Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
J Cell Mol Med ; 23(1): 281-292, 2019 01.
Article in English | MEDLINE | ID: mdl-30467961

ABSTRACT

Glioblastoma is the most dangerous brain cancer. One reason for glioblastoma's aggressiveness are glioblastoma stem-like cells. To target them, a number of markers have been proposed (CD133, CD44, CD15, A2B5, CD36, CXCR4, IL6R, L1CAM, and ITGA6). A comprehensive study of co-expression patterns of them has, however, not been performed so far. Here, we mapped the multidimensional co-expression profile of these stemness-associated molecules. Gliomaspheres - an established model of glioblastoma stem-like cells - were used. Seven different gliomasphere systems were subjected to multicolor flow cytometry measuring the nine markers CD133, CD44, CD15, A2B5, CD36, CXCR4, IL6R, L1CAM, and ITGA6 all simultaneously based on a novel 9-marker multicolor panel developed for this study. The viSNE dimensionality reduction algorithm was applied for analysis. All gliomaspheres were found to express at least five different glioblastoma stem-like cell markers. Multi-dimensional analysis showed that all studied gliomaspheres consistently harbored a cell population positive for the molecular signature CD44+/CD133+/ITGA6+/CD36+. Glioblastoma patients with an enrichment of this combination had a significantly worse survival outcome when analyzing the two largest available The Cancer Genome Atlas datasets (MIT/Harvard Affymetrix: P = 0.0015, University of North Carolina Agilent: P = 0.0322). In sum, we detected a previously unknown marker combination - demonstrating feasibility, usefulness, and importance of high-dimensional gliomasphere marker combinatorics.


Subject(s)
Biomarkers, Tumor/analysis , Brain Neoplasms/pathology , Flow Cytometry/methods , Glioblastoma/pathology , AC133 Antigen/analysis , Algorithms , Biomarkers, Tumor/metabolism , Brain Neoplasms/metabolism , Brain Neoplasms/mortality , CD36 Antigens/analysis , Cell Adhesion/physiology , Cell Line, Tumor , Computer Simulation , Glioblastoma/metabolism , Glioblastoma/mortality , Humans , Hyaluronan Receptors/analysis , Integrin alpha6/analysis , Kaplan-Meier Estimate , Neoplastic Stem Cells/metabolism
2.
Cytotherapy ; 21(6): 643-658, 2019 06.
Article in English | MEDLINE | ID: mdl-30975602

ABSTRACT

BACKGROUND: Glioblastoma is the most aggressive type of brain cancer. Dendritic cell (DC)-based immunotherapy against glioblastoma depends on the effectiveness of loaded antigens. Sphere-inducing culture conditions are being studied by many as a potential antigen source. Here, we investigated two different in vitro conditions (spheroid culture versus adherent culture) in relation to DC immunotherapy: (1) We studied the specific spheroid-culture proteome and assessed the clinical importance of spheroid proteins. (2) We evaluated the immunogenicity of spheroid lysate - both compared to adherent conditions. METHODS: We used seven spheroid culture systems, three of them patient-derived. Stemness-related markers were studied in those three via immunofluorescence. Spheroid-specific protein expression was measured via quantitative proteomics. The Cancer Genome Atlas (TCGA) survival data was used to investigate the clinical impact of spheroid proteins. Immunogenicity of spheroid versus adherent cell lysate was explored in autologous ELISPOT systems (DCs and T cells from the three patients). RESULTS: (1) The differential proteome of spheroid versus adherent glioblastoma culture conditions could successfully be established. The top 10 identified spheroid-specific proteins were associated with significantly decreased overall survival (TCGA MIT/Harvard cohort; n = 350, P = 0.014). (2) In exploratory experiments, immunogenicity of spheroid lysate vis-á-vis interferon (IFN)γ production was lower than that of adherent cell lysate (IFNγ ELISPOT; P = 0.034). CONCLUSIONS: Spheroid culture proteins seem to represent survival-relevant targets, supporting the use of spheroid culture conditions as an antigen source for DC immunotherapy. However, immunogenicity enhancement should be considered for future research. Transferability of our findings in terms of clinical impact and regarding different spheroid-generation techniques needs further validation.


Subject(s)
Brain Neoplasms/immunology , Cell Culture Techniques/methods , Dendritic Cells/immunology , Glioblastoma/immunology , Neoplasm Proteins/immunology , Antigens, Neoplasm/immunology , Biomarkers, Tumor/metabolism , Brain Neoplasms/pathology , Glioblastoma/pathology , Humans , Immunotherapy/methods , Interferon-gamma/immunology , Interferon-gamma/metabolism , Neoplasm Proteins/metabolism , Spheroids, Cellular/pathology , T-Lymphocytes/immunology , Tumor Cells, Cultured
3.
NPJ Vaccines ; 5(1): 5, 2020.
Article in English | MEDLINE | ID: mdl-31969991

ABSTRACT

Glioblastoma is the most prevalent and aggressive brain cancer. With a median overall survival of ~15-20 months under standard therapy, novel treatment approaches are desperately needed. A recent phase II clinical trial with a personalized immunotherapy based on tumor lysate-charged dendritic cell (DC) vaccination, however, failed to prolong survival. Here, we investigated tumor tissue from trial patients to explore glioblastoma survival-related factors. We followed an innovative approach of combining mass spectrometry-based quantitative proteomics (n = 36) with microRNA sequencing plus RT-qPCR (n = 38). Protein quantification identified, e.g., huntingtin interacting protein 1 (HIP1), retinol-binding protein 1 (RBP1), ferritin heavy chain (FTH1) and focal adhesion kinase 2 (FAK2) as factor candidates correlated with a dismal prognosis. MicroRNA analysis identified miR-216b, miR-216a, miR-708 and let-7i as molecules potentially associated with favorable tissue characteristics as they were enriched in patients with a comparably longer survival. To illustrate the utility of integrated miRNomics and proteomics findings, focal adhesion was studied further as one example for a pathway of potential general interest. Taken together, we here mapped possible drivers of glioblastoma outcome under immunotherapy in one of the largest DC vaccination tissue analysis cohorts so far-demonstrating usefulness and feasibility of combined proteomics/miRNomics approaches. Future research should investigate agents that sensitize glioblastoma to (immuno)therapy-potentially building on insights generated here.

5.
Acta Neuropathol Commun ; 6(1): 135, 2018 12 05.
Article in English | MEDLINE | ID: mdl-30518425

ABSTRACT

Audencel is a dendritic cell (DC)-based cellular cancer immunotherapy against glioblastoma multiforme (GBM). It is characterized by loading of DCs with autologous whole tumor lysate and in vitro maturation via "danger signals". The recent phase II "GBM-Vax" trial showed no clinical efficacy for Audencel as assessed with progression-free and overall survival in all patients. Here we present immunological research accompanying the trial with a focus on immune system factors related to outcome and Audencel's effect on the immune system. Methodologically, peripheral blood samples (from apheresis before Audencel or venipuncture during Audencel) were subjected to functional characterization via enzyme-linked immunospot (ELISPOT) assays connected with cytokine bead assays (CBAs) as well as phenotypical characterization via flow cytometry and mRNA quantification. GBM tissue samples (from surgery) were subjected to T cell receptor sequencing and immunohistochemistry. As results we found: Patients with favorable pre-existing anti-tumor characteristics lived longer under Audencel than Audencel patients without them. Pre-vaccination blood CD8+ T cell count and ELISPOT Granzyme B production capacity in vitro upon tumor antigen exposure were significantly correlated with overall survival. Despite Audencel's general failure to induce a significant clinical response, it nevertheless seemed to have an effect on the immune system. For instance, Audencel led to a significant up-regulation of the Th1-related immunovariables ELISPOT IFNγ, the transcription factor T-bet in the blood and ELISPOT IL-2 in a dose-dependent manner upon vaccination. Post-vaccination levels of ELISPOT IFNγ and CD8+ cells in the blood were indicative of a significantly better survival. In summary, Audencel failed to reach an improvement of survival in the recent phase II clinical trial. No clinical efficacy was registered. Our concomitant immunological work presented here indicates that outcome under Audencel was influenced by the state of the immune system. On the other hand, Audencel also seemed to have stimulated the immune system. Overall, these immunological considerations suggest that DC immunotherapy against glioblastoma should be studied further - with the goal of translating an apparent immunological response into a clinical response. Future research should concentrate on investigating augmentation of immune reactions through combination therapies or on developing meaningful biomarkers.


Subject(s)
Brain Neoplasms/therapy , CD8-Positive T-Lymphocytes/physiology , Cancer Vaccines/therapeutic use , Dendritic Cells/physiology , Glioblastoma/therapy , Antigens, CD/metabolism , Boron Compounds/metabolism , Brain Neoplasms/blood , Brain Neoplasms/immunology , CD8-Positive T-Lymphocytes/drug effects , Female , Glioblastoma/blood , Glioblastoma/immunology , Humans , Kaplan-Meier Estimate , Killer Cells, Natural/drug effects , Killer Cells, Natural/metabolism , Longitudinal Studies , Male , Treatment Outcome , Up-Regulation
6.
J Hematol Oncol ; 8: 28, 2015 Mar 21.
Article in English | MEDLINE | ID: mdl-25886616

ABSTRACT

BACKGROUND: The transcription factor Ecotropic Virus Integration site 1 (EVI1) regulates cellular proliferation, differentiation, and apoptosis, and its overexpression contributes to an aggressive course of disease in myeloid leukemias and other malignancies. Notwithstanding, knowledge about the target genes mediating its biological and pathological functions remains limited. We therefore aimed to identify and characterize novel EVI1 target genes in human myeloid cells. METHODS: U937T_EVI1, a human myeloid cell line expressing EVI1 in a tetracycline regulable manner, was subjected to gene expression profiling. qRT-PCR was used to confirm the regulation of membrane-spanning-4-domains subfamily-A member-3 (MS4A3) by EVI1. Reporter constructs containing various parts of the MS4A3 upstream region were employed in luciferase assays, and binding of EVI1 to the MS4A3 promoter was investigated by chromatin immunoprecipitation. U937 derivative cell lines experimentally expressing EVI1 and/or MS4A3 were generated by retroviral transduction, and tested for their tumorigenicity by subcutaneous injection into severe combined immunodeficient mice. RESULTS: Gene expression microarray analysis identified 27 unique genes that were up-regulated, and 29 unique genes that were down-regulated, in response to EVI1 induction in the human myeloid cell line U937T. The most strongly repressed gene was MS4A3, and its down-regulation by EVI1 was confirmed by qRT-PCR in additional, independent experimental model systems. MS4A3 mRNA levels were also negatively correlated with those of EVI1 in several published AML data sets. Reporter gene assays and chromatin immunoprecipitation showed that EVI1 regulated MS4A3 via direct binding to a promoter proximal region. Experimental re-expression of MS4A3 in an EVI1 overexpressing cell line counteracted the tumor promoting effect of EVI1 in a murine xenograft model by increasing the rate of apoptosis. CONCLUSIONS: Our data reveal MS4A3 as a novel direct target of EVI1 in human myeloid cells, and show that its repression plays a role in EVI1 mediated tumor aggressiveness.


Subject(s)
Cell Cycle Proteins/metabolism , Cell Proliferation , DNA-Binding Proteins/metabolism , Gene Expression Regulation, Neoplastic/physiology , Leukemia, Myeloid/pathology , Membrane Proteins/metabolism , Transcription Factors/metabolism , Transcription, Genetic , Animals , Cell Cycle Proteins/genetics , Cell Line, Tumor , Cell Proliferation/physiology , Chromatin Immunoprecipitation , DNA-Binding Proteins/genetics , Fluorescent Antibody Technique , Gene Knockdown Techniques , Heterografts , Humans , Immunohistochemistry , Leukemia, Myeloid/genetics , Leukemia, Myeloid/metabolism , MDS1 and EVI1 Complex Locus Protein , Male , Membrane Proteins/genetics , Mice , Mice, SCID , Oligonucleotide Array Sequence Analysis , Proto-Oncogenes/genetics , Reverse Transcriptase Polymerase Chain Reaction , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL