Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Immunity ; 57(3): 587-599.e4, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38395697

ABSTRACT

It is thought that mRNA-based vaccine-induced immunity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) wanes quickly, based mostly on short-term studies. Here, we analyzed the kinetics and durability of the humoral responses to SARS-CoV-2 infection and vaccination using >8,000 longitudinal samples collected over a 3-year period in New York City. Upon primary immunization, participants with pre-existing immunity mounted higher antibody responses faster and achieved higher steady-state antibody titers than naive individuals. Antibody kinetics were characterized by two phases: an initial rapid decay, followed by a stabilization phase with very slow decay. Booster vaccination equalized the differences in antibody concentration between participants with and without hybrid immunity, but the peak antibody titers decreased with each successive antigen exposure. Breakthrough infections increased antibodies to similar titers as an additional vaccine dose in naive individuals. Our study provides strong evidence that SARS-CoV-2 antibody responses are long lasting, with initial waning followed by stabilization.


Subject(s)
COVID-19 , Vaccines , Humans , SARS-CoV-2 , Antibody Formation , Vaccination , Immunization, Secondary , mRNA Vaccines , Antibodies, Viral
2.
J Med Virol ; 95(10): e29134, 2023 10.
Article in English | MEDLINE | ID: mdl-37805977

ABSTRACT

In 2022 the World Health Organization declared a Public Health Emergency for an outbreak of mpox, the zoonotic Orthopoxvirus (OPV) affecting at least 104 nonendemic locations worldwide. Serologic detection of mpox infection is problematic, however, due to considerable antigenic and serologic cross-reactivity among OPVs and smallpox-vaccinated individuals. In this report, we developed a high-throughput multiplex microsphere immunoassay using a combination of mpox-specific peptides and cross-reactive OPV proteins that results in the specific serologic detection of mpox infection with 93% sensitivity and 98% specificity. The New York State Non-Vaccinia Orthopoxvirus Microsphere Immunoassay is an important tool to detect subclinical mpox infection and understand the extent of mpox spread in the community through retrospective analysis.


Subject(s)
Mpox (monkeypox) , Orthopoxvirus , Humans , Retrospective Studies , Asymptomatic Infections , Biological Assay , Cross Reactions
3.
Ann Neurol ; 90(4): 640-652, 2021 10.
Article in English | MEDLINE | ID: mdl-34338329

ABSTRACT

OBJECTIVE: Autosomal recessive human thymidine kinase 2 (TK2) mutations cause TK2 deficiency, which typically manifests as a progressive and fatal mitochondrial myopathy in infants and children. Treatment with pyrimidine deoxynucleosides deoxycytidine and thymidine ameliorates mitochondrial defects and extends the lifespan of Tk2 knock-in mouse (Tk2KI ) and compassionate use deoxynucleoside therapy in TK2 deficient patients have shown promising indications of efficacy. To augment therapy for Tk2 deficiency, we assessed gene therapy alone and in combination with deoxynucleoside therapy in Tk2KI mice. METHODS: We generated pAAVsc CB6 PI vectors containing human TK2 cDNA (TK2). Adeno-associated virus (AAV)-TK2 was administered to Tk2KI , which were serially assessed for weight, motor functions, and survival as well as biochemical functions in tissues. AAV-TK2 treated mice were further treated with deoxynucleosides. RESULTS: AAV9 delivery of human TK2 cDNA to Tk2KI mice efficiently rescued Tk2 activity in all the tissues tested except the kidneys, delayed disease onset, and increased lifespan. Sequential treatment of Tk2KI mice with AAV9 first followed by AAV2 at different ages allowed us to reduce the viral dose while further prolonging the lifespan. Furthermore, addition of deoxycytidine and deoxythymidine supplementation to AAV9 + AAV2 treated Tk2KI mice dramatically improved mtDNA copy numbers in the liver and kidneys, animal growth, and lifespan. INTERPRETATION: Our data indicate that AAV-TK2 gene therapy as well as combination deoxynucleoside and gene therapies is more effective in Tk2KI mice than pharmacological alone. Thus, combination of gene therapy with substrate enhancement is a promising therapeutic approach for TK2 deficiency and potentially other metabolic disorders. ANN NEUROL 2021;90:640-652.


Subject(s)
Genetic Therapy , Mitochondria/metabolism , Mitochondrial Myopathies/therapy , Thymidine Kinase/deficiency , Animals , Compassionate Use Trials , DNA, Mitochondrial/genetics , Humans , Mice , Mitochondria/genetics , Mitochondrial Myopathies/genetics , Mutation/genetics , Thymidine/genetics , Thymidine/metabolism , Thymidine Kinase/genetics
4.
FASEB J ; 34(6): 7404-7426, 2020 06.
Article in English | MEDLINE | ID: mdl-32307754

ABSTRACT

Fragile X syndrome (FXS) is the leading known inherited intellectual disability and the most common genetic cause of autism. The full mutation results in transcriptional silencing of the Fmr1 gene and loss of fragile X mental retardation protein (FMRP) expression. Defects in neuroenergetic capacity are known to cause a variety of neurodevelopmental disorders. Thus, we explored the integrity of forebrain mitochondria in Fmr1 knockout mice during the peak of synaptogenesis. We found inefficient thermogenic respiration due to futile proton leak in Fmr1 KO mitochondria caused by coenzyme Q (CoQ) deficiency and an open cyclosporine-sensitive channel. Repletion of mitochondrial CoQ within the Fmr1 KO forebrain closed the channel, blocked the pathological proton leak, restored rates of protein synthesis during synaptogenesis, and normalized the key phenotypic features later in life. The findings demonstrate that FMRP deficiency results in inefficient oxidative phosphorylation during the neurodevelopment and suggest that dysfunctional mitochondria may contribute to the FXS phenotype.


Subject(s)
Cell Respiration/physiology , Fragile X Syndrome/metabolism , Fragile X Syndrome/pathology , Mitochondria/metabolism , Mitochondria/pathology , Thermogenesis/physiology , Animals , Autistic Disorder/metabolism , Autistic Disorder/pathology , Disease Models, Animal , Female , Fragile X Mental Retardation Protein/metabolism , Intellectual Disability/metabolism , Intellectual Disability/pathology , Male , Mice , Mice, Knockout , Neurogenesis/physiology , Protons
6.
Apoptosis ; 20(8): 1048-55, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26003816

ABSTRACT

Mevalonate kinase deficiency is a rare disease whose worst manifestation, characterised by severe neurologic impairment, is called mevalonic aciduria. The progressive neuronal loss associated to cell death can be studied in vitro with a simplified model based on a biochemical block of the mevalonate pathway and a subsequent inflammatory trigger. The aim of this study was to evaluate the effect of the mevalonate blocking on glial cells (BV-2) and the following effects on neuronal cells (SH-SY5Y) when the two populations were cultured together. To better understand the cross-talk between glial and neuronal cells, as it happens in vivo, BV-2 and SH-SY5Y were co-cultured in different experimental settings (alone, transwell, direct contact); the effect of mevalonate pathway biochemical block by Lovastatin, followed by LPS inflammatory trigger, were evaluated by analysing programmed cell death and mitochondrial membrane potential, cytokines' release and cells' morphology modifications. In this experimental condition, glial cells underwent an evident activation, confirmed by elevated pro-inflammatory cytokines release, typical of these disorders, and a modification in morphology. Moreover, the activation induced an increase in apoptosis. When glial cells were co-cultured with neurons, their activation caused an increase of programmed cell death also in neuronal cells, but only if the two populations were cultured in direct contact. Our findings, being aware of the limitations related to the cell models used, represent a preliminary step towards understanding the pathological and neuroinflammatory mechanisms occurring in mevalonate kinase diseases. Contact co-culture between neuronal and microglial cells seems to be a good model to study mevalonic aciduria in vitro, and to contribute to the identification of potential drugs able to block microglial activation for this orphan disease. In fact, in such a pathological condition, we demonstrated that microglial cells are activated and contribute to neuronal cell death. We can thus hypothesise that the use of microglial activation blockers could prevent this additional neuronal death.


Subject(s)
Mevalonate Kinase Deficiency/metabolism , Microglia/metabolism , Neurons/metabolism , Animals , Apoptosis/drug effects , Cell Line , Coculture Techniques , Cytokines/metabolism , Disease Models, Animal , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Inflammation/metabolism , Lipopolysaccharides/pharmacology , Lovastatin/pharmacology , Membrane Potential, Mitochondrial/drug effects , Mevalonic Acid/metabolism , Mice , Microglia/cytology , Microglia/drug effects , Neurons/cytology , Neurons/drug effects
7.
Int J Mol Sci ; 15(4): 6843-56, 2014 Apr 22.
Article in English | MEDLINE | ID: mdl-24758928

ABSTRACT

Deregulation of the mevalonate pathway is known to be involved in a number of diseases that exhibit a systemic inflammatory phenotype and often neurological involvements, as seen in patients suffering from a rare disease called mevalonate kinase deficiency (MKD). One of the molecular mechanisms underlying this pathology could depend on the shortage of isoprenoid compounds and the subsequent mitochondrial damage, leading to oxidative stress and pro-inflammatory cytokines' release. Moreover, it has been demonstrated that cellular death results from the balance between apoptosis and pyroptosis, both driven by mitochondrial damage and the molecular platform inflammasome. In order to rescue the deregulated pathway and decrease inflammatory markers, exogenous isoprenoid compounds were administered to a biochemical model of MKD obtained treating a murine monocytic cell line with a compound able to block the mevalonate pathway, plus an inflammatory stimulus. Our results show that isoprenoids acted in different ways, mainly increasing the expression of the evaluated markers [apoptosis, mitochondrial dysfunction, nucleotide-binding oligomerization-domain protein-like receptors 3 (NALP3), cytokines and nitric oxide (NO)]. Our findings confirm the hypothesis that inflammation is triggered, at least partially, by the shortage of isoprenoids. Moreover, although further studies are necessary, the achieved results suggest a possible role for exogenous isoprenoids in the treatment of MKD.


Subject(s)
Mevalonic Acid/metabolism , Animals , Apoptosis/drug effects , Carotenoids/pharmacology , Carrier Proteins/metabolism , Cell Line , Cytokines/metabolism , Diterpenes/pharmacology , Humans , Lycopene , Mevalonate Kinase Deficiency/metabolism , Mevalonate Kinase Deficiency/pathology , Mice , Mitochondria/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein , Nitric Oxide/metabolism , Phytol/pharmacology , Terpenes/toxicity
8.
mBio ; 15(1): e0225023, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38112467

ABSTRACT

IMPORTANCE: As demonstrated by severe acute respiratory syndrome coronavirus 2, coronaviruses pose a significant pandemic threat. Here, we show that coronavirus disease 2019 mRNA vaccination can induce significant levels of cross-reactive antibodies against diverse coronavirus spike proteins. While these antibodies are binding antibodies that likely have little neutralization capacity and while their contribution to cross-protection is unclear, it is possible that they may play a role in protection from progression to severe disease with novel coronaviruses.


Subject(s)
COVID-19 , Humans , Prevalence , SARS-CoV-2/genetics , Cross Reactions , Antibodies, Viral , Spike Glycoprotein, Coronavirus/genetics
9.
Front Immunol ; 15: 1382619, 2024.
Article in English | MEDLINE | ID: mdl-38779671

ABSTRACT

Introduction: Antibodies against the SARS-CoV-2 spike protein are a critical immune determinant for protection against the virus. While virus neutralization is a key function of spike-specific antibodies, antibodies also mediate Fc-dependent activities that can play a role in protection or pathogenesis. Methods: This study characterized serum antibody responses elicited after two doses of heterologous adenovirus-vectored (Ad26/ Ad5) vaccines. Results: Vaccine-induced antibody binding titers and Fc-mediated functions decreased over six months, while neutralization titers remained stable. Comparison of antibody isotypes elicited after Ad26/Ad5 vs. LNP-mRNA vaccination and after infection showed that anti-spike IgG1 were dominant and produced to high levels in all groups. The Ad26/Ad5 vaccines also induced IgG4 but not IgG2 and IgG3, whereas the LNP-mRNA vaccines elicited a full Ig spectrum (IgM, IgG1-4, IgA1-2). Convalescent COVID-19 patients had mainly IgM and IgA1 alongside IgG1. Despite these differences, the neutralization potencies against early variants were similar. However, both vaccine groups had antibodies with greater Fc potencies of binding complement and Fcg receptors than the COVID-19 group. The Ad26/Ad5 group also displayed a greater potency of RBD-specific antibody-mediated cellular phagocytosis. Discussion: Antibodies with distinctive quality were induced by different vaccines and infection. The data imply the utility of different vaccine platforms to elicit antibody responses with fine-tuned Fc activities.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Vaccines , COVID-19 , Immunoglobulin G , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Humans , SARS-CoV-2/immunology , Antibodies, Viral/immunology , Antibodies, Viral/blood , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Vaccines/immunology , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics , Female , Immunoglobulin G/immunology , Immunoglobulin G/blood , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Male , Immunoglobulin Fc Fragments/immunology , Immunoglobulin Fc Fragments/genetics , Ad26COVS1/immunology , Adult , Middle Aged , Adenoviridae/immunology , Adenoviridae/genetics , Genetic Vectors , Immunoglobulin A/immunology , Immunoglobulin A/blood
10.
Pediatr Res ; 74(3): 266-71, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23760140

ABSTRACT

BACKGROUND: Mevalonate kinase deficiency (MKD) is a rare genetic autoinflammatory disease caused by blocking of the enzyme mevalonate kinase in the pathway of cholesterol and isoprenoids. The pathogenic mechanism originating an immune response in MKD patients has not been clearly understood. METHODS: We investigated the dysregulation of expression of selected cytokines and chemokines in the serum of MKD patients. The results have been compared with those observed in an MKD mouse model obtained by treating the mice with aminobisphosphonate, a molecule that is able to inhibit the cholesterol pathway, mimicking the genetic block characteristic of the disease. RESULTS: Interleukin (IL)-1ß, IL-5, IL-6, IL-9, IL-17, granulocyte colony-stimulating factor, monocyte chemotactic protein-1, tumor necrosis factor-α, and IL-4 expression were dysregulated in sera from MKD patients and mice. Moreover, geraniol, an exogenous isoprenoid, when administered to MKD mice, restored cytokines and chemokines levels with values similar to those of untreated mice. CONCLUSION: Our findings, which were obtained in patients and a mouse model mimicking the human disease, suggest that these cytokines and chemokines could be MKD specific and that isoprenoids could be considered as potential therapeutic molecules. The mouse model, even if with some limitations, was robust and suitable for routine testing of potential MKD drugs.


Subject(s)
Chemokines/blood , Cytokines/blood , Disease Models, Animal , Gene Expression Regulation/immunology , Mevalonate Kinase Deficiency/immunology , Acyclic Monoterpenes , Animals , Diphosphonates/pharmacology , Gene Expression Regulation/drug effects , Humans , Mice , Species Specificity , Terpenes
11.
Mediators Inflamm ; 2013: 434010, 2013.
Article in English | MEDLINE | ID: mdl-23533306

ABSTRACT

Growing knowledge about the cytokine network response has led to a better comprehension of mechanisms of pathologies and to the development of new treatments with biological drugs, able to block specific molecules of the immune response. Indeed, when the cytokine production is deregulated, diseases often occur. The understanding of the physiological mechanism of the cytokine network would be useful to better comprehend pathological conditions. Moreover, since the immune system and response change their properties with development, differences in patients' age should be taken into account, both in physiological and in pathological conditions. In this study, we analyzed the profile of 48 cytokines and chemokines in the serum of healthy subjects, comparing adults (≥18 years) with young children and children (1-6 and 7-17 years). We found that a certain number of cytokines were not being produced in healthy subjects; others showed a constant serum level amongst the groups. Certain cytokines exhibited a downward or an upward trend with increasing age. The remaining cytokines were up- or downregulated in the group of the children with respect to the other groups. In conclusion, we drew some kinds of guidelines about the physiological production of cytokines and chemokines, underling the difference caused by aging.


Subject(s)
Cytokines/blood , Adolescent , Child , Child, Preschool , Female , Humans , Infant , Interferon-alpha/blood , Interleukin-12/blood , Interleukin-15/blood , Interleukin-1alpha/blood , Interleukin-1beta/blood , Interleukin-3/blood , Interleukin-5/blood , Leukemia Inhibitory Factor/blood , Lymphotoxin-alpha/blood , Male
12.
Int J Mol Sci ; 14(12): 23274-88, 2013 Nov 26.
Article in English | MEDLINE | ID: mdl-24287904

ABSTRACT

Mevalonic aciduria, a rare autosomal recessive disease, represents the most severe form of the periodic fever, known as Mevalonate Kinase Deficiency. This disease is caused by the mutation of the MVK gene, which codes for the enzyme mevalonate kinase, along the cholesterol pathway. Mevalonic aciduria patients show recurrent fever episodes with associated inflammatory symptoms, severe neurologic impairments, or death, in early childhood. The typical neurodegeneration occurring in mevalonic aciduria is linked both to the intrinsic apoptosis pathway (caspase-3 and -9), which is triggered by mitochondrial damage, and to pyroptosis (caspase-1). These cell death mechanisms seem to be also related to the assembly of the inflammasome, which may, in turn, activate pro-inflammatory cytokines and chemokines. Thus, this particular molecular platform may play a crucial role in neuroinflammation mechanisms. Nowadays, a specific therapy is still lacking and the pathogenic mechanisms involving neuroinflammation and neuronal dysfunction have not yet been completely understood, making mevalonic aciduria an orphan drug disease. This review aims to analyze the relationship among neuroinflammation, mitochondrial damage, programmed cell death, and neurodegeneration. Targeting inflammation and degeneration in the central nervous system might help identify promising treatment approaches for mevalonic aciduria or other diseases in which these mechanisms are involved.


Subject(s)
Apoptosis , Mevalonate Kinase Deficiency/enzymology , Animals , Caspases/metabolism , Central Nervous System/enzymology , Central Nervous System/metabolism , Humans , Inflammasomes/metabolism , Mevalonate Kinase Deficiency/metabolism , Mevalonate Kinase Deficiency/pathology , Models, Biological , Oxidative Stress , Phosphotransferases (Alcohol Group Acceptor)/genetics , Phosphotransferases (Alcohol Group Acceptor)/metabolism
13.
medRxiv ; 2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37162953

ABSTRACT

In 2022 the World Health Organization declared a Public Health Emergency for an outbreak of mpox, the zoonotic Orthopoxvirus (OPV) affecting at least 103 non-endemic locations world-wide. Serologic detection of mpox infection is problematic, however, due to considerable antigenic and serologic cross-reactivity among OPVs and smallpox-vaccinated individuals. In this report, we developed a high-throughput multiplex microsphere immunoassay (MIA) using a combination of mpox-specific peptides and cross-reactive OPV proteins that results in the specific serologic detection of mpox infection with 93% sensitivity and 98% specificity. The New York State Non-Vaccinia Orthopoxvirus Microsphere Immunoassay is an important diagnostic tool to detect subclinical mpox infection and understand the extent of mpox spread in the community through retrospective analysis.

14.
iScience ; 25(12): 105608, 2022 Dec 22.
Article in English | MEDLINE | ID: mdl-36406863

ABSTRACT

A fraction of patients with COVID-19 develops severe disease requiring hospitalization, while the majority, including high-risk individuals, experience mild symptoms. Severe disease has been associated with higher levels of antibodies and inflammatory cytokines but often among patients with diverse demographics and comorbidity status. This study evaluated hospitalized vs. ambulatory patients with COVID-19 with demographic risk factors for severe COVID-19: median age of 63, >80% male, and >85% black and/or Hispanic. Sera were collected four to 243 days after symptom onset and evaluated for binding and functional antibodies as well as 48 cytokines and chemokines. SARS-CoV-2-specific antibody levels and functions were similar in ambulatory and hospitalized patients. However, a strong correlation between anti-S2 antibody levels and the other antibody parameters, along with higher IL-27 levels, was observed in hospitalized but not ambulatory cases. These data indicate that antibodies against the relatively conserved S2 spike subunit and immunoregulatory cytokines such as IL-27 are potential immune determinants of COVID-19.

15.
medRxiv ; 2021 Dec 07.
Article in English | MEDLINE | ID: mdl-34031663

ABSTRACT

Antibodies (Abs) are essential for the host immune response against SARS-CoV-2, and all the vaccines developed so far have been designed to induce Abs targeting the SARS-CoV-2 spike. Many studies have examined Ab responses in the blood from vaccinated and infected individuals. However, since SARS-CoV-2 is a respiratory virus, it is also critical to understand the mucosal Ab responses at the sites of initial virus exposure. Here, we examined plasma versus saliva Ab responses in vaccinated and convalescent patients. Although saliva levels were significantly lower, a strong correlation was observed between plasma and saliva total Ig levels against all SARS-CoV-2 antigens tested. Virus-specific IgG1 responses predominated in both saliva and plasma, while a lower prevalence of IgM and IgA1 Abs was observed in saliva. Antiviral activities of plasma Abs were also studied. Neutralization titers against the initial WA1 (D614G), B.1.1.7 (alpha) and B.1.617.2 (delta) strains were similar but lower against the B.1.351 (beta) strain. Spike-specific antibody-dependent cellular phagocytosis (ADCP) activities were also detected and the levels correlated with spike-binding Ig titers. Interestingly, while neutralization and ADCP potencies of vaccinated and convalescent groups were comparable, enhanced complement deposition to spike-specific Abs was noted in vaccinated versus convalescent groups and corresponded with higher levels of IgG1 plus IgG3 among the vaccinated individuals. Altogether, this study demonstrates the detection of Ab responses after vaccination or infection in plasma and saliva that correlate significantly, although Ig isotypic differences were noted. The induced plasma Abs displayed Fab-mediated and Fc-dependent functions with comparable neutralization and ADCP potencies, but a greater capacity to activate complement was elicited upon vaccination.

16.
Front Immunol ; 12: 759688, 2021.
Article in English | MEDLINE | ID: mdl-34987505

ABSTRACT

Antibodies (Abs) are essential for the host immune response against SARS-CoV-2, and all the vaccines developed so far have been designed to induce Abs targeting the SARS-CoV-2 spike. Many studies have examined Ab responses in the blood from vaccinated and infected individuals. However, since SARS-CoV-2 is a respiratory virus, it is also critical to understand the mucosal Ab responses at the sites of initial virus exposure. Here, we examined plasma versus saliva Ab responses in vaccinated and convalescent patients. Although saliva levels were significantly lower, a strong correlation was observed between plasma and saliva total Ig levels against all SARS-CoV-2 antigens tested. Virus-specific IgG1 responses predominated in both saliva and plasma, while a lower prevalence of IgM and IgA1 Abs was observed in saliva. Antiviral activities of plasma Abs were also studied. Neutralization titers against the initial WA1 (D614G), B.1.1.7 (alpha) and B.1.617.2 (delta) strains were similar but lower against the B.1.351 (beta) strain. Spike-specific antibody-dependent cellular phagocytosis (ADCP) activities were also detected and the levels correlated with spike-binding Ig titers. Interestingly, while neutralization and ADCP potencies of vaccinated and convalescent groups were comparable, enhanced complement deposition to spike-specific Abs was noted in vaccinated versus convalescent groups and corresponded with higher levels of IgG1 plus IgG3 among the vaccinated individuals. Altogether, this study demonstrates the detection of Ab responses after vaccination or infection in plasma and saliva that correlate significantly, although Ig isotypic differences were noted. The induced plasma Abs displayed Fab-mediated and Fc-dependent functions with comparable neutralization and ADCP potencies, but a greater capacity to activate complement was elicited upon vaccination.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Saliva/immunology , Spike Glycoprotein, Coronavirus/immunology , Adult , Aged , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Antibody Formation/immunology , COVID-19/blood , COVID-19/virology , Female , Humans , Immunoglobulin G/immunology , Male , Middle Aged , SARS-CoV-2/metabolism , SARS-CoV-2/physiology , Saliva/virology , Vaccination
17.
J Clin Invest ; 131(5)2021 03 01.
Article in English | MEDLINE | ID: mdl-33444290

ABSTRACT

Mutations affecting mitochondrial coenzyme Q (CoQ) biosynthesis lead to kidney failure due to selective loss of podocytes, essential cells of the kidney filter. Curiously, neighboring tubular epithelial cells are spared early in disease despite higher mitochondrial content. We sought to illuminate noncanonical, cell-specific roles for CoQ, independently of the electron transport chain (ETC). Here, we demonstrate that CoQ depletion caused by Pdss2 enzyme deficiency in podocytes results in perturbations in polyunsaturated fatty acid (PUFA) metabolism and the Braf/Mapk pathway rather than ETC dysfunction. Single-nucleus RNA-Seq from kidneys of Pdss2kd/kd mice with nephrotic syndrome and global CoQ deficiency identified a podocyte-specific perturbation of the Braf/Mapk pathway. Treatment with GDC-0879, a Braf/Mapk-targeting compound, ameliorated kidney disease in Pdss2kd/kd mice. Mechanistic studies in Pdss2-depleted podocytes revealed a previously unknown perturbation in PUFA metabolism that was confirmed in vivo. Gpx4, an enzyme that protects against PUFA-mediated lipid peroxidation, was elevated in disease and restored after GDC-0879 treatment. We demonstrate broader human disease relevance by uncovering patterns of GPX4 and Braf/Mapk pathway gene expression in tissue from patients with kidney diseases. Our studies reveal ETC-independent roles for CoQ in podocytes and point to Braf/Mapk as a candidate pathway for the treatment of kidney diseases.


Subject(s)
Ataxia/metabolism , Indenes/pharmacology , Kidney Diseases/metabolism , Lipid Peroxidation/drug effects , MAP Kinase Signaling System/drug effects , Mitochondrial Diseases/metabolism , Muscle Weakness/metabolism , Podocytes/metabolism , Proto-Oncogene Proteins B-raf/metabolism , Pyrazoles/pharmacology , Ubiquinone/deficiency , Alkyl and Aryl Transferases/genetics , Alkyl and Aryl Transferases/metabolism , Animals , Ataxia/drug therapy , Ataxia/genetics , Ataxia/pathology , Drug Delivery Systems , HEK293 Cells , Humans , Kidney Diseases/drug therapy , Kidney Diseases/genetics , Kidney Diseases/pathology , Lipid Peroxidation/genetics , MAP Kinase Signaling System/genetics , Mice , Mitochondrial Diseases/drug therapy , Mitochondrial Diseases/genetics , Mitochondrial Diseases/pathology , Muscle Weakness/drug therapy , Muscle Weakness/genetics , Muscle Weakness/pathology , Podocytes/pathology , Proto-Oncogene Proteins B-raf/genetics , RNA-Seq , Ubiquinone/genetics , Ubiquinone/metabolism
19.
Cancer Res ; 80(1): 30-43, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31694905

ABSTRACT

The receptor kinase c-MET has emerged as a target for glioblastoma therapy. However, treatment resistance emerges inevitably. Here, we performed global metabolite screening with metabolite set enrichment coupled with transcriptome and gene set enrichment analysis and proteomic screening, and identified substantial reprogramming of tumor metabolism involving oxidative phosphorylation and fatty acid oxidation (FAO) with substantial accumulation of acyl-carnitines accompanied by an increase of PGC1α in response to genetic (shRNA and CRISPR/Cas9) and pharmacologic (crizotinib) inhibition of c-MET. Extracellular flux and carbon tracing analyses (U-13C-glucose, U-13C-glutamine, and U-13C-palmitic acid) demonstrated enhanced oxidative metabolism, which was driven by FAO and supported by increased anaplerosis of glucose carbons. These findings were observed in concert with increased number and fusion of mitochondria and production of reactive oxygen species. Genetic interference with PGC1α rescued this oxidative phenotype driven by c-MET inhibition. Silencing and chromatin immunoprecipitation experiments demonstrated that cAMP response elements binding protein regulates the expression of PGC1α in the context of c-MET inhibition. Interference with both oxidative phosphorylation (metformin, oligomycin) and ß-oxidation of fatty acids (etomoxir) enhanced the antitumor efficacy of c-MET inhibition. Synergistic cell death was observed with c-MET inhibition and gamitrinib treatment. In patient-derived xenograft models, combination treatments of crizotinib and etomoxir, and crizotinib and gamitrinib were significantly more efficacious than single treatments and did not induce toxicity. Collectively, we have unraveled the mechanistic underpinnings of c-MET inhibition and identified novel combination therapies that may enhance its therapeutic efficacy. SIGNIFICANCE: c-MET inhibition causes profound metabolic reprogramming that can be targeted by drug combination therapies.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Brain Neoplasms/drug therapy , Glioblastoma/drug therapy , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Animals , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Carnitine/analogs & derivatives , Carnitine/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Respiration/drug effects , Crizotinib/pharmacology , Crizotinib/therapeutic use , Drug Synergism , Epoxy Compounds/pharmacology , Epoxy Compounds/therapeutic use , Fatty Acids/metabolism , Gene Expression Profiling , Glioblastoma/genetics , Glioblastoma/metabolism , Glioblastoma/pathology , Glycolysis/drug effects , Guanidines/pharmacology , Guanidines/therapeutic use , Humans , Lactams, Macrocyclic/pharmacology , Lactams, Macrocyclic/therapeutic use , Metabolomics , Mice , Mitochondria/metabolism , Mitochondrial Dynamics/drug effects , Oxidative Phosphorylation/drug effects , Proteomics , Proto-Oncogene Proteins c-met/genetics , Proto-Oncogene Proteins c-met/metabolism , Reactive Oxygen Species/metabolism , Xenograft Model Antitumor Assays
20.
Nat Med ; 26(7): 1033-1036, 2020 07.
Article in English | MEDLINE | ID: mdl-32398876

ABSTRACT

Here, we describe a serological enzyme-linked immunosorbent assay for the screening and identification of human SARS-CoV-2 seroconverters. This assay does not require the handling of infectious virus, can be adjusted to detect different antibody types in serum and plasma and is amenable to scaling. Serological assays are of critical importance to help define previous exposure to SARS-CoV-2 in populations, identify highly reactive human donors for convalescent plasma therapy and investigate correlates of protection.


Subject(s)
Betacoronavirus/immunology , Clinical Laboratory Techniques/methods , Coronavirus Infections/diagnosis , Coronavirus Infections/immunology , Pneumonia, Viral/diagnosis , Pneumonia, Viral/immunology , Seroconversion , Adult , Betacoronavirus/pathogenicity , COVID-19 , COVID-19 Testing , Case-Control Studies , Coronavirus Infections/blood , Coronavirus Infections/therapy , Coronavirus Infections/virology , Electrophoresis, Polyacrylamide Gel , Enzyme-Linked Immunosorbent Assay , Humans , Immunization, Passive , Longitudinal Studies , Middle Aged , Neutralization Tests , Pandemics , Pneumonia, Viral/therapy , Pneumonia, Viral/virology , SARS-CoV-2 , Young Adult , COVID-19 Serotherapy
SELECTION OF CITATIONS
SEARCH DETAIL