Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 113
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Mol Cell ; 83(20): 3679-3691.e8, 2023 10 19.
Article in English | MEDLINE | ID: mdl-37797621

ABSTRACT

The tumor-suppressor breast cancer 1 (BRCA1) in complex with BRCA1-associated really interesting new gene (RING) domain 1 (BARD1) is a RING-type ubiquitin E3 ligase that modifies nucleosomal histone and other substrates. The importance of BRCA1-BARD1 E3 activity in tumor suppression remains highly controversial, mainly stemming from studying mutant ligase-deficient BRCA1-BARD1 species that we show here still retain significant ligase activity. Using full-length BRCA1-BARD1, we establish robust BRCA1-BARD1-mediated ubiquitylation with specificity, uncover multiple modes of activity modulation, and construct a truly ligase-null variant and a variant specifically impaired in targeting nucleosomal histones. Cells expressing either of these BRCA1-BARD1 separation-of-function alleles are hypersensitive to DNA-damaging agents. Furthermore, we demonstrate that BRCA1-BARD1 ligase is not only required for DNA resection during homology-directed repair (HDR) but also contributes to later stages for HDR completion. Altogether, our findings reveal crucial, previously unrecognized roles of BRCA1-BARD1 ligase activity in genome repair via HDR, settle prior controversies regarding BRCA1-BARD1 ligase functions, and catalyze new efforts to uncover substrates related to tumor suppression.


Subject(s)
Neoplasms , Tumor Suppressor Proteins , Humans , Tumor Suppressor Proteins/metabolism , BRCA1 Protein/metabolism , Ubiquitination , Histones/genetics , Histones/metabolism , Ubiquitin-Protein Ligases/metabolism , Recombinational DNA Repair , DNA , DNA Repair
2.
EMBO J ; 42(15): e113565, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37305927

ABSTRACT

BRCA1/BARD1 is a tumor suppressor E3 ubiquitin (Ub) ligase with roles in DNA damage repair and in transcriptional regulation. BRCA1/BARD1 RING domains interact with nucleosomes to facilitate mono-ubiquitylation of distinct residues on the C-terminal tail of histone H2A. These enzymatic domains constitute a small fraction of the heterodimer, raising the possibility of functional chromatin interactions involving other regions such as the BARD1 C-terminal domains that bind nucleosomes containing the DNA damage signal H2A K15-Ub and H4 K20me0, or portions of the expansive intrinsically disordered regions found in both subunits. Herein, we reveal novel interactions that support robust H2A ubiquitylation activity mediated through a high-affinity, intrinsically disordered DNA-binding region of BARD1. These interactions support BRCA1/BARD1 recruitment to chromatin and sites of DNA damage in cells and contribute to their survival. We also reveal distinct BRCA1/BARD1 complexes that depend on the presence of H2A K15-Ub, including a complex where a single BARD1 subunit spans adjacent nucleosome units. Our findings identify an extensive network of multivalent BARD1-nucleosome interactions that serve as a platform for BRCA1/BARD1-associated functions on chromatin.


Subject(s)
Nucleosomes , Tumor Suppressor Proteins , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , BRCA1 Protein/genetics , BRCA1 Protein/metabolism , Ubiquitination , Histones/genetics , Histones/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Chromatin
3.
Trends Biochem Sci ; 47(7): 582-595, 2022 07.
Article in English | MEDLINE | ID: mdl-35351360

ABSTRACT

Mutations in BRCA1 and BARD1 predispose carriers to breast and ovarian cancers. The BRCA1 and BARD1 proteins form a heterodimeric complex (BRCA1/BARD1) that regulates many biological processes, including transcription and DNA double-stranded break repair. These functions are mediated by the only known enzymatic activity of BRCA1/BARD1 in its capacity as an E3 ubiquitin ligase and its role as a central hub for many large protein complexes. But the mechanisms by which BRCA1/BARD1 interfaces with chromatin, where it exerts its major functions, have remained unknown. Here, we review recent advancements in structural and cellular biology that have provided critical insights into how BRCA1/BARD1 serves as both a nucleosome reader and writer to facilitate transcriptional regulation and DNA repair by homologous recombination.


Subject(s)
Nucleosomes , Tumor Suppressor Proteins , BRCA1 Protein/genetics , BRCA1 Protein/metabolism , DNA Breaks, Double-Stranded , DNA Repair , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism
4.
Mol Cell ; 72(4): 753-765.e6, 2018 11 15.
Article in English | MEDLINE | ID: mdl-30392931

ABSTRACT

DNA methylation patterns regulate gene expression programs and are maintained through a highly coordinated process orchestrated by the RING E3 ubiquitin ligase UHRF1. UHRF1 controls DNA methylation inheritance by reading epigenetic modifications to histones and DNA to activate histone H3 ubiquitylation. Here, we find that all five domains of UHRF1, including the previously uncharacterized ubiquitin-like domain (UBL), cooperate for hemi-methylated DNA-dependent H3 ubiquitin ligation. Our structural and biochemical studies, including mutations found in cancer genomes, reveal a bifunctional requirement for the UBL in histone modification: (1) the UBL makes an essential interaction with the backside of the E2 and (2) the UBL coordinates with other UHRF1 domains that recognize epigenetic marks on DNA and histone H3 to direct ubiquitin to H3. Finally, we show UBLs from other E3s also have a conserved interaction with the E2, Ube2D, highlighting a potential prevalence of interactions between UBLs and E2s.


Subject(s)
CCAAT-Enhancer-Binding Proteins/metabolism , DNA Methylation , Histones/metabolism , Amino Acid Sequence , CCAAT-Enhancer-Binding Proteins/genetics , DNA/genetics , DNA/metabolism , DNA (Cytosine-5-)-Methyltransferase 1/genetics , DNA (Cytosine-5-)-Methyltransferase 1/metabolism , Epigenesis, Genetic , Histones/genetics , Humans , Protein Binding , Protein Domains , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
5.
Proc Natl Acad Sci U S A ; 120(6): e2213765120, 2023 02 07.
Article in English | MEDLINE | ID: mdl-36719917

ABSTRACT

Small heat-shock proteins (sHSPs) are a widely expressed family of ATP-independent molecular chaperones that are among the first responders to cellular stress. Mechanisms by which sHSPs delay aggregation of client proteins remain undefined. sHSPs have high intrinsic disorder content of up to ~60% and assemble into large, polydisperse homo- and hetero-oligomers, making them challenging structural and biochemical targets. Two sHSPs, HSPB4 and HSPB5, are present at millimolar concentrations in eye lens, where they are responsible for maintaining lens transparency over the lifetime of an organism. Together, HSPB4 and HSPB5 compose the hetero-oligomeric chaperone known as α-crystallin. To identify the determinants of sHSP function, we compared the effectiveness of HSPB4 and HSPB5 homo-oligomers and HSPB4/HSPB5 hetero-oligomers in delaying the aggregation of the lens protein γD-crystallin. In chimeric versions of HSPB4 and HSPB5, chaperone activity tracked with the identity of the 60-residue disordered N-terminal regions (NTR). A short 10-residue stretch in the middle of the NTR ("Critical sequence") contains three residues that are responsible for high HSPB5 chaperone activity toward γD-crystallin. These residues affect structure and dynamics throughout the NTR. Abundant interactions involving the NTR Critical sequence reveal it to be a hub for a network of interactions within oligomers. We propose a model whereby the NTR critical sequence influences local structure and NTR dynamics that modulate accessibility of the NTR, which in turn modulates chaperone activity.


Subject(s)
Heat-Shock Proteins, Small , Lens, Crystalline , alpha-Crystallins , Humans , alpha-Crystallins/metabolism , Molecular Chaperones/metabolism , Heat-Shock Proteins, Small/metabolism , alpha-Crystallin B Chain/metabolism , Lens, Crystalline/metabolism
6.
Cell ; 141(4): 645-55, 2010 May 14.
Article in English | MEDLINE | ID: mdl-20478255

ABSTRACT

The Escherichia coli fimbrial adhesive protein, FimH, mediates shear-dependent binding to mannosylated surfaces via force-enhanced allosteric catch bonds, but the underlying structural mechanism was previously unknown. Here we present the crystal structure of FimH incorporated into the multiprotein fimbrial tip, where the anchoring (pilin) domain of FimH interacts with the mannose-binding (lectin) domain and causes a twist in the beta sandwich fold of the latter. This loosens the mannose-binding pocket on the opposite end of the lectin domain, resulting in an inactive low-affinity state of the adhesin. The autoinhibition effect of the pilin domain is removed by application of tensile force across the bond, which separates the domains and causes the lectin domain to untwist and clamp tightly around the ligand like a finger-trap toy. Thus, beta sandwich domains, which are common in multidomain proteins exposed to tensile force in vivo, can undergo drastic allosteric changes and be subjected to mechanical regulation.


Subject(s)
Adhesins, Escherichia coli/metabolism , Escherichia coli/metabolism , Fimbriae Proteins/metabolism , Adhesins, Escherichia coli/chemistry , Allosteric Regulation , Escherichia coli/chemistry , Fimbriae Proteins/chemistry , Models, Molecular , Protein Structure, Secondary , Protein Structure, Tertiary
7.
Nucleic Acids Res ; 51(5): 2108-2116, 2023 03 21.
Article in English | MEDLINE | ID: mdl-36250637

ABSTRACT

The tumor-suppressor proteins BRCA1 and BARD1 function as an E3 ubiquitin ligase to facilitate transcriptional repression and DNA damage repair. This is mediated in-part through its ability to mono-ubiquitylate histone H2A in nucleosomes. Studies in Caenorhabditis elegans have been used to elucidate numerous functions of BRCA1 and BARD1; however, it has not been established that the C. elegans orthologs, BRC-1 and BRD-1, retain all the functions of their human counterparts. Here we explore the conservation of enzymatic activity toward nucleosomes which leads to repression of estrogen-metabolizing cytochrome P450 (cyp) genes in humans. Biochemical assays establish that BRC-1 and BRD-1 contribute to ubiquitylation of histone H2A in the nucleosome. Mutational analysis shows that while BRC-1 likely binds the nucleosome using a conserved interface, BRD-1 and BARD1 have evolved different modes of binding, resulting in a difference in the placement of ubiquitin on H2A. Gene expression analysis reveals that in spite of this difference, BRC-1 and BRD-1 also contribute to cyp gene repression in C. elegans. Establishing conservation of these functions in C. elegans allows for use of this powerful model organism to address remaining questions regarding regulation of gene expression by BRCA1 and BARD1.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Gene Expression Regulation , Tumor Suppressor Proteins , Ubiquitin-Protein Ligases , Animals , Humans , BRCA1 Protein/metabolism , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Histones/metabolism , Nucleosomes/metabolism , Tumor Suppressor Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism
8.
J Proteome Res ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38968604

ABSTRACT

In conventional crosslinking mass spectrometry, proteins are crosslinked using a highly selective, bifunctional chemical reagent, which limits crosslinks to residues that are accessible and reactive to the reagent. Genetically incorporating a photoreactive amino acid offers two key advantages: any site can be targeted, including those that are inaccessible to conventional crosslinking reagents, and photoreactive amino acids can potentially react with a broad range of interaction partners. However, broad reactivity imposes additional challenges for crosslink identification. In this study, we incorporate benzoylphenylalanine (BPA), a photoreactive amino acid, at selected sites in an intrinsically disordered region of the human protein HSPB5. We report and characterize a workflow for identifying and visualizing residue-level interactions originating from BPA. We routinely identify 30 to 300 crosslinked peptide spectral matches with this workflow, which is up to ten times more than existing tools for residue-level BPA crosslink identification. Most identified crosslinks are assigned to a precision of one or two residues, which is supported by a high degree of overlap between replicate analyses. Based on these results, we anticipate that this workflow will support the more general use of genetically incorporated, photoreactive amino acids for characterizing the structures of proteins that have resisted high-resolution characterization.

9.
EMBO J ; 39(22): e104863, 2020 11 16.
Article in English | MEDLINE | ID: mdl-33015833

ABSTRACT

Protein modification with poly-ubiquitin chains is a crucial process involved in a myriad of cellular pathways. Chain synthesis requires two steps: substrate modification with ubiquitin (priming) followed by repetitive ubiquitin-to-ubiquitin attachment (elongation). RING-type E3 ligases catalyze both reactions in collaboration with specific priming and elongating E2 enzymes. We provide kinetic insight into poly-ubiquitylation during protein quality control by showing that priming is the rate-determining step in protein degradation as directed by the yeast ERAD RING E3 ligases, Hrd1 and Doa10. Doa10 cooperates with the dedicated priming E2, Ubc6, while both E3s use Ubc7 for elongation. Here, we provide direct evidence that Hrd1 uses Ubc7 also for priming. We found that Ubc6 has an unusually high basal activity that does not require strong stimulation from an E3. Doa10 exploits this property to pair with Ubc6 over Ubc7 during priming. Our work not only illuminates the mechanisms of specific E2/E3 interplay in ERAD, but also offers a basis to understand how RING E3s may have properties that are tailored to pair with their preferred E2s.


Subject(s)
Ubiquitin-Conjugating Enzymes/chemistry , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Protein Ligases/chemistry , Ubiquitin-Protein Ligases/metabolism , Humans , Poly A , Polyubiquitin/metabolism , Protein Processing, Post-Translational , Proteolysis , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Ubiquitin/metabolism , Ubiquitin-Conjugating Enzymes/genetics , Ubiquitin-Protein Ligases/genetics , Ubiquitination
10.
Nature ; 557(7707): 729-733, 2018 05.
Article in English | MEDLINE | ID: mdl-29795346

ABSTRACT

Ubiquitination is a post-translational modification that regulates many cellular processes in eukaryotes1-4. The conventional ubiquitination cascade culminates in a covalent linkage between the C terminus of ubiquitin (Ub) and a target protein, usually on a lysine side chain1,5. Recent studies of the Legionella pneumophila SidE family of effector proteins revealed a ubiquitination method in which a phosphoribosyl ubiquitin (PR-Ub) is conjugated to a serine residue on substrates via a phosphodiester bond6-8. Here we present the crystal structure of a fragment of the SidE family member SdeA that retains ubiquitination activity, and determine the mechanism of this unique post-translational modification. The structure reveals that the catalytic module contains two distinct functional units: a phosphodiesterase domain and a mono-ADP-ribosyltransferase domain. Biochemical analysis shows that the mono-ADP-ribosyltransferase domain-mediated conversion of Ub to ADP-ribosylated Ub (ADPR-Ub) and the phosphodiesterase domain-mediated ligation of PR-Ub to substrates are two independent activities of SdeA. Furthermore, we present two crystal structures of a homologous phosphodiesterase domain from the SidE family member SdeD 9 in complexes with Ub and ADPR-Ub. The structures suggest a mechanism for how SdeA processes ADPR-Ub to PR-Ub and AMP, and conjugates PR-Ub to a serine residue in substrates. Our study establishes the molecular mechanism of phosphoribosyl-linked ubiquitination and will enable future studies of this unusual type of ubiquitination in eukaryotes.


Subject(s)
ADP Ribose Transferases/metabolism , Legionella pneumophila/enzymology , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Phosphoric Diester Hydrolases/metabolism , Ubiquitination , ADP Ribose Transferases/chemistry , ADP Ribose Transferases/genetics , Adenosine Diphosphate/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Crystallography, X-Ray , Legionella pneumophila/genetics , Lysine/metabolism , Membrane Proteins/genetics , Models, Molecular , Phosphoric Diester Hydrolases/chemistry , Phosphoric Diester Hydrolases/genetics , Protein Domains , Protein Processing, Post-Translational , Serine/metabolism , Ubiquitin/chemistry , Ubiquitin/metabolism
11.
PLoS Pathog ; 17(4): e1009440, 2021 04.
Article in English | MEDLINE | ID: mdl-33826682

ABSTRACT

Critical molecular events that control conformational transitions in most allosteric proteins are ill-defined. The mannose-specific FimH protein of Escherichia coli is a prototypic bacterial adhesin that switches from an 'inactive' low-affinity state (LAS) to an 'active' high-affinity state (HAS) conformation allosterically upon mannose binding and mediates shear-dependent catch bond adhesion. Here we identify a novel type of antibody that acts as a kinetic trap and prevents the transition between conformations in both directions. Disruption of the allosteric transitions significantly slows FimH's ability to associate with mannose and blocks bacterial adhesion under dynamic conditions. FimH residues critical for antibody binding form a compact epitope that is located away from the mannose-binding pocket and is structurally conserved in both states. A larger antibody-FimH contact area is identified by NMR and contains residues Leu-34 and Val-35 that move between core-buried and surface-exposed orientations in opposing directions during the transition. Replacement of Leu-34 with a charged glutamic acid stabilizes FimH in the LAS conformation and replacement of Val-35 with glutamic acid traps FimH in the HAS conformation. The antibody is unable to trap the conformations if Leu-34 and Val-35 are replaced with a less bulky alanine. We propose that these residues act as molecular toggle switches and that the bound antibody imposes a steric block to their reorientation in either direction, thereby restricting concerted repacking of side chains that must occur to enable the conformational transition. Residues homologous to the FimH toggle switches are highly conserved across a diverse family of fimbrial adhesins. Replacement of predicted switch residues reveals that another E. coli adhesin, galactose-specific FmlH, is allosteric and can shift from an inactive to an active state. Our study shows that allosteric transitions in bacterial adhesins depend on toggle switch residues and that an antibody that blocks the switch effectively disables adhesive protein function.


Subject(s)
Adhesins, Bacterial/metabolism , Bacterial Adhesion/physiology , Fimbriae Proteins/metabolism , Fimbriae, Bacterial/metabolism , Adhesins, Escherichia coli/metabolism , Escherichia coli/metabolism , Models, Molecular , Protein Binding
12.
Proc Natl Acad Sci U S A ; 117(6): 2923-2929, 2020 02 11.
Article in English | MEDLINE | ID: mdl-31974309

ABSTRACT

Small heat shock proteins (sHSPs) are a class of ATP-independent molecular chaperones that play vital roles in maintaining protein solubility and preventing aberrant protein aggregation. They form highly dynamic, polydisperse oligomeric ensembles and contain long intrinsically disordered regions. Experimental challenges posed by these properties have greatly impeded our understanding of sHSP structure and mechanism of action. Here we characterize interactions between the human sHSP HspB1 (Hsp27) and microtubule-associated protein tau, which is implicated in multiple dementias, including Alzheimer's disease. We show that tau binds both to a well-known binding groove within the structured alpha-crystallin domain (ACD) and to sites within the enigmatic, disordered N-terminal region (NTR) of HspB1. However, only interactions involving the NTR lead to productive chaperone activity, whereas ACD binding is uncorrelated with chaperone function. The tau-binding groove in the ACD also binds short hydrophobic regions within HspB1 itself, and HspB1 mutations that disrupt these intrinsic ACD-NTR interactions greatly enhance chaperone activity toward tau. This leads to a mechanism in which the release of the disordered NTR from a binding groove on the ACD enhances chaperone activity toward tau. The study advances understanding of the mechanisms by which sHSPs achieve their chaperone activity against amyloid-forming clients and how cells defend against pathological tau aggregation. Furthermore, the resulting mechanistic model points to ways in which sHSP chaperone activity may be increased, either by native factors within the cell or by therapeutic intervention.


Subject(s)
Heat-Shock Proteins/chemistry , Heat-Shock Proteins/metabolism , Molecular Chaperones/chemistry , Molecular Chaperones/metabolism , tau Proteins/metabolism , Heat-Shock Proteins/genetics , Humans , Models, Molecular , Molecular Chaperones/genetics , Protein Binding , Protein Domains , alpha-Crystallins/metabolism , tau Proteins/genetics
13.
Biochem J ; 478(18): 3467-3483, 2021 09 30.
Article in English | MEDLINE | ID: mdl-34591954

ABSTRACT

Mutations in breast cancer type 1 susceptibility protein (BRCA1) and its heterodimeric binding partner BARD1 confer a high risk for the development of breast and ovarian cancers. The sole enzymatic function of the BRCA1/BARD1 complex is as a RING-type E3 ubiquitin (Ub) ligase, leading to the deposition of Ub signals onto a variety of substrate proteins. Distinct types of Ub signals deposited by BRCA1/BARD1 (i.e. degradative vs. non-degradative; mono-Ub vs. poly-Ub chains) on substrate proteins mediate aspects of its function in DNA double-stranded break repair, cell-cycle regulation, and transcriptional regulation. While cancer-predisposing mutations in both subunits lead to the inactivation of BRCA1/BARD1 ligase activity, controversy remains as to whether its Ub ligase activity directly inhibits tumorigenesis. Investigation of BRCA1/BARD1 substrates using rigorous, well-validated mutants and experimental systems will ultimately clarify the role of its ligase activity in cancer and possibly establish prognostic and diagnostic metrics for patients with mutations. In this review, we discuss the Ub ligase function of BRCA1/BARD1, highlighting experimental approaches, mechanistic considerations, and reagents that are useful in the study of substrate ubiquitylation. We also discuss the current understanding of two well-established BRCA1/BARD1 substrates (nucleosomal H2A and estrogen receptor α) and several recently discovered substrates (p50, NF2, Oct1, and LARP7). Lessons from the current body of work should provide a road map to researchers examining novel substrates and biological functions attributed to BRCA1/BARD1 Ub ligase activity.


Subject(s)
BRCA1 Protein/genetics , Breast Neoplasms/genetics , Carcinogenesis/genetics , Ovarian Neoplasms/genetics , Tumor Suppressor Proteins/genetics , Ubiquitin-Protein Ligases/genetics , BRCA1 Protein/metabolism , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Carcinogenesis/metabolism , Carcinogenesis/pathology , Cell Line, Tumor , DNA Breaks, Double-Stranded , DNA Repair , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism , Female , Gene Expression Regulation, Neoplastic , Histones/genetics , Histones/metabolism , Humans , Mutation , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Tumor Suppressor Proteins/metabolism , Ubiquitin/genetics , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/metabolism
14.
Nat Chem Biol ; 15(1): 62-70, 2019 01.
Article in English | MEDLINE | ID: mdl-30531907

ABSTRACT

Ubiquitin-conjugating enzymes (E2) enable protein ubiquitination by conjugating ubiquitin to their catalytic cysteine for subsequent transfer to a target lysine side chain. Deprotonation of the incoming lysine enables its nucleophilicity, but determinants of lysine activation remain poorly understood. We report a novel pathogenic mutation in the E2 UBE2A, identified in two brothers with mild intellectual disability. The pathogenic Q93E mutation yields UBE2A with impaired aminolysis activity but no loss of the ability to be conjugated with ubiquitin. Importantly, the low intrinsic reactivity of UBE2A Q93E was not overcome by a cognate ubiquitin E3 ligase, RAD18, with the UBE2A target PCNA. However, UBE2A Q93E was reactive at high pH or with a low-pKa amine as the nucleophile, thus providing the first evidence of reversion of a defective UBE2A mutation. We propose that Q93E substitution perturbs the UBE2A catalytic microenvironment essential for lysine deprotonation during ubiquitin transfer, thus generating an enzyme that is disabled but not dead.


Subject(s)
Intellectual Disability/genetics , Mutation, Missense , Ubiquitin-Conjugating Enzymes/chemistry , Ubiquitin-Conjugating Enzymes/genetics , Adult , Catalytic Domain , Crystallography, X-Ray , Female , Humans , Hydrogen-Ion Concentration , Lysine/metabolism , Magnetic Resonance Spectroscopy , Male , Proliferating Cell Nuclear Antigen/metabolism , Ubiquitin/chemistry , Ubiquitin/metabolism , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitination
15.
Nature ; 517(7533): 223-6, 2015 Jan 08.
Article in English | MEDLINE | ID: mdl-25327252

ABSTRACT

Protein poly(ADP-ribosyl)ation (PARylation) has a role in diverse cellular processes such as DNA repair, transcription, Wnt signalling, and cell death. Recent studies have shown that PARylation can serve as a signal for the polyubiquitination and degradation of several crucial regulatory proteins, including Axin and 3BP2 (refs 7, 8, 9). The RING-type E3 ubiquitin ligase RNF146 (also known as Iduna) is responsible for PARylation-dependent ubiquitination (PARdU). Here we provide a structural basis for RNF146-catalysed PARdU and how PARdU specificity is achieved. First, we show that iso-ADP-ribose (iso-ADPr), the smallest internal poly(ADP-ribose) (PAR) structural unit, binds between the WWE and RING domains of RNF146 and functions as an allosteric signal that switches the RING domain from a catalytically inactive state to an active one. In the absence of PAR, the RING domain is unable to bind and activate a ubiquitin-conjugating enzyme (E2) efficiently. Binding of PAR or iso-ADPr induces a major conformational change that creates a functional RING structure. Thus, RNF146 represents a new mechanistic class of RING E3 ligases, the activities of which are regulated by non-covalent ligand binding, and that may provide a template for designing inducible protein-degradation systems. Second, we find that RNF146 directly interacts with the PAR polymerase tankyrase (TNKS). Disruption of the RNF146-TNKS interaction inhibits turnover of the substrate Axin in cells. Thus, both substrate PARylation and PARdU are catalysed by enzymes within the same protein complex, and PARdU substrate specificity may be primarily determined by the substrate-TNKS interaction. We propose that the maintenance of unliganded RNF146 in an inactive state may serve to maintain the stability of the RNF146-TNKS complex, which in turn regulates the homeostasis of PARdU activity in the cell.


Subject(s)
Poly Adenosine Diphosphate Ribose/metabolism , Protein Processing, Post-Translational , Ubiquitin-Protein Ligases/metabolism , Adenosine Diphosphate Ribose/chemistry , Adenosine Diphosphate Ribose/metabolism , Allosteric Regulation , Animals , Biocatalysis , Crystallography, X-Ray , Enzyme Activation , Humans , Ligands , Mice , Models, Molecular , Poly Adenosine Diphosphate Ribose/chemistry , Protein Binding , Protein Structure, Tertiary , Substrate Specificity , Tankyrases/metabolism , Ubiquitin-Conjugating Enzymes/chemistry , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Protein Ligases/chemistry , Ubiquitination
16.
Proc Natl Acad Sci U S A ; 115(6): 1310-1315, 2018 02 06.
Article in English | MEDLINE | ID: mdl-29348201

ABSTRACT

Protein evolution is driven by the sum of different physiochemical and genetic processes that usually results in strong purifying selection to maintain biochemical functions. However, proteins that are part of systems under arms race dynamics often evolve at unparalleled rates that can produce atypical biochemical properties. In the marine mollusk abalone, lysin and vitelline envelope receptor for lysin (VERL) are a pair of rapidly coevolving proteins that are essential for species-specific interactions between sperm and egg. Despite extensive biochemical characterization of lysin-including crystal structures of multiple orthologs-it was unclear how sites under positive selection may facilitate recognition of VERL. Using a combination of targeted mutagenesis and multidimensional NMR, we present a high-definition solution structure of sperm lysin from red abalone (Haliotis rufescens). Unapparent from the crystallography data, multiple NMR-based analyses conducted in solution reveal clustering of the N and C termini to form a nexus of 13 positively selected sites that constitute a VERL binding interface. Evolutionary rate was found to be a significant predictor of backbone flexibility, which may be critical for lysin bioactivity and/or accelerated evolution. Flexible, rapidly evolving segments that constitute the VERL binding interface were also the most distorted regions of the crystal structure relative to what was observed in solution. While lysin has been the subject of extensive biochemical and evolutionary analyses for more than 30 years, this study highlights the enhanced insights gained from applying NMR approaches to rapidly evolving proteins.


Subject(s)
Evolution, Molecular , Mucoproteins/chemistry , Spermatozoa/chemistry , Animals , Binding Sites , Gastropoda/chemistry , Magnetic Resonance Spectroscopy , Male , Models, Molecular , Molecular Dynamics Simulation , Mucoproteins/genetics , Mucoproteins/metabolism , Mutagenesis, Site-Directed , Protein Multimerization
17.
Proc Natl Acad Sci U S A ; 115(7): 1558-1563, 2018 02 13.
Article in English | MEDLINE | ID: mdl-29386386

ABSTRACT

RING1 is an E3-ubiquitin ligase that is involved in epigenetic control of transcription during development. It is a component of the polycomb repressive complex 1, and its role in that complex is to ubiquitylate histone H2A. In a 13-year-old girl with syndromic neurodevelopmental disabilities, we identified a de novo mutation, RING1 p.R95Q, which alters a conserved arginine residue in the catalytic RING domain. In vitro assays demonstrated that the mutant RING1 retains capacity to catalyze ubiquitin chain formation, but is defective in its ability to ubiquitylate histone H2A in nucleosomes. Consistent with this in vitro effect, cells of the patient showed decreased monoubiquitylation of histone H2A. We modeled the mutant RING1 in Caenorhabditis elegans by editing the comparable amino acid change into spat-3, the suggested RING1 ortholog. Animals with either the missense mutation or complete knockout of spat-3 were defective in monoubiquitylation of histone H2A and had defects in neuronal migration and axon guidance. Relevant to our patient, animals heterozygous for either the missense or knockout allele also showed neuronal defects. Our results support three conclusions: mutation of RING1 is the likely cause of a human neurodevelopmental syndrome, mutation of RING1 can disrupt histone H2A ubiquitylation without disrupting RING1 catalytic activity, and the comparable mutation in C. elegans spat-3 both recapitulates the effects on histone H2A ubiquitylation and leads to neurodevelopmental abnormalities. This role for RING1 adds to our understanding of the importance of aberrant epigenetic effects as causes of human neurodevelopmental disorders.


Subject(s)
Caenorhabditis elegans/growth & development , Epigenesis, Genetic , Gene Expression Regulation, Developmental , Mutation , Neurodevelopmental Disorders/genetics , Polycomb Repressive Complex 1/genetics , Amino Acid Sequence , Animals , Caenorhabditis elegans/genetics , Case-Control Studies , Histones/genetics , Histones/metabolism , Humans , Neurodevelopmental Disorders/pathology , Nucleosomes/metabolism , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
18.
Proc Natl Acad Sci U S A ; 115(6): 1316-1321, 2018 02 06.
Article in English | MEDLINE | ID: mdl-29367421

ABSTRACT

Missense mutations that disrupt the RING domain of the tumor suppressor gene BRCA1 lead to increased risk of breast and ovarian cancer. The BRCA1 RING domain is a ubiquitin ligase, whose structure and function rely critically on forming a heterodimer with BARD1, which also harbors a RING domain. The function of the BARD1 RING domain is unknown. In families severely affected with breast cancer, we identified inherited BARD1 missense mutations Cys53Trp, Cys71Tyr, and Cys83Arg that alter three zinc-binding residues of the BARD1 RING domain. Each of these mutant BARD1 proteins retained the ability to form heterodimeric complexes with BRCA1 to make an active ubiquitin ligase, but the mutant BRCA1/BARD1 complexes were deficient in binding to nucleosomes and in ubiquitylating histone H2A. The BARD1 mutations also caused loss of transcriptional repression of BRCA1-regulated estrogen metabolism genes CYP1A1 and CYP3A4; breast epithelial cells edited to create heterozygous loss of BARD1 showed significantly higher expression of CYP1A1 and CYP3A4 Reintroduction of wild-type BARD1 into these cells restored CYP1A1 and CYP3A4 transcription to normal levels, but introduction of the cancer-predisposing BARD1 RING mutants failed to do so. These results indicate that an intact BARD1 RING domain is critical to BRCA1/BARD1 binding to nucleosomes and hence to ubiquitylation of histone H2A and also critical to transcriptional repression of BRCA1-regulated genes active in estrogen metabolism.


Subject(s)
Estrogens/metabolism , Histones/metabolism , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , BRCA1 Protein/genetics , BRCA1 Protein/metabolism , Breast Neoplasms/genetics , Cytochrome P-450 CYP1A1/genetics , Cytochrome P-450 CYP1A1/metabolism , Cytochrome P-450 CYP3A/genetics , Cytochrome P-450 CYP3A/metabolism , Estrogens/genetics , Female , Gene Expression Regulation , Histones/genetics , Humans , Male , Mutation, Missense , Nucleosomes/metabolism , Protein Domains , Tumor Suppressor Proteins/chemistry , Ubiquitin-Protein Ligases/chemistry , Ubiquitination
19.
Biochemistry ; 59(22): 2078-2088, 2020 06 09.
Article in English | MEDLINE | ID: mdl-32401531

ABSTRACT

The E3 ubiquitin ligase C-terminus of Hsc70 interacting protein (CHIP) plays a critical role in regulating the ubiquitin-dependent degradation of misfolded proteins. CHIP mediates the ubiquitination of the α-amino-terminus of substrates with the E2 Ube2w and facilitates the ubiquitination of lysine residues with the E2 UbcH5. While it is known that Ube2w directly interacts with the disordered regions at the N-terminus of its substrates, it is unclear how CHIP and UbcH5 mediate substrate lysine selection. Here, we have decoupled the contributions of the E2, UbcH5, and the E3, CHIP, in ubiquitin transfer. We show that UbcH5 selects substrate lysine residues independent of CHIP, and that CHIP participates in lysine selection by fine-tuning the subset of substrate lysines that are ubiquitinated. We also identify lysine 128 near the C-terminus of UbcH5 as a critical residue for the efficient ubiquitin transfer by UbcH5 in both the presence and absence of CHIP. Together, these data demonstrate an important role of the UbcH5/substrate interactions in mediating the efficient ubiquitin transfer by the CHIP/UbcH5 complex.


Subject(s)
Lysine/metabolism , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Protein Ligases/metabolism , Humans , Lysine/chemistry , Models, Molecular , Ubiquitin-Conjugating Enzymes/chemistry , Ubiquitin-Protein Ligases/chemistry , Ubiquitination
20.
J Biol Chem ; 294(9): 3261-3270, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30567736

ABSTRACT

Small heat shock proteins (sHSPs) delay protein aggregation in an ATP-independent manner by interacting with client proteins that are in states susceptible to aggregation, including destabilized states related to cellular stress. Up-regulation of sHSPs under stress conditions supports their critical role in cellular viability. Widespread distribution of sHSPs in most organisms implies conservation of function, but it remains unclear whether sHSPs implement common or distinct mechanisms to delay protein aggregation. Comparisons among various studies are confounded by the use of different model client proteins, different assays for both aggregation and sHSP/client interactions, and variable experimental conditions used to mimic cellular stress. To further define sHSP/client interactions and their relevance to sHSP chaperone function, we implemented multiple strategies to characterize sHSP interactions with α-lactalbumin, a model client whose aggregation pathway is well defined. We compared the chaperone activity of human αB-crystallin (HSPB5) with HSPB5 variants that mimic states that arise under conditions of cellular stress or disease. The results show that these closely related sHSPs vary not only in their activity under identical conditions but also in their interactions with clients. Importantly, under nonstress conditions, WT HSPB5 delays client aggregation solely through transient interactions early in the aggregation pathway, whereas HSPB5 mutants that mimic stress-activated conditions can also intervene at later stages of the aggregation pathway to further delay client protein aggregation.


Subject(s)
Stress, Physiological , alpha-Crystallin B Chain/metabolism , Humans , Lactalbumin/chemistry , Lactalbumin/metabolism , Mutation , Protein Aggregates , alpha-Crystallin B Chain/genetics
SELECTION OF CITATIONS
SEARCH DETAIL