Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Nat Immunol ; 24(3): 516-530, 2023 03.
Article in English | MEDLINE | ID: mdl-36732424

ABSTRACT

How lipidome changes support CD8+ effector T (Teff) cell differentiation is not well understood. Here we show that, although naive T cells are rich in polyunsaturated phosphoinositides (PIPn with 3-4 double bonds), Teff cells have unique PIPn marked by saturated fatty acyl chains (0-2 double bonds). PIPn are precursors for second messengers. Polyunsaturated phosphatidylinositol bisphosphate (PIP2) exclusively supported signaling immediately upon T cell antigen receptor activation. In late Teff cells, activity of phospholipase C-γ1, the enzyme that cleaves PIP2 into downstream mediators, waned, and saturated PIPn became essential for sustained signaling. Saturated PIP was more rapidly converted to PIP2 with subsequent recruitment of phospholipase C-γ1, and loss of saturated PIPn impaired Teff cell fitness and function, even in cells with abundant polyunsaturated PIPn. Glucose was the substrate for de novo PIPn synthesis, and was rapidly utilized for saturated PIP2 generation. Thus, separate PIPn pools with distinct acyl chain compositions and metabolic dependencies drive important signaling events to initiate and then sustain effector function during CD8+ T cell differentiation.


Subject(s)
Phosphatidylinositol Phosphates , Phosphatidylinositols , Phosphatidylinositols/metabolism , Signal Transduction , Type C Phospholipases/metabolism , CD8-Positive T-Lymphocytes/metabolism
2.
Cell ; 171(2): 385-397.e11, 2017 Oct 05.
Article in English | MEDLINE | ID: mdl-28919076

ABSTRACT

T cell receptor (TCR) signaling without CD28 can elicit primary effector T cells, but memory T cells generated during this process are anergic, failing to respond to secondary antigen exposure. We show that, upon T cell activation, CD28 transiently promotes expression of carnitine palmitoyltransferase 1a (Cpt1a), an enzyme that facilitates mitochondrial fatty acid oxidation (FAO), before the first cell division, coinciding with mitochondrial elongation and enhanced spare respiratory capacity (SRC). microRNA-33 (miR33), a target of thioredoxin-interacting protein (TXNIP), attenuates Cpt1a expression in the absence of CD28, resulting in cells that thereafter are metabolically compromised during reactivation or periods of increased bioenergetic demand. Early CD28-dependent mitochondrial engagement is needed for T cells to remodel cristae, develop SRC, and rapidly produce cytokines upon restimulation-cardinal features of protective memory T cells. Our data show that initial CD28 signals during T cell activation prime mitochondria with latent metabolic capacity that is essential for future T cell responses.


Subject(s)
CD28 Antigens/metabolism , Lymphocyte Activation , Mitochondria/metabolism , T-Lymphocytes/cytology , T-Lymphocytes/immunology , Animals , Carnitine O-Palmitoyltransferase , Enzyme Inhibitors/pharmacology , Epoxy Compounds/pharmacology , Humans , Interleukin-15/immunology , Mice , Mice, Inbred C57BL , Receptors, Antigen, T-Cell/metabolism , Stress, Physiological , T-Lymphocytes/metabolism
3.
Cell ; 166(1): 63-76, 2016 Jun 30.
Article in English | MEDLINE | ID: mdl-27293185

ABSTRACT

Activated effector T (TE) cells augment anabolic pathways of metabolism, such as aerobic glycolysis, while memory T (TM) cells engage catabolic pathways, like fatty acid oxidation (FAO). However, signals that drive these differences remain unclear. Mitochondria are metabolic organelles that actively transform their ultrastructure. Therefore, we questioned whether mitochondrial dynamics controls T cell metabolism. We show that TE cells have punctate mitochondria, while TM cells maintain fused networks. The fusion protein Opa1 is required for TM, but not TE cells after infection, and enforcing fusion in TE cells imposes TM cell characteristics and enhances antitumor function. Our data suggest that, by altering cristae morphology, fusion in TM cells configures electron transport chain (ETC) complex associations favoring oxidative phosphorylation (OXPHOS) and FAO, while fission in TE cells leads to cristae expansion, reducing ETC efficiency and promoting aerobic glycolysis. Thus, mitochondrial remodeling is a signaling mechanism that instructs T cell metabolic programming.


Subject(s)
Mitochondrial Dynamics , T-Lymphocytes/cytology , T-Lymphocytes/metabolism , Animals , Cell Differentiation , Electron Transport , Fatty Acids/metabolism , GTP Phosphohydrolases/metabolism , Glycolysis , Humans , Immunologic Memory , Mice , Mice, Inbred C57BL , Oxidation-Reduction , Signal Transduction , T-Lymphocytes/immunology
4.
Immunity ; 49(6): 1021-1033.e6, 2018 12 18.
Article in English | MEDLINE | ID: mdl-30566880

ABSTRACT

Metabolic engagement is intrinsic to immune cell function. Prostaglandin E2 (PGE2) has been shown to modulate macrophage activation, yet how PGE2 might affect metabolism is unclear. Here, we show that PGE2 caused mitochondrial membrane potential (Δψm) to dissipate in interleukin-4-activated (M(IL-4)) macrophages. Effects on Δψm were a consequence of PGE2-initiated transcriptional regulation of genes, particularly Got1, in the malate-aspartate shuttle (MAS). Reduced Δψm caused alterations in the expression of 126 voltage-regulated genes (VRGs), including those encoding resistin-like molecule α (RELMα), a key marker of M(IL-4) cells, and genes that regulate the cell cycle. The transcription factor ETS variant 1 (ETV1) played a role in the regulation of 38% of the VRGs. These results reveal ETV1 as a Δψm-sensitive transcription factor and Δψm as a mediator of mitochondrial-directed nuclear gene expression.


Subject(s)
Cell Nucleus/drug effects , Dinoprostone/pharmacology , Gene Expression Regulation/drug effects , Macrophages/drug effects , Membrane Potential, Mitochondrial/physiology , Animals , Cell Nucleus/genetics , Cells, Cultured , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Gene Expression Profiling , HEK293 Cells , Humans , Interleukin-4/pharmacology , Macrophage Activation/drug effects , Macrophage Activation/genetics , Macrophages/metabolism , Macrophages/ultrastructure , Mice , Mice, Inbred C57BL , NIH 3T3 Cells , Signal Transduction/drug effects , Signal Transduction/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
5.
Immunity ; 46(4): 525-527, 2017 04 18.
Article in English | MEDLINE | ID: mdl-28423332

ABSTRACT

T cell activation and proliferation critical for protective immunity depend on appropriate rewiring of cellular metabolism. In this issue of Immunity, Mak et al. (2017) show that the antioxidant gluthathione (GSH) controls reactive oxygen species (ROS)-dependent engagement of metabolic signaling pathways that lead to protective T cell responses.


Subject(s)
Glutathione , Reactive Oxygen Species , Antioxidants , Signal Transduction , T-Lymphocytes
6.
Development ; 149(6)2022 03 15.
Article in English | MEDLINE | ID: mdl-35195254

ABSTRACT

In Drosophila, changes to dietary protein elicit different body size responses between the sexes. Whether these differential body size effects extend to other macronutrients remains unclear. Here, we show that lowering dietary sugar (0S diet) enhanced body size in male and female larvae. Despite an equivalent phenotypic effect between the sexes, we detected sex-specific changes to signalling pathways, transcription and whole-body glycogen and protein. In males, the low-sugar diet augmented insulin/insulin-like growth factor signalling pathway (IIS) activity by increasing insulin sensitivity, where increased IIS was required for male metabolic and body size responses in 0S. In females reared on low sugar, IIS activity and insulin sensitivity were unaffected, and IIS function did not fully account for metabolic and body size responses. Instead, we identified a female-biased requirement for the Target of rapamycin pathway in regulating metabolic and body size responses. Together, our data suggest the mechanisms underlying the low-sugar-induced increase in body size are not fully shared between the sexes, highlighting the importance of including males and females in larval studies even when similar phenotypic outcomes are observed.


Subject(s)
Drosophila Proteins , Insulin Resistance , Animals , Body Size , Diet , Drosophila/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Female , Insulin/metabolism , Larva/metabolism , Male , Sugars/metabolism
7.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Article in English | MEDLINE | ID: mdl-34161266

ABSTRACT

Fever can provide a survival advantage during infection. Metabolic processes are sensitive to environmental conditions, but the effect of fever on T cell metabolism is not well characterized. We show that in activated CD8+ T cells, exposure to febrile temperature (39 °C) augmented metabolic activity and T cell effector functions, despite having a limited effect on proliferation or activation marker expression. Transcriptional profiling revealed an up-regulation of mitochondrial pathways, which was consistent with increased mass and metabolism observed in T cells exposed to 39 °C. Through in vitro and in vivo models, we determined that mitochondrial translation is integral to the enhanced metabolic activity and function of CD8+ T cells exposed to febrile temperature. Transiently exposing donor lymphocytes to 39 °C prior to infusion in a myeloid leukemia mouse model conferred enhanced therapeutic efficacy, raising the possibility that exposure of T cells to febrile temperatures could have clinical potential.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Fever/immunology , Mitochondria/metabolism , Protein Biosynthesis , Animals , Antineoplastic Agents/metabolism , CD8-Positive T-Lymphocytes/ultrastructure , Cytokines/biosynthesis , Glucose/metabolism , Leukemia, Myeloid/immunology , Leukemia, Myeloid/pathology , Leukemia, Myeloid/prevention & control , Mice, Inbred BALB C , Mice, Inbred C57BL , Mitochondria/ultrastructure , Models, Biological , Temperature
8.
Eur J Immunol ; 52(9): 1482-1497, 2022 09.
Article in English | MEDLINE | ID: mdl-35746855

ABSTRACT

Regulatory T-cell (Treg) therapy is under clinical investigation for the treatment of transplant rejection, autoimmune disease, and graft-versus-host disease. With the advent of genome editing, attention has turned to reinforcing Treg function for therapeutic benefit. A hallmark of Tregs is dampened activation of PI3K-AKT signaling, of which PTEN is a major negative regulator. Loss-of-function studies of PTEN, however, have not conclusively shown a requirement for PTEN in upholding Treg function and stability. Using CRISPR-based genome editing in human Tregs, we show that PTEN ablation does not cause a global defect in Treg function and stability; rather, it selectively blocks their ability to suppress antigen-presenting cells. PTEN-KO Tregs exhibit elevated glycolytic activity, upregulate FOXP3, maintain a Treg phenotype, and have no discernible defects in lineage stability. Functionally, PTEN is dispensable for human Treg-mediated inhibition of T-cell activity in vitro and in vivo but is required for suppression of costimulatory molecule expression by antigen-presenting cells. These data are the first to define a role for a signaling pathway in controlling a subset of human Treg activity. Moreover, they point to the functional necessity of PTEN-regulated PI3K-AKT activity for optimal human Treg function.


Subject(s)
Autoimmune Diseases , PTEN Phosphohydrolase , T-Lymphocytes, Regulatory , Forkhead Transcription Factors/metabolism , Humans , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism
9.
PLoS Pathog ; 16(10): e1008994, 2020 10.
Article in English | MEDLINE | ID: mdl-33049000

ABSTRACT

Inflammation is critical for controlling pathogens, but also responsible for symptoms of infectious diseases. IL-27 is an important regulator of inflammation and can limit development of IFNγ-producing Tbet+ CD4+ T (Th1) cells. IL-27 is thought to do this by stimulating IL-10 production by CD4+ T cells, but the underlying mechanisms of these immunoregulatory pathways are not clear. Here we studied the role of IL-27 signalling in experimental visceral leishmaniasis (VL) caused by infection of C57BL/6 mice with the human pathogen Leishmania donovani. We found IL-27 signalling was critical for the development of IL-10-producing Th1 (Tr1) cells during infection. Furthermore, in the absence of IL-27 signalling, there was improved control of parasite growth, but accelerated splenic pathology characterised by the loss of marginal zone macrophages. Critically, we discovered that IL-27 signalling limited glycolysis in Th1 cells during infection that in turn attenuated inflammation. Furthermore, the modulation of glycolysis in the absence of IL-27 signalling restricted tissue pathology without compromising anti-parasitic immunity. Together, these findings identify a novel mechanism by which IL-27 mediates immune regulation during disease by regulating cellular metabolism.


Subject(s)
Interleukins/metabolism , Leishmaniasis, Visceral/metabolism , Th1 Cells/immunology , Th1 Cells/metabolism , Animals , CD4-Positive T-Lymphocytes/immunology , Female , Glycolysis , Interferon-gamma/immunology , Interleukins/immunology , Leishmania donovani/immunology , Leishmaniasis, Visceral/immunology , Macrophages/immunology , Mice , Mice, Inbred C57BL , Signal Transduction/immunology , Spleen/immunology
10.
Cytotherapy ; 24(11): 1121-1135, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36008207

ABSTRACT

BACKGROUND: Given the promising results from phase 1/2 clinical trials of therapy involving regulatory T cells (Tregs), it is critical to develop Treg manufacturing methods that use well-defined reagents. METHODS: Seeking to maximize expansion of human thymic Tregs activated with anti-CD3/CD28 antibody-coated beads and cultured in serum-free medium, the authors investigated the effect of adjusting process parameters including cell density and cell concentration, and feeding strategy on Treg yield and quality. RESULTS: The authors found that levels of expansion and viability varied with cell density on the day of restimulation. Tregs restimulated at low cell densities (1 × 105 cells/cm2) initially had high growth rates, viability and FOXP3 expression, but these parameters decreased with time and were less stable than those observed in cultures of Tregs restimulated at high cell densities (5 × 105 cells/cm2), which had slower growth rates. High-density expansion was associated with expression of inhibitory molecules and lower intracellular oxygen and extracellular nutrient concentrations as well as extracellular lactate accumulation. Experiments to test the effect of low oxygen revealed that transient exposure to low oxygen levels had little impact on expansion, viability or phenotype. Similarly, blockade of inhibitory molecules had little effect. By contrast, replenishing nutrients by increasing the feeding frequency between 2 days and 4 days after restimulation increased FOXP3, viability and expansion in high-density cultures. CONCLUSION: These data show the previously undescribed consequences of adjusting cell density on Treg expansion and establish a Good Manufacturing Practice-relevant protocol using non-cell-based activation reagents and serum-free media that supports sustained expansion without loss of viability or phenotype.


Subject(s)
CD28 Antigens , T-Lymphocytes, Regulatory , CD28 Antigens/metabolism , Cell Count , Cells, Cultured , Culture Media, Serum-Free/pharmacology , Forkhead Transcription Factors/metabolism , Humans , Lactates/metabolism , Lactates/pharmacology , Oxygen/metabolism
11.
iScience ; 27(5): 109767, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38736545

ABSTRACT

T cells protect tissues from cancer. Although investigations in mice showed that amino acids (AA) critically regulate T cell immunity, this remains poorly understood in humans. Here, we describe the AA composition of interstitial fluids in keratinocyte-derived skin cancers (KDSCs) and study the effect of AA on T cells using models of primary human cells and tissues. Gln contributed to ∼15% of interstitial AAs and promoted interferon gamma (IFN-γ), but not granzyme B (GzB) expression, in CD8+ T cells. Furthermore, the Toll-like receptor 7 agonist imiquimod (IMQ), a common treatment for KDSCs, down-regulated the metabolic gatekeepers c-MYC and mTORC1, as well as the AA transporter ASCT2 and intracellular Gln, Asn, Ala, and Asp in T cells. Reduced proliferation and IFN-γ expression, yet increased GzB, paralleled IMQ effects on AA. Finally, Gln was sufficient to promote IFN-γ-production in IMQ-treated T cells. Our findings indicate that Gln metabolism can be harnessed for treating KDSCs.

12.
JCI Insight ; 9(5)2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38319716

ABSTRACT

Pattern recognition receptor responses are profoundly attenuated before the third trimester of gestation in the relatively low-oxygen human fetal environment. However, the mechanisms regulating these responses are uncharacterized. Herein, genome-wide transcription and functional metabolic experiments in primary neonatal monocytes linked the negative mTOR regulator DDIT4L to metabolic stress, cellular bioenergetics, and innate immune activity. Using genetically engineered monocytic U937 cells, we confirmed that DDIT4L overexpression altered mitochondrial dynamics, suppressing their activity, and blunted LPS-induced cytokine responses. We also showed that monocyte mitochondrial function is more restrictive in earlier gestation, resembling the phenotype of DDIT4L-overexpressing U937 cells. Gene expression analyses in neonatal granulocytes and lung macrophages in preterm infants confirmed upregulation of the DDIT4L gene in the early postnatal period and also suggested a potential protective role against inflammation-associated chronic neonatal lung disease. Taken together, these data show that DDIT4L regulates mitochondrial activity and provide what we believe to be the first direct evidence for its potential role supressing innate immune activity in myeloid cells during development.


Subject(s)
Cytokines , Infant, Premature , Infant, Newborn , Humans , Cytokines/metabolism , Monocytes/metabolism , Immunity, Innate , Mitochondria/metabolism
13.
Diabetes ; 72(9): 1277-1288, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37364047

ABSTRACT

Carboxypeptidase E (CPE) facilitates the conversion of prohormones into mature hormones and is highly expressed in multiple neuroendocrine tissues. Carriers of CPE mutations have elevated plasma proinsulin and develop severe obesity and hyperglycemia. We aimed to determine whether loss of Cpe in pancreatic ß-cells disrupts proinsulin processing and accelerates development of diabetes and obesity in mice. Pancreatic ß-cell-specific Cpe knockout mice (ßCpeKO; Cpefl/fl x Ins1Cre/+) lack mature insulin granules and have elevated proinsulin in plasma; however, glucose-and KCl-stimulated insulin secretion in ßCpeKO islets remained intact. High-fat diet-fed ßCpeKO mice showed weight gain and glucose tolerance comparable with those of Wt littermates. Notably, ß-cell area was increased in chow-fed ßCpeKO mice and ß-cell replication was elevated in ßCpeKO islets. Transcriptomic analysis of ßCpeKO ß-cells revealed elevated glycolysis and Hif1α-target gene expression. On high glucose challenge, ß-cells from ßCpeKO mice showed reduced mitochondrial membrane potential, increased reactive oxygen species, reduced MafA, and elevated Aldh1a3 transcript levels. Following multiple low-dose streptozotocin injections, ßCpeKO mice had accelerated development of hyperglycemia with reduced ß-cell insulin and Glut2 expression. These findings suggest that Cpe and proper proinsulin processing are critical in maintaining ß-cell function during the development of hyperglycemia. ARTICLE HIGHLIGHTS: Carboxypeptidase E (Cpe) is an enzyme that removes the carboxy-terminal arginine and lysine residues from peptide precursors. Mutations in CPE lead to obesity and type 2 diabetes in humans, and whole-body Cpe knockout or mutant mice are obese and hyperglycemic and fail to convert proinsulin to insulin. We show that ß-cell-specific Cpe deletion in mice (ßCpeKO) does not lead to the development of obesity or hyperglycemia, even after prolonged high-fat diet treatment. However, ß-cell proliferation rate and ß-cell area are increased, and the development of hyperglycemia induced by multiple low-dose streptozotocin injections is accelerated in ßCpeKO mice.


Subject(s)
Carboxypeptidase H , Diabetes Mellitus, Type 2 , Hyperglycemia , Insulin-Secreting Cells , Islets of Langerhans , Animals , Mice , Carboxypeptidase H/genetics , Carboxypeptidase H/metabolism , Diabetes Mellitus, Type 2/metabolism , Glucose/metabolism , Hyperglycemia/genetics , Hyperglycemia/metabolism , Insulin/metabolism , Insulin-Secreting Cells/metabolism , Islets of Langerhans/metabolism , Mice, Knockout , Obesity/metabolism , Proinsulin/metabolism , Streptozocin
14.
Nat Commun ; 14(1): 2894, 2023 05 20.
Article in English | MEDLINE | ID: mdl-37210563

ABSTRACT

SMARCA4 (BRG1) and SMARCA2 (BRM) are the two paralogous ATPases of the SWI/SNF chromatin remodeling complexes frequently inactivated in cancers. Cells deficient in either ATPase have been shown to depend on the remaining counterpart for survival. Contrary to this paralog synthetic lethality, concomitant loss of SMARCA4/2 occurs in a subset of cancers associated with very poor outcomes. Here, we uncover that SMARCA4/2-loss represses expression of the glucose transporter GLUT1, causing reduced glucose uptake and glycolysis accompanied with increased dependency on oxidative phosphorylation (OXPHOS); adapting to this, these SMARCA4/2-deficient cells rely on elevated SLC38A2, an amino acid transporter, to increase glutamine import for fueling OXPHOS. Consequently, SMARCA4/2-deficient cells and tumors are highly sensitive to inhibitors targeting OXPHOS or glutamine metabolism. Furthermore, supplementation of alanine, also imported by SLC38A2, restricts glutamine uptake through competition and selectively induces death in SMARCA4/2-deficient cancer cells. At a clinically relevant dose, alanine supplementation synergizes with OXPHOS inhibition or conventional chemotherapy eliciting marked antitumor activity in patient-derived xenografts. Our findings reveal multiple druggable vulnerabilities of SMARCA4/2-loss exploiting a GLUT1/SLC38A2-mediated metabolic shift. Particularly, unlike dietary deprivation approaches, alanine supplementation can be readily applied to current regimens for better treatment of these aggressive cancers.


Subject(s)
Glutamine , Neoplasms , Humans , Glucose Transporter Type 1 , Adenosine Triphosphatases/metabolism , Neoplasms/drug therapy , Neoplasms/genetics , Dietary Supplements , DNA Helicases/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
15.
Sci Immunol ; 7(67): eabn9190, 2022 Jan 07.
Article in English | MEDLINE | ID: mdl-34995095

ABSTRACT

CoA-driven mitochondrial metabolism enhances the anti-tumor properties of IL-22­producing CD8+ T cells.


Subject(s)
Mentoring , Neoplasms , Humans
16.
Trends Cell Biol ; 32(9): 800-814, 2022 09.
Article in English | MEDLINE | ID: mdl-35365367

ABSTRACT

Cysteine, a thiol-containing amino acid, is crucial for the synthesis of sulfur-containing biomolecules that control multiple essential cellular activities. Altered cysteine metabolism has been linked to numerous driver oncoproteins and tumor suppressors, as well as to malignant traits in cancer. Cysteine can be acquired from extracellular sources or synthesized de novo via the transsulfuration (TSS) pathway. Limited availability of cystine in tumor interstitial fluids raises the possible dependency on de novo cysteine synthesis via TSS. However, the contribution of TSS to cancer metabolism remains highly contentious. Based on recent findings, we provide new perspectives on this crucial but understudied metabolic pathway in cancer.


Subject(s)
Cysteine , Neoplasms , Cysteine/metabolism , Glutathione/metabolism , Homeostasis , Humans , Sulfur/metabolism
17.
Nat Commun ; 11(1): 4107, 2020 08 14.
Article in English | MEDLINE | ID: mdl-32796836

ABSTRACT

Foamy macrophages, which have prominent lipid droplets (LDs), are found in a variety of disease states. Toll-like receptor agonists drive triacylglycerol (TG)-rich LD development in macrophages. Here we explore the basis and significance of this process. Our findings indicate that LD development is the result of metabolic commitment to TG synthesis on a background of decreased fatty acid oxidation. TG synthesis is essential for optimal inflammatory macrophage activation as its inhibition, which prevents LD development, has marked effects on the production of inflammatory mediators, including IL-1ß, IL-6 and PGE2, and on phagocytic capacity. The failure of inflammatory macrophages to make PGE2 when TG-synthesis is inhibited is critical for this phenotype, as addition of exogenous PGE2 is able to reverse the anti-inflammatory effects of TG synthesis inhibition. These findings place LDs in a position of central importance in inflammatory macrophage activation.


Subject(s)
Inflammation/metabolism , Lipidomics/methods , Triglycerides/metabolism , Animals , Cells, Cultured , Flow Cytometry , Glucose/metabolism , Glycerol/metabolism , HEK293 Cells , Humans , Lipid Metabolism/physiology , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Microscopy, Confocal , Microscopy, Electron , Palmitates/metabolism , Sequence Analysis, RNA
18.
Nat Metab ; 2(8): 703-716, 2020 08.
Article in English | MEDLINE | ID: mdl-32747793

ABSTRACT

CD8+ effector T (TE) cell proliferation and cytokine production depends on enhanced glucose metabolism. However, circulating T cells continuously adapt to glucose fluctuations caused by diet and inter-organ metabolite exchange. Here we show that transient glucose restriction (TGR) in activated CD8+ TE cells metabolically primes effector functions and enhances tumour clearance in mice. Tumour-specific TGR CD8+ TE cells co-cultured with tumour spheroids in replete conditions display enhanced effector molecule expression, and adoptive transfer of these cells in a murine lymphoma model leads to greater numbers of immunologically functional circulating donor cells and complete tumour clearance. Mechanistically, TE cells treated with TGR undergo metabolic remodelling that, after glucose re-exposure, supports enhanced glucose uptake, increased carbon allocation to the pentose phosphate pathway (PPP) and a cellular redox shift towards a more reduced state-all indicators of a more anabolic programme to support their enhanced functionality. Thus, metabolic conditioning could be used to promote efficiency of T-cell products for adoptive cellular therapy.


Subject(s)
Adoptive Transfer/methods , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/transplantation , Animals , Carbon/metabolism , Cell Line , Cytokines/biosynthesis , Glucose/deficiency , Glucose/pharmacology , Immunologic Memory , Lymphocyte Activation , Lymphoma/immunology , Mice , Mice, Inbred C57BL , Mitochondria/metabolism , Oxidation-Reduction , Pentose Phosphate Pathway , Reactive Oxygen Species/metabolism , Xenograft Model Antitumor Assays
19.
Elife ; 82019 05 02.
Article in English | MEDLINE | ID: mdl-31043227

ABSTRACT

T helper cells import the amino acid methionine to synthesize new proteins and to provide the methyl groups needed for the methylation of RNA and DNA that drives T cell proliferation and differentiation.


Subject(s)
Methionine/metabolism , Animals , Humans , Interleukin-12/metabolism , Models, Biological , T-Lymphocytes/metabolism
20.
Cell Rep ; 27(7): 2063-2074.e5, 2019 05 14.
Article in English | MEDLINE | ID: mdl-31091446

ABSTRACT

Competition for nutrients like glucose can metabolically restrict T cells and contribute to their hyporesponsiveness during cancer. Metabolic adaptation to the surrounding microenvironment is therefore key for maintaining appropriate cell function. For instance, cancer cells use acetate as a substrate alternative to glucose to fuel metabolism and growth. Here, we show that acetate rescues effector function in glucose-restricted CD8+ T cells. Mechanistically, acetate promotes histone acetylation and chromatin accessibility and enhances IFN-γ gene transcription and cytokine production in an acetyl-CoA synthetase (ACSS)-dependent manner. Ex vivo acetate treatment increases IFN-γ production by exhausted T cells, whereas reducing ACSS expression in T cells impairs IFN-γ production by tumor-infiltrating lymphocytes and tumor clearance. Thus, hyporesponsive T cells can be epigenetically remodeled and reactivated by acetate, suggesting that pathways regulating the use of substrates alternative to glucose could be therapeutically targeted to promote T cell function during cancer.


Subject(s)
Acetate-CoA Ligase/immunology , Acetates/immunology , CD8-Positive T-Lymphocytes/immunology , Glucose/immunology , Interferon-gamma/immunology , Neoplasm Proteins/immunology , Neoplasms, Experimental/immunology , Animals , CD8-Positive T-Lymphocytes/pathology , Cell Line, Tumor , Humans , Mice , Neoplasms, Experimental/pathology
SELECTION OF CITATIONS
SEARCH DETAIL