Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
PLoS Pathog ; 17(10): e1010002, 2021 10.
Article in English | MEDLINE | ID: mdl-34699554

ABSTRACT

Transcription of non-segmented negative sense (NNS) RNA viruses follows a stop-start mechanism and is thought to be initiated at the genome's very 3'-end. The synthesis of short abortive leader transcripts (leaderRNAs) has been linked to transcription initiation for some NNS viruses. Here, we identified the synthesis of abortive leaderRNAs (as well as trailer RNAs) that are specifically initiated opposite to (anti)genome nt 2; leaderRNAs are predominantly terminated in the region of nt ~ 60-80. LeaderRNA synthesis requires hexamer phasing in the 3'-leader promoter. We determined a steady-state NP mRNA:leaderRNA ratio of ~10 to 30-fold at 48 h after Ebola virus (EBOV) infection, and this ratio was higher (70 to 190-fold) for minigenome-transfected cells. LeaderRNA initiation at nt 2 and the range of termination sites were not affected by structure and length variation between promoter elements 1 and 2, nor the presence or absence of VP30. Synthesis of leaderRNA is suppressed in the presence of VP30 and termination of leaderRNA is not mediated by cryptic gene end (GE) signals in the 3'-leader promoter. We further found different genomic 3'-end nucleotide requirements for transcription versus replication, suggesting that promoter recognition is different in the replication and transcription mode of the EBOV polymerase. We further provide evidence arguing against a potential role of EBOV leaderRNAs as effector molecules in innate immunity. Taken together, our findings are consistent with a model according to which leaderRNAs are abortive replicative RNAs whose synthesis is not linked to transcription initiation. Rather, replication and transcription complexes are proposed to independently initiate RNA synthesis at separate sites in the 3'-leader promoter, i.e., at the second nucleotide of the genome 3'-end and at the more internally positioned transcription start site preceding the first gene, respectively, as reported for Vesicular stomatitis virus.


Subject(s)
DNA-Directed RNA Polymerases/metabolism , Ebolavirus/genetics , RNA, Viral/genetics , Transcription, Genetic/genetics , Ebolavirus/enzymology
2.
Biomacromolecules ; 23(11): 4718-4733, 2022 11 14.
Article in English | MEDLINE | ID: mdl-36269943

ABSTRACT

Within this study, an amphiphilic and potentially biodegradable polypeptide library based on poly[(4-aminobutyl)-l-glutamine-stat-hexyl-l-glutamine] [P(AB-l-Gln-stat-Hex-l-Gln)] was investigated for gene delivery. The influence of varying proportions of aliphatic and cationic side chains affecting the physicochemical properties of the polypeptides on transfection efficiency was investigated. A composition of 40 mol% Hex-l-Gln and 60 mol % AB-l-Gln (P3) was identified as best performer over polypeptides with higher proportions of protonatable monomers. Detailed studies of the transfection mechanism revealed the strongest interaction of P3 with cell membranes, promoting efficient endocytic cell uptake and high endosomal release. Spectrally, time-, and z-resolved fluorescence microscopy further revealed the crucial role of filopodia surfing in polyplex-cell interaction and particle internalization in lamellipodia regions, followed by rapid particle transport into cells. This study demonstrates the great potential of polypeptides for gene delivery. The amphiphilic character improves performance over cationic homopolypeptides, and the potential biodegradability is advantageous toward other synthetic polymeric delivery systems.


Subject(s)
Gene Transfer Techniques , Glutamine , Genetic Therapy , Transfection , Cations , Peptides
3.
Cell Mol Life Sci ; 79(1): 40, 2021 Dec 31.
Article in English | MEDLINE | ID: mdl-34971430

ABSTRACT

Leukotrienes are pro-inflammatory lipid mediators generated by 5-lipoxygenase aided by the 5-lipoxygenase-activating protein (FLAP). BRP-201, a novel benzimidazole-based FLAP antagonist, inhibits leukotriene biosynthesis in isolated leukocytes. However, like other FLAP antagonists, BRP-201 fails to effectively suppress leukotriene formation in blood, which limits its therapeutic value. Here, we describe the encapsulation of BRP-201 into poly(lactide-co-glycolide) (PLGA) and ethoxy acetalated dextran (Ace-DEX) nanoparticles (NPs), aiming to overcome these detrimental pharmacokinetic limitations and to enhance the bioactivity of BRP-201. NPs loaded with BRP-201 were produced via nanoprecipitation and the physicochemical properties of the NPs were analyzed in-depth using dynamic light scattering (size, dispersity, degradation), electrophoretic light scattering (effective charge), NP tracking analysis (size, dispersity), scanning electron microscopy (size and morphology), UV-VIS spectroscopy (drug loading), an analytical ultracentrifuge (drug release, degradation kinetics), and Raman spectroscopy (chemical attributes). Biological assays were performed to study cytotoxicity, cellular uptake, and efficiency of BRP-201-loaded NPs versus free BRP-201 to suppress leukotriene formation in primary human leukocytes and whole blood. Both PLGA- and Ace-DEX-based NPs were significantly more efficient to inhibit leukotriene formation in neutrophils versus free drug. Whole blood experiments revealed that encapsulation of BRP-201 into Ace-DEX NPs strongly increases its potency, especially upon pro-longed (≥ 5 h) incubations and upon lipopolysaccharide-challenge of blood. Finally, intravenous injection of BRP-201-loaded NPs significantly suppressed leukotriene levels in blood of mice in vivo. These results reveal the feasibility of our pharmacological approach using a novel FLAP antagonist encapsulated into Ace-DEX-based NPs with improved efficiency in blood to suppress leukotriene biosynthesis.


Subject(s)
Leukotriene Antagonists/pharmacology , Leukotrienes , Nanoparticles/chemistry , Animals , Female , Healthy Volunteers , Humans , Leukotrienes/biosynthesis , Leukotrienes/metabolism , Male , Mice
4.
J Nanobiotechnology ; 18(1): 73, 2020 May 14.
Article in English | MEDLINE | ID: mdl-32408877

ABSTRACT

BACKGROUND: Dual inhibitors of the 5-lipoxygenase-activating protein (FLAP) and the microsomal prostaglandin E2 synthase-1 (mPGES-1) may exert better anti-inflammatory efficacy and lower risks of adverse effects versus non-steroidal anti-inflammatory drugs. Despite these advantages, many dual FLAP/mPGES-1 inhibitors are acidic lipophilic molecules with low solubility and strong tendency for plasma protein binding that limit their bioavailability and bioactivity. Here, we present the encapsulation of the dual FLAP/mPGES-1 inhibitor BRP-187 into the biocompatible polymers acetalated dextran (Acdex) and poly(lactic-co-glycolic acid) (PLGA) via nanoprecipitation. RESULTS: The nanoparticles containing BRP-187 were prepared by the nanoprecipitation method and analyzed by dynamic light scattering regarding their hydrodynamic diameter, by scanning electron microscopy for morphology properties, and by UV-VIS spectroscopy for determination of the encapsulation efficiency of the drug. Moreover, we designed fluorescent BRP-187 particles, which showed high cellular uptake by leukocytes, as analyzed by flow cytometry. Finally, BRP-187 nanoparticles were tested in human polymorphonuclear leukocytes and macrophages to determine drug uptake, cytotoxicity, and efficiency to inhibit FLAP and mPGES-1. CONCLUSION: Our results demonstrate that encapsulation of BRP-187 into Acdex and PLGA is feasible, and both PLGA- and Acdex-based particles loaded with BRP-187 are more efficient in suppressing 5-lipoxygenase product formation and prostaglandin E2 biosynthesis in intact cells as compared to the free compound, particularly after prolonged preincubation periods.


Subject(s)
Dextrans/chemistry , Isoxazoles/chemistry , Nanoparticles/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Quinolines/chemistry , Adult , Anti-Inflammatory Agents , Cells, Cultured , Dinoprostone/metabolism , Drug Compounding , Fluorescent Dyes/chemistry , Humans , Isoxazoles/pharmacology , Neutrophils/drug effects , Quinolines/pharmacology
5.
BMC Genomics ; 20(1): 85, 2019 Jan 24.
Article in English | MEDLINE | ID: mdl-30678634

ABSTRACT

BACKGROUND: Next-Generation Sequencing (NGS) has been widely accepted as an essential tool in molecular biology. Reduced costs and automated analysis pipelines make the use of NGS data feasible even for small labs, yet the methods for interpreting the data are not sophisticated enough to account for the amount of information. RESULTS: We propose s ·nr, a Visual Analytics tool that provides simple yet powerful visual interfaces for displaying and querying NGS data. It allows researchers to explore their own data in the context of experimental data deposited in public repositories, as well as to extract specific data sets with similar gene expression signatures. We tested s ·nr on 1543 RNA-Seq based mouse differential expression profiles derived from the public ArrayExpress platform. We provide the repository of processed data with this paper. CONCLUSION: s ·nr, easily deployable utilizing its containerized implementation, empowers researchers to analyze and relate their own RNA-Seq as well as to provide interactive and contextual crosstalk with data from public repositories. This allows users to deduce novel and unbiased hypotheses about the underlying molecular processes. DEMO: Login demo/demo: snr.sf.mpg.de (Tested with Google Chrome).


Subject(s)
Gene Expression Profiling/methods , High-Throughput Nucleotide Sequencing/methods , Sequence Analysis, RNA/methods , Software , Animals , Computer Graphics , Mice , User-Computer Interface
7.
J Cell Mol Med ; 22(11): 5265-5277, 2018 11.
Article in English | MEDLINE | ID: mdl-30133147

ABSTRACT

Podocyte loss and changes to the complex morphology are major causes of chronic kidney disease (CKD). As the incidence is continuously increasing over the last decades without sufficient treatment, it is important to find predicting biomarkers. Therefore, we measured urinary mRNA levels of podocyte genes NPHS1, NPHS2, PODXL and BDNF, KIM-1, CTSL by qRT-PCR of 120 CKD patients. We showed a strong correlation between BDNF and the kidney injury marker KIM-1, which were also correlated with NPHS1, suggesting podocytes as a contributing source. In human biopsies, BDNF was localized in the cell body and major processes of podocytes. In glomeruli of diabetic nephropathy patients, we found a strong BDNF signal in the remaining podocytes. An inhibition of the BDNF receptor TrkB resulted in enhanced podocyte dedifferentiation. The knockdown of the orthologue resulted in pericardial oedema formation and lowered viability of zebrafish larvae. We found an enlarged Bowman's space, dilated glomerular capillaries, podocyte loss and an impaired glomerular filtration. We demonstrated that BDNF is essential for glomerular development, morphology and function and the expression of BDNF and KIM-1 is highly correlated in urine cells of CKD patients. Therefore, BDNF mRNA in urine cells could serve as a potential CKD biomarker.


Subject(s)
Brain-Derived Neurotrophic Factor/genetics , Diabetic Nephropathies/genetics , Hepatitis A Virus Cellular Receptor 1/genetics , Membrane Glycoproteins/genetics , Receptor, trkB/genetics , Renal Insufficiency, Chronic/genetics , Aged , Animals , Brain-Derived Neurotrophic Factor/urine , Diabetic Nephropathies/pathology , Disease Models, Animal , Female , Gene Expression Regulation/genetics , Humans , Kidney/metabolism , Kidney/pathology , Kidney Glomerulus/metabolism , Kidney Glomerulus/pathology , Male , Membrane Glycoproteins/urine , Middle Aged , Podocytes/metabolism , Podocytes/pathology , Proteinuria/genetics , Proteinuria/pathology , RNA, Messenger/genetics , Receptor, trkB/urine , Renal Insufficiency, Chronic/pathology , Renal Insufficiency, Chronic/urine , Zebrafish/genetics
8.
Cell Rep ; 43(6): 114343, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38865247

ABSTRACT

Activation of prepronociceptin (PNOC)-expressing neurons in the arcuate nucleus (ARC) promotes high-fat-diet (HFD)-induced hyperphagia. In turn, PNOCARC neurons can inhibit the anorexic response of proopiomelanocortin (POMC) neurons. Here, we validate the necessity of PNOCARC activity for HFD-induced inhibition of POMC neurons in mice and find that PNOCARC-neuron-dependent inhibition of POMC neurons is mediated by gamma-aminobutyric acid (GABA) release. When monitoring individual PNOCARC neuron activity via Ca2+ imaging, we find a subpopulation of PNOCARC neurons that is inhibited upon gastrointestinal calorie sensing and disinhibited upon HFD feeding. Combining retrograde rabies tracing and circuit mapping, we find that PNOC neurons from the bed nucleus of the stria terminalis (PNOCBNST) provide inhibitory input to PNOCARC neurons, and this inhibitory input is blunted upon HFD feeding. This work sheds light on how an increase in caloric content of the diet can rewire a neuronal circuit, paving the way to overconsumption and obesity development.


Subject(s)
Diet, High-Fat , Hyperphagia , Septal Nuclei , Animals , Hyperphagia/metabolism , Mice , Septal Nuclei/metabolism , Neurons/metabolism , Male , gamma-Aminobutyric Acid/metabolism , Pro-Opiomelanocortin/metabolism , GABAergic Neurons/metabolism , Arcuate Nucleus of Hypothalamus/metabolism , Mice, Inbred C57BL , Protein Precursors , Receptors, Opioid
9.
Biodes Res ; 6: 0025, 2024.
Article in English | MEDLINE | ID: mdl-38384496

ABSTRACT

The construction of complex synthetic gene circuits with predetermined and reliable output depends on orthogonal regulatory parts that do not inadvertently interfere with the host machinery or with other circuit components. Previously, extracytoplasmic function sigma factors (ECFs), a diverse group of alternative sigma factors with distinct promoter specificities, were shown to have great potential as context-independent regulators, but so far, they have only been used in a few model species. Here, we show that the alphaproteobacterium Sinorhizobium meliloti, which has been proposed as a plant-associated bacterial chassis for synthetic biology, has a similar phylogenetic ECF acceptance range as the gammaproteobacterium Escherichia coli. A common set of orthogonal ECF-based regulators that can be used in both bacterial hosts was identified and used to create 2-step delay circuits. The genetic circuits were implemented in single copy in E. coli by chromosomal integration using an established method that utilizes bacteriophage integrases. In S. meliloti, we demonstrated the usability of single-copy pABC plasmids as equivalent carriers of the synthetic circuits. The circuits were either implemented on a single pABC or modularly distributed on 3 such plasmids. In addition, we provide a toolbox containing pABC plasmids compatible with the Golden Gate (MoClo) cloning standard and a library of basic parts that enable the construction of ECF-based circuits in S. meliloti and in E. coli. This work contributes to building a context-independent and species-overarching ECF-based toolbox for synthetic biology applications.

10.
Nat Metab ; 6(6): 1053-1075, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38684889

ABSTRACT

Promoting brown adipose tissue (BAT) activity innovatively targets obesity and metabolic disease. While thermogenic activation of BAT is well understood, the rheostatic regulation of BAT to avoid excessive energy dissipation remains ill-defined. Here, we demonstrate that adenylyl cyclase 3 (AC3) is key for BAT function. We identified a cold-inducible promoter that generates a 5' truncated AC3 mRNA isoform (Adcy3-at), whose expression is driven by a cold-induced, truncated isoform of PPARGC1A (PPARGC1A-AT). Male mice lacking Adcy3-at display increased energy expenditure and are resistant to obesity and ensuing metabolic imbalances. Mouse and human AC3-AT are retained in the endoplasmic reticulum, unable to translocate to the plasma membrane and lack enzymatic activity. AC3-AT interacts with AC3 and sequesters it in the endoplasmic reticulum, reducing the pool of adenylyl cyclases available for G-protein-mediated cAMP synthesis. Thus, AC3-AT acts as a cold-induced rheostat in BAT, limiting adverse consequences of cAMP activity during chronic BAT activation.


Subject(s)
Adenylyl Cyclases , Adipose Tissue, Brown , Cold Temperature , Adenylyl Cyclases/metabolism , Adenylyl Cyclases/genetics , Adipose Tissue, Brown/metabolism , Animals , Mice , Male , Humans , Thermogenesis/genetics , Energy Metabolism , Cyclic AMP/metabolism , Mice, Knockout
11.
Front Bioinform ; 3: 1322477, 2023.
Article in English | MEDLINE | ID: mdl-38152702

ABSTRACT

Proteinortho is a widely used tool to predict (co)-orthologous groups of genes for any set of species. It finds application in comparative and functional genomics, phylogenomics, and evolutionary reconstructions. With a rapidly increasing number of available genomes, the demand for large-scale predictions is also growing. In this contribution, we evaluate and implement major algorithmic improvements that significantly enhance the speed of the analysis without reducing precision. Graph-based detection of (co-)orthologs is typically based on a reciprocal best alignment heuristic that requires an all vs. all comparison of proteins from all species under study. The initial identification of similar proteins is accelerated by introducing an alternative search tool along with a revised search strategy-the pseudo-reciprocal best alignment heuristic-that reduces the number of required sequence comparisons by one-half. The clustering algorithm was reworked to efficiently decompose very large clusters and accelerate processing. Proteinortho6 reduces the overall processing time by an order of magnitude compared to its predecessor while maintaining its small memory footprint and good predictive quality.

12.
Int J Pharm X ; 5: 100173, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36908303

ABSTRACT

Dextran-based polymers, such as ethoxy acetalated dextran (Ace-DEX), are increasingly becoming the focus of research as they offer great potential for the development of polymer-based nanoparticles as drug delivery vehicles. Their major advantages are the facile synthesis, straightforward particle preparation and the pH-dependent degradation of the particles that can be fine-tuned by the degree of acetalation of the polymer. In this study we have shown that Ace-DEX can not only compete against the commonly used and FDA-approved polymer poly(lactic-co-glycolic acid) (PLGA), but even has the potential to outperform it in its encapsulation properties, e.g., for the herein used anti-inflammatory leukotriene biosynthesis inhibitor BRP-187. We used three different methods (microfluidics, batch nanoprecipitation and emulsion solvent evaporation) for the preparation of BRP-187-loaded Ace-DEX nanoparticles to investigate the influence of the formulation technique on the physicochemical properties of the particles. Finally, we evaluated which production method offers the greatest potential for achieving the demands for a successful translation from research into pharmaceutical production by fulfilling the basic requirements, such as reaching a high loading capacity of the particles and excellent reproducibility while being simple and affordable.

13.
Cell Metab ; 35(5): 786-806.e13, 2023 05 02.
Article in English | MEDLINE | ID: mdl-37075752

ABSTRACT

Autophagy represents a key regulator of aging and metabolism in sensing energy deprivation. We find that fasting in mice activates autophagy in the liver paralleled by activation of hypothalamic AgRP neurons. Optogenetic and chemogenetic activation of AgRP neurons induces autophagy, alters phosphorylation of autophagy regulators, and promotes ketogenesis. AgRP neuron-dependent induction of liver autophagy relies on NPY release in the paraventricular nucleus of the hypothalamus (PVH) via presynaptic inhibition of NPY1R-expressing neurons to activate PVHCRH neurons. Conversely, inhibiting AgRP neurons during energy deprivation abrogates induction of hepatic autophagy and rewiring of metabolism. AgRP neuron activation increases circulating corticosterone concentrations, and reduction of hepatic glucocorticoid receptor expression attenuates AgRP neuron-dependent activation of hepatic autophagy. Collectively, our study reveals a fundamental regulatory principle of liver autophagy in control of metabolic adaptation during nutrient deprivation.


Subject(s)
Hypothalamus , Neurons , Mice , Animals , Agouti-Related Protein/metabolism , Neurons/metabolism , Hypothalamus/metabolism , Liver/metabolism , Nutrients
14.
Front Plant Sci ; 13: 1034708, 2022.
Article in English | MEDLINE | ID: mdl-36618657

ABSTRACT

Crop diseases caused by pathogens critically affect global food security and plant ecology. Pathogens are well adapted to their host plants and have developed sophisticated mechanisms allowing successful colonization. Plants in turn have taken measures to counteract pathogen attacks resulting in an evolutionary arms race. Recent studies provided mechanistic insights into how two plant Kiwellin proteins from Zea mays mitigate the activity of the chorismate mutase Cmu1, a virulence factor secreted by the fungal pathogen Ustilago maydis during maize infection. Formerly identified as human allergens in kiwifruit, the biological function of Kiwellins is apparently linked to plant defense. We combined the analysis of proteome data with structural predictions to obtain a holistic overview of the Kiwellin protein family, that is subdivided into proteins with and without a N-terminal kissper domain. We found that Kiwellins are evolutionarily conserved in various plant species. At median five Kiwellin paralogs are encoded in each plant genome. Structural predictions revealed that Barwin-like proteins and Kiwellins cannot be discriminated purely at the sequence level. Our data shows that Kiwellins emerged in land plants (embryophyta) and are not present in fungi as suggested earlier. They evolved via three major duplication events that lead to clearly distinguishable subfamilies. We introduce a systematic Kiwellin nomenclature based on a detailed evolutionary reconstruction of this protein family. A meta-analysis of publicly available transcriptome data demonstrated that Kiwellins can be differentially regulated upon the interaction of plants with pathogens but also with symbionts. Furthermore, significant differences in Kiwellin expression levels dependent on tissues and cultivars were observed. In summary, our study sheds light on the evolution and regulation of a large protein family and provides a framework for a more detailed understanding of the molecular functions of Kiwellins.

15.
Viruses ; 14(3)2022 03 03.
Article in English | MEDLINE | ID: mdl-35336926

ABSTRACT

Rocaglates are potent broad-spectrum antiviral compounds with a promising safety profile. They inhibit viral protein synthesis for different RNA viruses by clamping the 5'-UTRs of mRNAs onto the surface of the RNA helicase eIF4A. Apart from the natural rocaglate silvestrol, synthetic rocaglates like zotatifin or CR-1-31-B have been developed. Here, we compared the effects of rocaglates on viral 5'-UTR-mediated reporter gene expression and binding to an eIF4A-polypurine complex. Furthermore, we analyzed the cytotoxicity of rocaglates on several human immune cells and compared their antiviral activities in coronavirus-infected cells. Finally, the potential for developing viral resistance was evaluated by passaging human coronavirus 229E (HCoV-229E) in the presence of increasing concentrations of rocaglates in MRC-5 cells. Importantly, no decrease in rocaglate-sensitivity was observed, suggesting that virus escape mutants are unlikely to emerge if the host factor eIF4A is targeted. In summary, all three rocaglates are promising antivirals with differences in cytotoxicity against human immune cells, RNA-clamping efficiency, and antiviral activity. In detail, zotatifin showed reduced RNA-clamping efficiency and antiviral activity compared to silvestrol and CR-1-31-B, but was less cytotoxic for immune cells. Our results underline the potential of rocaglates as broad-spectrum antivirals with no indications for the emergence of escape mutations in HCoV-229E.


Subject(s)
Antineoplastic Agents , Coronavirus , 5' Untranslated Regions , Antineoplastic Agents/pharmacology , Antiviral Agents/pharmacology , Constriction , Humans
16.
JCI Insight ; 7(21)2022 11 08.
Article in English | MEDLINE | ID: mdl-36345942

ABSTRACT

Dopamine acts on neurons in the arcuate nucleus (ARC) of the hypothalamus, which controls homeostatic feeding responses. Here we demonstrate a differential enrichment of dopamine receptor 1 (Drd1) expression in food intake-promoting agouti related peptide (AgRP)/neuropeptide Y (NPY) neurons and a large proportion of Drd2-expressing anorexigenic proopiomelanocortin (POMC) neurons. Owing to the nature of these receptors, this translates into a predominant activation of AgRP/NPY neurons upon dopamine stimulation and a larger proportion of dopamine-inhibited POMC neurons. Employing intersectional targeting of Drd2-expressing POMC neurons, we reveal that dopamine-mediated POMC neuron inhibition is Drd2 dependent and that POMCDrd2+ neurons exhibit differential expression of neuropeptide signaling mediators compared with the global POMC neuron population, which manifests in enhanced somatostatin responsiveness of POMCDrd2+ neurons. Selective chemogenetic activation of POMCDrd2+ neurons uncovered their ability to acutely suppress feeding and to preserve body temperature in fasted mice. Collectively, the present study provides the molecular and functional characterization of POMCDrd2+ neurons and aids our understanding of dopamine-dependent control of homeostatic energy-regulatory neurocircuits.


Subject(s)
Dopamine , Pro-Opiomelanocortin , Animals , Mice , Agouti-Related Protein/metabolism , Body Temperature , Dopamine/metabolism , Neurons/metabolism , Neuropeptide Y/metabolism , Pro-Opiomelanocortin/metabolism
17.
Nat Metab ; 4(10): 1402-1419, 2022 10.
Article in English | MEDLINE | ID: mdl-36266547

ABSTRACT

The hypothalamus plays a key role in coordinating fundamental body functions. Despite recent progress in single-cell technologies, a unified catalog and molecular characterization of the heterogeneous cell types and, specifically, neuronal subtypes in this brain region are still lacking. Here, we present an integrated reference atlas, 'HypoMap,' of the murine hypothalamus, consisting of 384,925 cells, with the ability to incorporate new additional experiments. We validate HypoMap by comparing data collected from Smart-Seq+Fluidigm C1 and bulk RNA sequencing of selected neuronal cell types with different degrees of cellular heterogeneity. Finally, via HypoMap, we identify classes of neurons expressing glucagon-like peptide-1 receptor (Glp1r) and prepronociceptin (Pnoc), and validate them using single-molecule in situ hybridization. Collectively, HypoMap provides a unified framework for the systematic functional annotation of murine hypothalamic cell types, and it can serve as an important platform to unravel the functional organization of hypothalamic neurocircuits and to identify druggable targets for treating metabolic disorders.


Subject(s)
Glucagon-Like Peptide-1 Receptor , Hypothalamus , Mice , Animals , Glucagon-Like Peptide-1 Receptor/genetics , Hypothalamus/metabolism , Neurons/metabolism , Sequence Analysis, RNA , Gene Expression
18.
Mol Metab ; 66: 101626, 2022 12.
Article in English | MEDLINE | ID: mdl-36356831

ABSTRACT

OBJECTIVE: Nonalcoholic fatty liver disease (NAFLD) ranges from steatosis to nonalcoholic steatohepatitis (NASH), which often progresses to hepatocellular carcinoma (HCC) through a largely undefined mechanism. NASH and HCC depend on inflammatory signaling, whose master regulator is the NFκB transcription factor family, activated by canonical and non-canonical pathways. METHODS: Here, we investigated non-canonical NFκB-inducing kinase (NIK/MAP3K14) in metabolic NASH, NASH to HCC transition, and DEN-induced HCC. To this end, we performed dietary and chemical interventions in mice that were analyzed via single nucleus sequencing, gene expression and histochemical methods. Ultimately, we verified our mouse results in human patient samples. RESULTS: We revealed that hepatocyte-specific NIK deficiency (NIKLKO) ameliorated metabolic NASH complications and reduced hepatocarcinogenesis, independent of its role in the NFκB pathway. Instead, hepatic NIK attenuated hepatoprotective JAK2/STAT5 signaling that is a prerequisite for NASH and NASH to HCC progression in mice and humans. CONCLUSIONS: Our data suggest NIK-mediated inhibitory JAK2 phosphorylation at serine 633 that might be amenable for future therapeutic interventions in patients.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Non-alcoholic Fatty Liver Disease , Animals , Humans , Mice , Carcinoma, Hepatocellular/metabolism , Hepatocytes/metabolism , Janus Kinase 2/metabolism , Liver Neoplasms/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , STAT5 Transcription Factor/metabolism , NF-kappaB-Inducing Kinase
19.
J Mater Chem B ; 9(39): 8224-8236, 2021 10 13.
Article in English | MEDLINE | ID: mdl-34643200

ABSTRACT

In the present study, three biodegradable block copolymers composed of a poly(ethylene glycol) block and a copolypeptide block with varying compositions of cationic L-lysine (L-Lys) and hydrophobic benzyl-L-glutamate (Bzl-L-Glu) were designed for gene delivery applications. The polypeptides were synthesized by ring opening polymerization (ROP) and after orthogonal deprotection of Boc-L-Lys side chains, the polymer exhibited an amphiphilic character. To bind or encapsulate plasmid DNA (pDNA), different formulations were investigated: a nanoprecipitation and an emulsion technique using various organic solvents as well as an aqueous pH-controlled formulation method. The complex and nanoparticle (NP) formations were monitored by dynamic light scattering (DLS), and pDNA interaction was shown by gel electrophoresis and subsequent controlled release with heparin. The polypeptides were further tested for their cytotoxicity as well as biodegradability. The complexes and NPs presenting the most promising size distributions and pDNA binding ability were subsequently evaluated for their transfection efficiency in HEK293T cells. The highest transfection efficiencies were obtained with an aqueous formulation of the polypeptide containing the highest L-Lys content and lowest proportion of hydrophobic, helical structures (P1*), which is therefore a promising candidate for efficient gene delivery by biodegradable gene delivery vectors.


Subject(s)
Biocompatible Materials/chemistry , DNA/chemistry , Peptides/chemistry , Polyethylene Glycols/chemistry , Transfection , Animals , Cell Line , Cell Survival/drug effects , Electrophoresis, Agar Gel , Gene Transfer Techniques , Glutamic Acid/analogs & derivatives , Glutamic Acid/chemistry , Humans , Lysine/chemistry , Mice , Nanoparticles
20.
BMC Genom Data ; 22(1): 29, 2021 09 03.
Article in English | MEDLINE | ID: mdl-34479493

ABSTRACT

BACKGROUND: 6S RNA is a regulator of cellular transcription that tunes the metabolism of cells. This small non-coding RNA is found in nearly all bacteria and among the most abundant transcripts. Lactic acid bacteria (LAB) constitute a group of microorganisms with strong biotechnological relevance, often exploited as starter cultures for industrial products through fermentation. Some strains are used as probiotics while others represent potential pathogens. Occasional reports of 6S RNA within this group already indicate striking metabolic implications. A conceivable idea is that LAB with 6S RNA defects may metabolize nutrients faster, as inferred from studies of Echerichia coli. This may accelerate fermentation processes with the potential to reduce production costs. Similarly, elevated levels of secondary metabolites might be produced. Evidence for this possibility comes from preliminary findings regarding the production of surfactin in Bacillus subtilis, which has functions similar to those of bacteriocins. The prerequisite for its potential biotechnological utility is a general characterization of 6S RNA in LAB. RESULTS: We provide a genomic annotation of 6S RNA throughout the Lactobacillales order. It laid the foundation for a bioinformatic characterization of common 6S RNA features. This covers secondary structures, synteny, phylogeny, and product RNA start sites. The canonical 6S RNA structure is formed by a central bulge flanked by helical arms and a template site for product RNA synthesis. 6S RNA exhibits strong syntenic conservation. It is usually flanked by the replication-associated recombination protein A and the universal stress protein A. A catabolite responsive element was identified in over a third of all 6S RNA genes. It is known to modulate gene expression based on the available carbon sources. The presence of antisense transcripts could not be verified as a general trait of LAB 6S RNAs. CONCLUSIONS: Despite a large number of species and the heterogeneity of LAB, the stress regulator 6S RNA is well-conserved both from a structural as well as a syntenic perspective. This is the first approach to describe 6S RNAs and short 6S RNA-derived transcripts beyond a single species, spanning a large taxonomic group covering multiple families. It yields universal insights into this regulator and complements the findings derived from other bacterial model organisms.


Subject(s)
Gene Expression Regulation, Bacterial , Lactobacillales/genetics , RNA, Bacterial/genetics , RNA, Untranslated/genetics , Bacillus subtilis/genetics , Conserved Sequence/genetics , Humans , Synteny/genetics
SELECTION OF CITATIONS
SEARCH DETAIL