receptors, Eph Family/metabolism , Signal Transduction , Animals , Growth and Development/physiology , HumansABSTRACT
The cellular protein quality control machinery is important for preventing protein misfolding and aggregation. Declining protein homeostasis (proteostasis) is believed to play a crucial role in age-related neurodegenerative disorders. However, how neuronal proteostasis capacity changes in different diseases is not yet sufficiently understood, and progress in this area has been hampered by the lack of tools to monitor proteostasis in mammalian models. Here, we have developed reporter mice for in vivo analysis of neuronal proteostasis. The mice express EGFP-fused firefly luciferase (Fluc-EGFP), a conformationally unstable protein that requires chaperones for proper folding, and that reacts to proteotoxic stress by formation of intracellular Fluc-EGFP foci and by reduced luciferase activity. Using these mice, we provide evidence for proteostasis decline in the aging brain. Moreover, we find a marked reaction of the Fluc-EGFP sensor in a mouse model of tauopathy, but not in mouse models of Huntington's disease. Mechanistic investigations in primary neuronal cultures demonstrate that different types of protein aggregates have distinct effects on the cellular protein quality control. Thus, Fluc-EGFP reporter mice enable new insights into proteostasis alterations in different diseases.
Subject(s)
Aging/metabolism , Disease Susceptibility , Genes, Reporter , Mice, Transgenic , Neurons/metabolism , Proteostasis , Aging/genetics , Animals , Cells, Cultured , Disease Models, Animal , Gene Expression , Hippocampus/metabolism , Hippocampus/pathology , Huntington Disease/etiology , Huntington Disease/metabolism , Huntington Disease/pathology , Mice , Neurodegenerative Diseases/etiology , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , Protein Aggregates , Protein Aggregation, Pathological , Protein Folding , Proteostasis Deficiencies/etiology , Proteostasis Deficiencies/metabolism , Proteostasis Deficiencies/pathology , Tauopathies/etiology , Tauopathies/metabolism , Tauopathies/pathologyABSTRACT
Regeneration of transected peripheral nerves is a complex process involving the coordinated action of neuronal axons, glial cells, and fibroblasts. Using rodent models of nerve repair, Parrinello et al. (2010) find that ephrin signaling between fibroblasts and Schwann cell progenitors, involving the stemness factor Sox2, is required for nerve regeneration.
ABSTRACT
To successfully forage in an environment filled with rewards and threats, animals need to rely on familiar structures of their environment that signal food availability. The central amygdala (CeA) is known to mediate a panoply of consummatory and defensive behaviors, yet how specific activity patterns within CeA subpopulations guide optimal choices is not completely understood. In a paradigm of appetitive conditioning in which mice freely forage for food across a continuum of cues, we found that two major subpopulations of CeA neurons, Somatostatin-positive (CeASst) and protein kinase Cδ-positive (CeAPKCδ) neurons, can assign motivational properties to environmental cues. Although the proportion of food responsive cells was higher within CeASst than CeAPKCδ neurons, only the activities of CeAPKCδ, but not CeASst, neurons were required for learning of contextual food cues. Our findings point to a model in which CeAPKCδ neurons may incorporate stimulus salience together with sensory features of the environment to encode memory of the goal location.SIGNIFICANCE STATEMENT The CeA has a very important role in the formation of memories that associate sensory information with aversive or rewarding representation. Here, we used a conditioned place preference paradigm, where freely moving mice learn to associate external cues with food availability, to investigate the roles of CeA neuron subpopulations. We found that CeASst and CeAPKCδ neurons encoded environmental cues during foraging but only the activities of CeAPKCδ neurons were required for learning of contextual food cues.
Subject(s)
Central Amygdaloid Nucleus , Animals , Central Amygdaloid Nucleus/physiology , Conditioning, Classical/physiology , Cues , Mice , Neurons/physiology , RewardABSTRACT
Neuron migration is a hallmark of nervous system development that allows gathering of neurons from different origins for assembling of functional neuronal circuits. Cortical inhibitory interneurons arise in the ventral telencephalon and migrate tangentially forming three transient migratory streams in the cortex before reaching the final laminar destination. Although migration defects lead to the disruption of inhibitory circuits and are linked to aspects of psychiatric disorders such as autism and schizophrenia, the molecular mechanisms controlling cortical interneuron development and final layer positioning are incompletely understood. Here, we show that mouse embryos with a double deletion of FLRT2 and FLRT3 genes encoding cell adhesion molecules exhibit an abnormal distribution of interneurons within the streams during development, which in turn, affect the layering of somatostatin+ interneurons postnatally. Mechanistically, FLRT2 and FLRT3 proteins act in a noncell-autonomous manner, possibly through a repulsive mechanism. In support of such a conclusion, double knockouts deficient in the repulsive receptors for FLRTs, Unc5B and Unc5D, also display interneuron defects during development, similar to the FLRT2/FLRT3 mutants. Moreover, FLRT proteins are chemorepellent ligands for developing interneurons in vitro, an effect that is in part dependent on FLRT-Unc5 interaction. Together, we propose that FLRTs act through Unc5 receptors to control cortical interneuron distribution in a mechanism that involves cell repulsion.SIGNIFICANCE STATEMENT Disruption of inhibitory cortical circuits is responsible for some aspects of psychiatric disorders such as schizophrenia or autism. These defects include interneuron migration during development. A crucial step during this process is the formation of three transient migratory streams within the developing cortex that determine the timing of interneuron final positioning and the formation of functional cortical circuits in the adult. We report that FLRT proteins are required for the proper distribution of interneurons within the cortical migratory streams and for the final laminar allocation in the postnatal cortex. These results expand the multifunctional role of FLRTs during nervous system development in addition to the role of FLRTs in axon guidance and the migration of excitatory cortical neurons.
Subject(s)
Cerebral Cortex/cytology , Interneurons/cytology , Membrane Glycoproteins/physiology , Nerve Tissue Proteins/physiology , Animals , Cell Adhesion , Cell Movement/physiology , Cerebral Cortex/embryology , Cerebral Cortex/growth & development , Crosses, Genetic , Female , Gene Expression Regulation, Developmental , Genes, Reporter , Male , Membrane Glycoproteins/biosynthesis , Membrane Glycoproteins/deficiency , Membrane Glycoproteins/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Nerve Tissue Proteins/biosynthesis , Nerve Tissue Proteins/deficiency , Nerve Tissue Proteins/genetics , Netrin Receptors/physiology , Organogenesis , Protein Interaction Mapping , Receptors, Cell Surface/physiologyABSTRACT
The emergence of genetic tools has provided new means of mapping functionality in central amygdala (CeA) neuron populations based on their molecular profiles, response properties, and importantly, connectivity patterns. While abundant evidence indicates that neuronal signals arrive in the CeA eliciting both aversive and appetitive behaviors, our understanding of the anatomy of the underlying long-range CeA network remains fragmentary. In this study, we combine viral tracings, electrophysiological, and optogenetic approaches to establish in male mice, a wiring chart between the insula cortex (IC), a major sensory input region of the lateral and capsular part of the CeA (CeL/C), and four principal output streams of this nucleus. We found that retrogradely labeled output neurons occupy discrete and likely strategic locations in the CeL/C, and that they are disproportionally controlled by the IC. We identified a direct line of connection between the IC and the lateral hypothalamus (LH), which engages numerous LH-projecting CeL/C cells whose activity can be strongly upregulated on firing of IC neurons. In comparison, CeL/C neurons projecting to the bed nucleus of the stria terminalis (BNST) are also frequently contacted by incoming IC axons, but the strength of this connection is weak. Our results provide a link between long-range inputs and outputs of the CeA and pave the way to a better understanding of how internal, external, and experience dependent information may impinge on action selection by the CeA.SIGNIFICANCE STATEMENT Our current knowledge of the circuit organization within the central amygdala (CeA), a critical regulator of emotional states, includes independent information about its long-range efferents and afferents. We do not know how incoming sensory information is appraised and routed through the CeA to the different output channels. We address this issue by using three different techniques to investigate how a sensory region, the insula cortex (IC), connects with the motor, physiological and autonomic output centers of the CeA. We uncover a strong connection between the IC and the lateral hypothalamus (LH) with a monosynaptic relay in the CeA and shed new light on the previously described functions of IC and CeA through direct projections to the LH.
Subject(s)
Central Amygdaloid Nucleus/physiology , Cerebral Cortex/physiology , Animals , Axons/physiology , Electrophysiological Phenomena , Hypothalamic Area, Lateral/physiology , In Vitro Techniques , Interneurons/physiology , Male , Mice , Mice, Inbred C57BL , Neural Pathways/physiology , Optogenetics , Septal Nuclei/physiologyABSTRACT
The placental labyrinth is the interface for gas and nutrient exchange between the embryo and the mother; hence its proper development is essential for embryogenesis. However, the molecular mechanism underlying development of the placental labyrinth, particularly in terms of its endothelial organization, is not well understood. Here, we determined that fibronectin leucine-rich transmembrane protein 2 (FLRT2), a repulsive ligand of the UNC5 receptor family for neurons, is unexpectedly expressed in endothelial cells specifically in the placental labyrinth. Mice lacking FLRT2 in endothelial cells exhibited embryonic lethality at mid-gestation, with systemic congestion and hypoxia. Although they lacked apparent deformities in the embryonic vasculature and heart, the placental labyrinths of these embryos exhibited aberrant alignment of endothelial cells, which disturbed the feto-maternal circulation. Interestingly, this vascular deformity was related to endothelial repulsion through binding to the UNC5B receptor. Our results suggest that the proper organization of the placental labyrinth depends on coordinated inter-endothelial repulsion, which prevents uncontrolled layering of the endothelium.
Subject(s)
Membrane Glycoproteins/metabolism , Organogenesis , Placenta/embryology , Placenta/metabolism , Signal Transduction , Animals , Cell Survival , Embryo, Mammalian/cytology , Embryo, Mammalian/metabolism , Endothelial Cells/metabolism , Female , Gene Deletion , Hypoxia/pathology , Membrane Glycoproteins/deficiency , Mice, Inbred C57BL , Neovascularization, Physiologic , Netrin Receptors , Placenta/blood supply , Placenta/cytology , Pregnancy , Receptors, Cell Surface/deficiency , Receptors, Cell Surface/metabolismABSTRACT
Parkinson's disease (PD)-associated Pink1 and Parkin proteins are believed to function in a common pathway controlling mitochondrial clearance and trafficking. Glial cell line-derived neurotrophic factor (GDNF) and its signaling receptor Ret are neuroprotective in toxin-based animal models of PD. However, the mechanism by which GDNF/Ret protects cells from degenerating remains unclear. We investigated whether the Drosophila homolog of Ret can rescue Pink1 and park mutant phenotypes. We report that a signaling active version of Ret (Ret(MEN2B) rescues muscle degeneration, disintegration of mitochondria and ATP content of Pink1 mutants. Interestingly, corresponding phenotypes of park mutants were not rescued, suggesting that the phenotypes of Pink1 and park mutants have partially different origins. In human neuroblastoma cells, GDNF treatment rescues morphological defects of PINK1 knockdown, without inducing mitophagy or Parkin recruitment. GDNF also rescues bioenergetic deficits of PINK knockdown cells. Furthermore, overexpression of Ret(MEN2B) significantly improves electron transport chain complex I function in Pink1 mutant Drosophila. These results provide a novel mechanism underlying Ret-mediated cell protection in a situation relevant for human PD.
Subject(s)
Drosophila Proteins/deficiency , Drosophila Proteins/physiology , Drosophila melanogaster/genetics , Mitochondria, Muscle/ultrastructure , Muscular Atrophy/prevention & control , Protein Serine-Threonine Kinases/deficiency , Proto-Oncogene Proteins c-ret/physiology , Adenosine Triphosphate/metabolism , Animals , Apoptosis , Autophagy , Cell Line, Tumor , Disease Models, Animal , Dopamine/metabolism , Drosophila Proteins/genetics , Drosophila melanogaster/growth & development , Electron Transport Complex I/physiology , Genes, Lethal , Glial Cell Line-Derived Neurotrophic Factor/pharmacology , Humans , Neuroblastoma/pathology , Neurons/ultrastructure , Oxygen Consumption , Parkinson Disease , Phenotype , Protein Kinases/deficiency , Protein Kinases/genetics , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/physiology , Proto-Oncogene Proteins c-ret/genetics , Pupa , Signal Transduction/physiology , Ubiquitin-Protein Ligases/deficiency , Ubiquitin-Protein Ligases/geneticsABSTRACT
A substantial portion of the human population is affected by urogenital birth defects resulting from a failure in ureter development. Although recent research suggests roles for several genes in facilitating the ureter/bladder connection, the underlying molecular mechanisms remain poorly understood. Signaling via Eph receptor tyrosine kinases is involved in several developmental processes. Here we report that impaired Eph/Ephrin signaling in genetically modified mice results in severe hydronephrosis caused by defective ureteric bud induction, ureter maturation, and translocation. Our data imply that ureter translocation requires apoptosis in the urogenital sinus and inhibition of proliferation in the common nephric duct. These processes were disturbed in EphA4/EphB2 compound knockout mice and were accompanied by decreased ERK-2 phosphorylation. Using a set of Eph, Ephrin, and signaling-deficient mutants, we found that during urogenital development, different modes of Eph/Ephrin signaling occur at several sites with EphrinB2 and EphrinA5 acting in concert. Thus, Eph/Ephrin signaling should be considered in the etiology of congenital kidney and urinary tract anomalies.
Subject(s)
Ephrin-A5/metabolism , Ephrin-B2/metabolism , Hydronephrosis/genetics , Receptor, EphA4/metabolism , Receptor, EphB2/metabolism , Urogenital Abnormalities/genetics , Animals , Apoptosis , Humans , Hydronephrosis/metabolism , Kidney/embryology , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitogen-Activated Protein Kinase 1/metabolism , Organ Culture Techniques , Organogenesis/genetics , Phosphorylation , Receptor, EphA4/genetics , Receptor, EphB2/genetics , Signal Transduction , Ureter/embryology , Urogenital Abnormalities/metabolismABSTRACT
Normal brain function requires balanced development of excitatory and inhibitory synapses. An imbalance in synaptic transmission underlies many brain disorders such as epilepsy, schizophrenia, and autism. Compared with excitatory synapses, relatively little is known about the molecular control of inhibitory synapse development. We used a genetic approach in mice to identify the Ig superfamily member IgSF9/Dasm1 as a candidate homophilic synaptic adhesion protein that regulates inhibitory synapse development. IgSF9 is expressed in pyramidal cells and subsets of interneurons in the CA1 region of hippocampus. Electrophysiological recordings of acute hippocampal slices revealed that genetic inactivation of the IgSF9 gene resulted in fewer functional inhibitory synapses; however, the strength of the remaining synapses was unaltered. These physiological abnormalities were correlated with decreased expression of inhibitory synapse markers in IgSF9(-/-) mice, providing anatomical evidence for a reduction in inhibitory synapse numbers, whereas excitatory synapse development was normal. Surprisingly, knock-in mice expressing a mutant isoform of IgSF9 lacking the entire cytoplasmic domain (IgSF9(ΔC/ΔC) mice) had no defects in inhibitory synapse development, providing genetic evidence that IgSF9 regulates synapse development via ectodomain interactions rather than acting itself as a signaling receptor. Further, we found that IgSF9 mediated homotypic binding and cell aggregation, but failed to induce synapse formation, suggesting that IgSF9 acts as a cell adhesion molecule (CAM) to maintain synapses. Juvenile IgSF9(-/-) mice exhibited increased seizure susceptibility indicative of an imbalance in synaptic excitation and inhibition. These results provide genetic evidence for a specific role of IgSF9 in inhibitory synapse development/maintenance, presumably by its CAM-like activity.
Subject(s)
Immunoglobulins/genetics , Interneurons/metabolism , Nerve Tissue Proteins/genetics , Neural Inhibition/genetics , Pyramidal Cells/metabolism , Synapses/genetics , Animals , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism , Hippocampus/cytology , Hippocampus/metabolism , Interneurons/cytology , Mice , Mice, Knockout , Pyramidal Cells/cytology , Synapses/metabolism , Synaptic Transmission/geneticsABSTRACT
In this study, we took advantage of the reported role of EphA4 in determining the contralateral spinal projection of the corticospinal tract (CST) to investigate the effects of ipsilateral misprojections on voluntary movements and stereotypic locomotion. Null EphA4 mutations produce robust ipsilateral CST misprojections, resulting in bilateral corticospinal tracts. We hypothesize that a unilateral voluntary limb movement, not a stereotypic locomotor movement, will become a bilateral movement in EphA4 knock-out mice with a bilateral CST. However, in EphA4 full knock-outs, spinal interneurons also develop bilateral misprojections. Aberrant bilateral spinal circuits could thus transform unilateral corticospinal control signals into bilateral movements. We therefore studied mice with conditional forebrain deletion of the EphA4 gene under control by Emx1, a gene expressed in the forebrain that affects the developing CST but spares brainstem motor pathways and spinal motor circuits. We examined two conditional knock-outs targeting forebrain EphA4 during performance of stereotypic locomotion and voluntary movement: adaptive locomotion over obstacles and exploratory reaching. We found that the conditional knock-outs used alternate stepping, not hopping, during overground locomotion, suggesting normal central pattern generator function and supporting our hypothesis of minimal CST involvement in the moment-to-moment control of stereotypic locomotion. In contrast, the conditional knock-outs showed bilateral voluntary movements under conditions when single limb movements are normally produced and, as a basis for this aberrant control, developed a bilateral motor map in motor cortex that is driven by the aberrant ipsilateral CST misprojections. Therefore, a specific change in CST connectivity is associated with and explains a change in voluntary movement.
Subject(s)
Locomotion , Pyramidal Tracts/physiology , Receptor, EphA4/metabolism , Animals , Central Pattern Generators/metabolism , Central Pattern Generators/physiology , Exploratory Behavior , Gene Deletion , Interneurons/metabolism , Interneurons/physiology , Mice , Mice, Inbred C57BL , Motor Cortex/physiology , Pyramidal Tracts/metabolism , Receptor, EphA4/geneticsABSTRACT
Netrin-1 induces repulsive axon guidance by binding to the mammalian Unc5 receptor family (Unc5A-Unc5D). Mouse genetic analysis of selected members of the Unc5 family, however, revealed essential functions independent of Netrin-1, suggesting the presence of other ligands. Unc5B was recently shown to bind fibronectin and leucine-rich transmembrane protein-3 (FLRT3), although the relevance of this interaction for nervous system development remained unclear. Here, we show that the related Unc5D receptor binds specifically to another FLRT protein, FLRT2. During development, FLRT2/3 ectodomains (ECDs) are shed from neurons and act as repulsive guidance molecules for axons and somata of Unc5-positive neurons. In the developing mammalian neocortex, Unc5D is expressed by neurons in the subventricular zone (SVZ), which display delayed migration to the FLRT2-expressing cortical plate (CP). Deletion of either FLRT2 or Unc5D causes a subset of SVZ-derived neurons to prematurely migrate towards the CP, whereas overexpression of Unc5D has opposite effects. Hence, the shed FLRT2 and FLRT3 ECDs represent a novel family of chemorepellents for Unc5-positive neurons and FLRT2/Unc5D signalling modulates cortical neuron migration.
Subject(s)
Membrane Glycoproteins/physiology , Neurons/metabolism , Receptors, Cell Surface/physiology , Animals , Axons/metabolism , Cell Movement , Cells, Cultured , Female , Gene Expression Regulation, Developmental , Hippocampus/cytology , Hippocampus/metabolism , Humans , Immunoblotting , Integrases/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Nerve Growth Factors/metabolism , Netrin Receptors , Netrin-1 , Neurons/cytology , Protein Binding , Signal Transduction , Tumor Suppressor Proteins/metabolismABSTRACT
Eph receptors and their membrane-tethered ligands have important functions in development. Trans interactions of Eph receptors with ephrins at cell-cell interfaces promote a variety of cellular responses, including repulsion, attraction and migration. Eph-ephrin signalling can be bi-directional and controls actin cytoskeleton dynamics, thereby leading to changes in cellular shape. This article provides an overview of the general structures and signalling mechanisms, and of typical developmental functions along with cell biological principles.
Subject(s)
Cell Adhesion , Cell Communication , Cell Movement , Ephrins/metabolism , Growth and Development , Receptors, Eph Family/metabolism , Signal Transduction , Animals , Ligands , Mice , Protein Binding , Protein Structure, Tertiary , Receptors, Eph Family/chemistry , Zebrafish/embryologyABSTRACT
Axonal branches of the trigeminal ganglion (TG) display characteristic growth and arborization patterns during development. Subsets of TG neurons express different receptors for growth factors, but these are unlikely to explain the unique patterns of axonal arborizations. Intrinsic modulators may restrict or enhance cellular responses to specific ligands and thereby contribute to the development of axon growth patterns. Protein tyrosine phosphatase receptor type O (PTPRO), which is required for Eph receptor-dependent retinotectal development in chick and for development of subsets of trunk sensory neurons in mouse, may be such an intrinsic modulator of TG neuron development. PTPRO is expressed mainly in TrkB-expressing (TrkB(+)) and Ret(+) mechanoreceptors within the TG during embryogenesis. In PTPRO mutant mice, subsets of TG neurons grow longer and more elaborate axonal branches. Cultured PTPRO(-/-) TG neurons display enhanced axonal outgrowth and branching in response to BDNF and GDNF compared with control neurons, indicating that PTPRO negatively controls the activity of BDNF/TrkB and GDNF/Ret signaling. Mouse PTPRO fails to regulate Eph signaling in retinocollicular development and in hindlimb motor axon guidance, suggesting that chick and mouse PTPRO have different substrate specificities. PTPRO has evolved to fine tune growth factor signaling in a cell-type-specific manner and to thereby increase the diversity of signaling output of a limited number of receptor tyrosine kinases to control the branch morphology of developing sensory neurons. The regulation of Eph receptor-mediated developmental processes by protein tyrosine phosphatases has diverged between chick and mouse.
Subject(s)
Axons/physiology , Membrane Glycoproteins/metabolism , Protein-Tyrosine Kinases/metabolism , Proto-Oncogene Proteins c-ret/metabolism , Receptor-Like Protein Tyrosine Phosphatases, Class 3/metabolism , Trigeminal Ganglion/cytology , Trigeminal Ganglion/metabolism , Animals , Animals, Newborn , Cells, Cultured , Female , Green Fluorescent Proteins/genetics , HEK293 Cells , HeLa Cells , Humans , Male , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Transgenic , Motor Neurons/cytology , Motor Neurons/metabolism , Pregnancy , Receptor, EphA1/metabolism , Receptor, trkA/metabolism , Receptor, trkC/metabolism , Signal Transduction/physiology , Trigeminal Ganglion/embryology , Trigeminal Nerve/cytology , Trigeminal Nerve/embryology , Trigeminal Nerve/metabolismABSTRACT
The motivation to eat is suppressed by satiety and aversive stimuli such as nausea. The neural circuit mechanisms of appetite suppression by nausea are not well understood. Pkcδ neurons in the lateral subdivision of the central amygdala (CeA) suppress feeding in response to satiety signals and nausea. Here, we characterized neurons enriched in the medial subdivision (CeM) of the CeA marked by expression of Dlk1. CeADlk1 neurons are activated by nausea, but not satiety, and specifically suppress feeding induced by nausea. Artificial activation of CeADlk1 neurons suppresses drinking and social interactions, suggesting a broader function in attenuating motivational behavior. CeADlk1 neurons form projections to many brain regions and exert their anorexigenic activity by inhibition of neurons of the parabrachial nucleus. CeADlk1 neurons are inhibited by appetitive CeA neurons, but also receive long-range monosynaptic inputs from multiple brain regions. Our results illustrate a CeA circuit that regulates nausea-induced feeding suppression.
Subject(s)
Calcium-Binding Proteins , Central Amygdaloid Nucleus , Feeding Behavior , Nausea , Neurons , Animals , Neurons/metabolism , Central Amygdaloid Nucleus/metabolism , Calcium-Binding Proteins/metabolism , Mice , Nausea/metabolism , Nausea/etiology , Male , Mice, Inbred C57BL , Intercellular Signaling Peptides and Proteins/metabolismABSTRACT
The basolateral amygdala (BLA) contains discrete neuronal circuits that integrate positive or negative emotional information and drive the appropriate innate and learned behaviors. Whether these circuits consist of genetically-identifiable and anatomically segregated neuron types, is poorly understood. Also, our understanding of the response patterns and behavioral spectra of genetically-identifiable BLA neurons is limited. Here, we classified 11 glutamatergic cell clusters in mouse BLA and found that several of them were anatomically segregated in lateral versus basal amygdala, and anterior versus posterior regions of the BLA. Two of these BLA subpopulations innately responded to valence-specific, whereas one responded to mixed - aversive and social - cues. Positive-valence BLA neurons promoted normal feeding, while mixed selectivity neurons promoted fear learning and social interactions. These findings enhance our understanding of cell type diversity and spatial organization of the BLA and the role of distinct BLA populations in representing valence-specific and mixed stimuli.