Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 134(3): 534-45, 2008 Aug 08.
Article in English | MEDLINE | ID: mdl-18692475

ABSTRACT

Many protein-protein interactions are mediated through independently folding modular domains. Proteome-wide efforts to model protein-protein interaction or "interactome" networks have largely ignored this modular organization of proteins. We developed an experimental strategy to efficiently identify interaction domains and generated a domain-based interactome network for proteins involved in C. elegans early-embryonic cell divisions. Minimal interacting regions were identified for over 200 proteins, providing important information on their domain organization. Furthermore, our approach increased the sensitivity of the two-hybrid system, resulting in a more complete interactome network. This interactome modeling strategy revealed insights into C. elegans centrosome function and is applicable to other biological processes in this and other organisms.


Subject(s)
Caenorhabditis elegans/embryology , Embryo, Nonmammalian/metabolism , Embryonic Development , Protein Interaction Mapping , Animals , Cell Division , Protein Interaction Domains and Motifs , Proteome , Two-Hybrid System Techniques
2.
Proc Natl Acad Sci U S A ; 112(45): 14024-9, 2015 Nov 10.
Article in English | MEDLINE | ID: mdl-26512100

ABSTRACT

Observations from human microbiome studies are often conflicting or inconclusive. Many factors likely contribute to these issues including small cohort sizes, sample collection, and handling and processing differences. The field of microbiome research is moving from 16S rDNA gene sequencing to a more comprehensive genomic and functional representation through whole-genome sequencing (WGS) of complete communities. Here we performed quantitative and qualitative analyses comparing WGS metagenomic data from human stool specimens using the Illumina Nextera XT and Illumina TruSeq DNA PCR-free kits, and the KAPA Biosystems Hyper Prep PCR and PCR-free systems. Significant differences in taxonomy are observed among the four different next-generation sequencing library preparations using a DNA mock community and a cell control of known concentration. We also revealed biases in error profiles, duplication rates, and loss of reads representing organisms that have a high %G+C content that can significantly impact results. As with all methods, the use of benchmarking controls has revealed critical differences among methods that impact sequencing results and later would impact study interpretation. We recommend that the community adopt PCR-free-based approaches to reduce PCR bias that affects calculations of abundance and to improve assemblies for accurate taxonomic assignment. Furthermore, the inclusion of a known-input cell spike-in control provides accurate quantitation of organisms in clinical samples.


Subject(s)
Gene Library , Genome, Bacterial/genetics , High-Throughput Nucleotide Sequencing/methods , Metagenomics/methods , Microbiota/genetics , Analysis of Variance , Base Composition , Base Sequence , Feces/chemistry , Humans , Metagenomics/trends , Molecular Sequence Data , Polymerase Chain Reaction , Sequence Analysis, DNA , Species Specificity
3.
BMC Genomics ; 18(1): 296, 2017 04 13.
Article in English | MEDLINE | ID: mdl-28407798

ABSTRACT

BACKGROUND: Metagenomics is the study of the microbial genomes isolated from communities found on our bodies or in our environment. By correctly determining the relation between human health and the human associated microbial communities, novel mechanisms of health and disease can be found, thus enabling the development of novel diagnostics and therapeutics. Due to the diversity of the microbial communities, strategies developed for aligning human genomes cannot be utilized, and genomes of the microbial species in the community must be assembled de novo. However, in order to obtain the best metagenomic assemblies, it is important to choose the proper assembler. Due to the rapidly evolving nature of metagenomics, new assemblers are constantly created, and the field has not yet agreed on a standardized process. Furthermore, the truth sets used to compare these methods are either too simple (computationally derived diverse communities) or complex (microbial communities of unknown composition), yielding results that are hard to interpret. In this analysis, we interrogate the strengths and weaknesses of five popular assemblers through the use of defined biological samples of known genomic composition and abundance. We assessed the performance of each assembler on their ability to reassemble genomes, call taxonomic abundances, and recreate open reading frames (ORFs). RESULTS: We tested five metagenomic assemblers: Omega, metaSPAdes, IDBA-UD, metaVelvet and MEGAHIT on known and synthetic metagenomic data sets. MetaSPAdes excelled in diverse sets, IDBA-UD performed well all around, metaVelvet had high accuracy in high abundance organisms, and MEGAHIT was able to accurately differentiate similar organisms within a community. At the ORF level, metaSPAdes and MEGAHIT had the least number of missing ORFs within diverse and similar communities respectively. CONCLUSIONS: Depending on the metagenomics question asked, the correct assembler for the task at hand will differ. It is important to choose the appropriate assembler, and thus clearly define the biological problem of an experiment, as different assemblers will give different answers to the same question.


Subject(s)
Chromosome Mapping/methods , Computational Biology/methods , Metagenomics/methods , Data Accuracy , Genome, Bacterial , Humans , Open Reading Frames , Software
4.
PLoS Comput Biol ; 9(6): e1003091, 2013.
Article in English | MEDLINE | ID: mdl-23818838

ABSTRACT

The most powerful genome-scale framework to model metabolism, flux balance analysis (FBA), is an evolutionary optimality model. It hypothesizes selection upon a proposed optimality criterion in order to predict the set of internal fluxes that would maximize fitness. Here we present a direct test of the optimality assumption underlying FBA by comparing the central metabolic fluxes predicted by multiple criteria to changes measurable by a (13)C-labeling method for experimentally-evolved strains. We considered datasets for three Escherichia coli evolution experiments that varied in their length, consistency of environment, and initial optimality. For ten populations that were evolved for 50,000 generations in glucose minimal medium, we observed modest changes in relative fluxes that led to small, but significant decreases in optimality and increased the distance to the predicted optimal flux distribution. In contrast, seven populations evolved on the poor substrate lactate for 900 generations collectively became more optimal and had flux distributions that moved toward predictions. For three pairs of central metabolic knockouts evolved on glucose for 600-800 generations, there was a balance between cases where optimality and flux patterns moved toward or away from FBA predictions. Despite this variation in predictability of changes in central metabolism, two generalities emerged. First, improved growth largely derived from evolved increases in the rate of substrate use. Second, FBA predictions bore out well for the two experiments initiated with ancestors with relatively sub-optimal yield, whereas those begun already quite optimal tended to move somewhat away from predictions. These findings suggest that the tradeoff between rate and yield is surprisingly modest. The observed positive correlation between rate and yield when adaptation initiated further from the optimum resulted in the ability of FBA to use stoichiometric constraints to predict the evolution of metabolism despite selection for rate.


Subject(s)
Evolution, Molecular , Metabolism , Carbon Isotopes/metabolism , Escherichia coli/genetics , Escherichia coli/growth & development , Escherichia coli/metabolism , Glucose/metabolism , Lactic Acid/metabolism
5.
Nucleic Acids Res ; 40(15): 7132-49, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22638572

ABSTRACT

The capacity of microorganisms to respond to variable external conditions requires a coordination of environment-sensing mechanisms and decision-making regulatory circuits. Here, we seek to understand the interplay between these two processes by combining high-throughput measurement of time-dependent mRNA profiles with a novel computational approach that searches for key genetic triggers of transcriptional changes. Our approach helped us understand the regulatory strategies of a respiratorily versatile bacterium with promising bioenergy and bioremediation applications, Shewanella oneidensis, in minimal and rich media. By comparing expression profiles across these two conditions, we unveiled components of the transcriptional program that depend mainly on the growth phase. Conversely, by integrating our time-dependent data with a previously available large compendium of static perturbation responses, we identified transcriptional changes that cannot be explained solely by internal network dynamics, but are rather triggered by specific genes acting as key mediators of an environment-dependent response. These transcriptional triggers include known and novel regulators that respond to carbon, nitrogen and oxygen limitation. Our analysis suggests a sequence of physiological responses, including a coupling between nitrogen depletion and glycogen storage, partially recapitulated through dynamic flux balance analysis, and experimentally confirmed by metabolite measurements. Our approach is broadly applicable to other systems.


Subject(s)
Gene Expression Regulation, Bacterial , Shewanella/growth & development , Shewanella/genetics , Transcription, Genetic , Algorithms , Anti-Bacterial Agents/pharmacology , Culture Media , Escherichia coli/drug effects , Gene Expression Profiling , Phenotype , Shewanella/metabolism
6.
Anal Chem ; 85(23): 11619-27, 2013 Dec 03.
Article in English | MEDLINE | ID: mdl-24180464

ABSTRACT

Two years ago, we described the first droplet digital PCR (ddPCR) system aimed at empowering all researchers with a tool that removes the substantial uncertainties associated with using the analogue standard, quantitative real-time PCR (qPCR). This system enabled TaqMan hydrolysis probe-based assays for the absolute quantification of nucleic acids. Due to significant advancements in droplet chemistry and buoyed by the multiple benefits associated with dye-based target detection, we have created a "second generation" ddPCR system compatible with both TaqMan-probe and DNA-binding dye detection chemistries. Herein, we describe the operating characteristics of DNA-binding dye based ddPCR and offer a side-by-side comparison to TaqMan probe detection. By partitioning each sample prior to thermal cycling, we demonstrate that it is now possible to use a DNA-binding dye for the quantification of multiple target species from a single reaction. The increased resolution associated with partitioning also made it possible to visualize and account for signals arising from nonspecific amplification products. We expect that the ability to combine the precision of ddPCR with both DNA-binding dye and TaqMan probe detection chemistries will further enable the research community to answer complex and diverse genetic questions.


Subject(s)
DNA/analysis , Fluorescent Dyes/chemistry , Multiplex Polymerase Chain Reaction/methods , DNA/metabolism , Fluorescent Dyes/metabolism , Humans , Protein Binding/physiology , Real-Time Polymerase Chain Reaction/methods
7.
Nucleic Acids Res ; 39(Database issue): D11-4, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21097892

ABSTRACT

COMBREX (http://combrex.bu.edu) is a project to increase the speed of the functional annotation of new bacterial and archaeal genomes. It consists of a database of functional predictions produced by computational biologists and a mechanism for experimental biochemists to bid for the validation of those predictions. Small grants are available to support successful bids.


Subject(s)
Databases, Genetic , Genome, Archaeal , Genome, Bacterial , Molecular Sequence Annotation , Databases, Protein , Genomics
8.
Retrovirology ; 9: 26, 2012 Mar 29.
Article in English | MEDLINE | ID: mdl-22458338

ABSTRACT

BACKGROUND: Human T-cell leukemia virus type 1 (HTLV-1) and type 2 both target T lymphocytes, yet induce radically different phenotypic outcomes. HTLV-1 is a causative agent of Adult T-cell leukemia (ATL), whereas HTLV-2, highly similar to HTLV-1, causes no known overt disease. HTLV gene products are engaged in a dynamic struggle of activating and antagonistic interactions with host cells. Investigations focused on one or a few genes have identified several human factors interacting with HTLV viral proteins. Most of the available interaction data concern the highly investigated HTLV-1 Tax protein. Identifying shared and distinct host-pathogen protein interaction profiles for these two viruses would enlighten how they exploit distinctive or common strategies to subvert cellular pathways toward disease progression. RESULTS: We employ a scalable methodology for the systematic mapping and comparison of pathogen-host protein interactions that includes stringent yeast two-hybrid screening and systematic retest, as well as two independent validations through an additional protein interaction detection method and a functional transactivation assay. The final data set contained 166 interactions between 10 viral proteins and 122 human proteins. Among the 166 interactions identified, 87 and 79 involved HTLV-1 and HTLV-2 -encoded proteins, respectively. Targets for HTLV-1 and HTLV-2 proteins implicate a diverse set of cellular processes including the ubiquitin-proteasome system, the apoptosis, different cancer pathways and the Notch signaling pathway. CONCLUSIONS: This study constitutes a first pass, with homogeneous data, at comparative analysis of host targets for HTLV-1 and -2 retroviruses, complements currently existing data for formulation of systems biology models of retroviral induced diseases and presents new insights on biological pathways involved in retroviral infection.


Subject(s)
Host-Pathogen Interactions , Human T-lymphotropic virus 1/immunology , Human T-lymphotropic virus 1/pathogenicity , Human T-lymphotropic virus 2/immunology , Human T-lymphotropic virus 2/pathogenicity , T-Lymphocytes/immunology , T-Lymphocytes/virology , Humans , Systems Biology/methods , Two-Hybrid System Techniques
9.
Nat Methods ; 6(1): 83-90, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19060904

ABSTRACT

Several attempts have been made to systematically map protein-protein interaction, or 'interactome', networks. However, it remains difficult to assess the quality and coverage of existing data sets. Here we describe a framework that uses an empirically-based approach to rigorously dissect quality parameters of currently available human interactome maps. Our results indicate that high-throughput yeast two-hybrid (HT-Y2H) interactions for human proteins are more precise than literature-curated interactions supported by a single publication, suggesting that HT-Y2H is suitable to map a significant portion of the human interactome. We estimate that the human interactome contains approximately 130,000 binary interactions, most of which remain to be mapped. Similar to estimates of DNA sequence data quality and genome size early in the Human Genome Project, estimates of protein interaction data quality and interactome size are crucial to establish the magnitude of the task of comprehensive human interactome mapping and to elucidate a path toward this goal.


Subject(s)
Protein Interaction Mapping/methods , Proteins/analysis , Proteins/metabolism , Databases, Protein , Humans , Protein Binding , Proteins/genetics , Sensitivity and Specificity
10.
Nat Methods ; 6(1): 47-54, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19123269

ABSTRACT

To provide accurate biological hypotheses and elucidate global properties of cellular networks, systematic identification of protein-protein interactions must meet high quality standards.We present an expanded C. elegans protein-protein interaction network, or 'interactome' map, derived from testing a matrix of approximately 10,000 x approximately 10,000 proteins using a highly specific, high-throughput yeast two-hybrid system. Through a new empirical quality control framework, we show that the resulting data set (Worm Interactome 2007, or WI-2007) was similar in quality to low-throughput data curated from the literature. We filtered previous interaction data sets and integrated them with WI-2007 to generate a high-confidence consolidated map (Worm Interactome version 8, or WI8). This work allowed us to estimate the size of the worm interactome at approximately 116,000 interactions. Comparison with other types of functional genomic data shows the complementarity of distinct experimental approaches in predicting different functional relationships between genes or proteins


Subject(s)
Caenorhabditis elegans Proteins/analysis , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/metabolism , Protein Interaction Mapping/methods , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , Cell Line , Humans , Protein Binding , Software
11.
Diabetes Ther ; 13(1): 89-111, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34799839

ABSTRACT

Limiting postprandial glycemic response (PPGR) is an important intervention in reducing the risk of chronic metabolic diseases and has been shown to impart significant health benefits in people with elevated levels of blood sugar. In this study, we collected gut microbiome activity data by assessing the metatranscriptome, and we measured the glycemic responses of 550 adults who consumed more than 30,000 meals, collectively, from omnivore or vegetarian/gluten-free diets. We demonstrate that gut microbiome activity, anthropometric factors, and food macronutrients modulate individual variation in glycemic response. We employ two predictive models, including a mixed-effects linear regression model (R = 0.77) and a gradient boosting machine model (Rtrain = 0.80/R2train = 0.64; Rtest = 0.64/R2test = 0.40), which demonstrate variation in PPGR between individuals when ingesting the same foods. All features in the final mixed-effects linear regression model were significant (p < 0.05) except for two features which were retained as suggestive: glutamine production pathways (p = 0.08) and the interaction between tyrosine metabolizers and carbs (p = 0.06). We introduce molecular functions as features in these two models, aggregated from microbial activity data, and show their statistically significant contributions to glycemic control. In summary, we demonstrate for the first time that metatranscriptomic activity of the gut microbiome is correlated with PPGR among adults.


Blood sugar dysregulation is caused by various underlying conditions, including type 2 diabetes, and this may lead to extended periods of hypoglycemia or hyperglycemia, which can be harmful or deadly. Clinically, glycemic control is a primary therapeutic target for dysglycemia, and food and nutrition are frequent interventions used to reduce postprandial blood glucose excursions. Primary determinants of postprandial glycemic response (PPGR) include dietary carbohydrates, individual phenotypes, and individual molecular characteristics which include the gut microbiome. Typical investigations of gut microbiomes depend on analysis methods which have poor taxonomic resolution, cannot identify certain microorganisms, and are prone to errors. In this study, each RNA molecule was identified and counted, allowing quantitative strain-level taxonomic classification and molecular pathway analysis. The primary goal of the study was to assess the impact of microbial functional activity on PPGR. The study was conducted in the USA and involved a multiethnic population of healthy adults with HbA1c levels below 6.5. All participants received 14-day omnivore diets or vegetarian/gluten-free diets, depending on nutritional requirements (omnivore diets include meat while vegetarian/gluten-free diets exclude both gluten and meat). Over this timeframe, blood glucose levels were measured in 15-min intervals, 24 h per day, capturing postprandial responses for more than 27,000 meals, including more than 18,000 provided meals which spanned a wide range of foods and macronutrient characteristics. Computational modeling demonstrated the statistical significance of all features and identified new features which may be relevant to glycemic control. These results show, for the first time, that a person's glycemic response depends on individual traits, including both their anthropometrics and their gut metatranscriptome, representing the activity of gut microbiomes.

13.
PLoS Comput Biol ; 6(11): e1001002, 2010 Nov 18.
Article in English | MEDLINE | ID: mdl-21124952

ABSTRACT

Interactions between microbial species are sometimes mediated by the exchange of small molecules, secreted by one species and metabolized by another. Both one-way (commensal) and two-way (mutualistic) interactions may contribute to complex networks of interdependencies. Understanding these interactions constitutes an open challenge in microbial ecology, with applications ranging from the human microbiome to environmental sustainability. In parallel to natural communities, it is possible to explore interactions in artificial microbial ecosystems, e.g. pairs of genetically engineered mutualistic strains. Here we computationally generate artificial microbial ecosystems without re-engineering the microbes themselves, but rather by predicting their growth on appropriately designed media. We use genome-scale stoichiometric models of metabolism to identify media that can sustain growth for a pair of species, but fail to do so for one or both individual species, thereby inducing putative symbiotic interactions. We first tested our approach on two previously studied mutualistic pairs, and on a pair of highly curated model organisms, showing that our algorithms successfully recapitulate known interactions, robustly predict new ones, and provide novel insight on exchanged molecules. We then applied our method to all possible pairs of seven microbial species, and found that it is always possible to identify putative media that induce commensalism or mutualism. Our analysis also suggests that symbiotic interactions may arise more readily through environmental fluctuations than genetic modifications. We envision that our approach will help generate microbe-microbe interaction maps useful for understanding microbial consortia dynamics and evolution, and for exploring the full potential of natural metabolic pathways for metabolic engineering applications.


Subject(s)
Ecosystem , Microbial Interactions , Models, Biological , Synthetic Biology/methods , Systems Biology/methods , Algorithms , Culture Media/chemistry , Culture Media/metabolism , Desulfovibrio vulgaris/metabolism , Escherichia coli/metabolism , Methanococcus/metabolism , Saccharomyces cerevisiae/metabolism
14.
Nature ; 437(7062): 1173-8, 2005 Oct 20.
Article in English | MEDLINE | ID: mdl-16189514

ABSTRACT

Systematic mapping of protein-protein interactions, or 'interactome' mapping, was initiated in model organisms, starting with defined biological processes and then expanding to the scale of the proteome. Although far from complete, such maps have revealed global topological and dynamic features of interactome networks that relate to known biological properties, suggesting that a human interactome map will provide insight into development and disease mechanisms at a systems level. Here we describe an initial version of a proteome-scale map of human binary protein-protein interactions. Using a stringent, high-throughput yeast two-hybrid system, we tested pairwise interactions among the products of approximately 8,100 currently available Gateway-cloned open reading frames and detected approximately 2,800 interactions. This data set, called CCSB-HI1, has a verification rate of approximately 78% as revealed by an independent co-affinity purification assay, and correlates significantly with other biological attributes. The CCSB-HI1 data set increases by approximately 70% the set of available binary interactions within the tested space and reveals more than 300 new connections to over 100 disease-associated proteins. This work represents an important step towards a systematic and comprehensive human interactome project.


Subject(s)
Proteome/metabolism , Cloning, Molecular , Humans , Open Reading Frames/genetics , Protein Binding , Proteome/genetics , RNA/genetics , RNA/metabolism , Saccharomyces cerevisiae/genetics , Two-Hybrid System Techniques
15.
Mol Syst Biol ; 5: 321, 2009.
Article in English | MEDLINE | ID: mdl-19888216

ABSTRACT

Cellular functions are mediated through complex systems of macromolecules and metabolites linked through biochemical and physical interactions, represented in interactome models as 'nodes' and 'edges', respectively. Better understanding of genotype-to-phenotype relationships in human disease will require modeling of how disease-causing mutations affect systems or interactome properties. Here we investigate how perturbations of interactome networks may differ between complete loss of gene products ('node removal') and interaction-specific or edge-specific ('edgetic') alterations. Global computational analyses of approximately 50,000 known causative mutations in human Mendelian disorders revealed clear separations of mutations probably corresponding to those of node removal versus edgetic perturbations. Experimental characterization of mutant alleles in various disorders identified diverse edgetic interaction profiles of mutant proteins, which correlated with distinct structural properties of disease proteins and disease mechanisms. Edgetic perturbations seem to confer distinct functional consequences from node removal because a large fraction of cases in which a single gene is linked to multiple disorders can be modeled by distinguishing edgetic network perturbations. Edgetic network perturbation models might improve both the understanding of dissemination of disease alleles in human populations and the development of molecular therapeutic strategies.


Subject(s)
Genetic Diseases, Inborn/genetics , Models, Genetic , Alleles , Disease/genetics , Humans , Mutation/genetics
16.
Genome Inform ; 22: 41-55, 2010 Jan.
Article in English | MEDLINE | ID: mdl-20238418

ABSTRACT

Understanding the evolution and dynamics of metabolism in microbial ecosystems is an ongoing challenge in microbiology. A promising approach towards this goal is the extension of genome-scale flux balance models of metabolism to multiple interacting species. However, since the detailed distribution of metabolic functions among ecosystem members is often unknown, it is important to investigate how compartmentalization of metabolites and reactions affects flux balance predictions. Here, as a first step in this direction, we address the importance of compartmentalization in the well characterized metabolic model of the yeast Saccharomyces cerevisiae, which we treat as an "ecosystem of organelles". In addition to addressing the impact that the removal of compartmentalization has on model predictions, we show that by systematically constraining some individual fluxes in a de-compartmentalized version of the model we can significantly reduce the flux prediction errors induced by the removal of compartments. We expect that our analysis will help predict and understand metabolic functions in complex microbial communities. In addition, further study of yeast as an ecosystem of organelles might provide novel insight on the evolution of endosymbiosis and multicellularity.


Subject(s)
Cell Compartmentation/physiology , Ecosystem , Metabolic Networks and Pathways , Models, Biological , Organelles/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/growth & development
17.
Genome Inform ; 22: 156-66, 2010 Jan.
Article in English | MEDLINE | ID: mdl-20238426

ABSTRACT

The set of chemicals producible and usable by metabolic pathways must have evolved in parallel with the enzymes that catalyze them. One implication of this common historical path should be a correspondence between the innovation steps that gradually added new metabolic reactions to the biosphere-level biochemical toolkit, and the gradual sequence changes that must have slowly shaped the corresponding enzyme structures. However, global signatures of a long-term co-evolution have not been identified. Here we search for such signatures by computing correlations between inter-reaction distances on a metabolic network, and sequence distances of the corresponding enzyme proteins. We perform our calculations using the set of all known metabolic reactions, available from the KEGG database. Reaction-reaction distance on the metabolic network is computed as the length of the shortest path on a projection of the metabolic network, in which nodes are reactions and edges indicate whether two reactions share a common metabolite, after removal of cofactors. Estimating the distance between enzyme sequences in a meaningful way requires some special care: for each enzyme commission (EC) number, we select from KEGG a consensus set of protein sequences using the cluster of orthologous groups of proteins (COG) database. We define the evolutionary distance between protein sequences as an asymmetric transition probability between two enzymes, derived from the corresponding pair-wise BLAST scores. By comparing the distances between sequences to the minimal distances on the metabolic reaction graph, we find a small but statistically significant correlation between the two measures. This suggests that the evolutionary walk in enzyme sequence space has locally mirrored, to some extent, the gradual expansion of metabolism.


Subject(s)
Computer Simulation , Evolution, Molecular , Metabolic Networks and Pathways , Proteins/chemistry , Proteins/metabolism , Animals , Humans , Proteins/genetics , Sequence Alignment
18.
Int J Genomics ; 2019: 1718741, 2019.
Article in English | MEDLINE | ID: mdl-31662956

ABSTRACT

A functional readout of the gut microbiome is necessary to enable precise control of the gut microbiome's functions, which support human health and prevent or minimize a wide range of chronic diseases. Stool metatranscriptomic analysis offers a comprehensive functional view of the gut microbiome, but despite its usefulness, it has rarely been used in clinical studies due to its complexity, cost, and bioinformatic challenges. This method has also received criticism due to potential intrasample variability, rapid changes, and RNA degradation. Here, we describe a robust and automated stool metatranscriptomic method, called Viomega, which was specifically developed for population-scale studies. Viomega includes sample collection, ambient temperature sample preservation, total RNA extraction, physical removal of ribosomal RNAs (rRNAs), preparation of directional Illumina libraries, Illumina sequencing, taxonomic classification based on a database of >110,000 microbial genomes, and quantitative microbial gene expression analysis using a database of ~100 million microbial genes. We applied this method to 10,000 human stool samples and performed several small-scale studies to demonstrate sample stability and consistency. In summary, Viomega is an inexpensive, high-throughput, automated, and accurate sample-to-result stool metatranscriptomic technology platform for large-scale studies and a wide range of applications.

19.
BMC Genomics ; 8: 106, 2007 Apr 19.
Article in English | MEDLINE | ID: mdl-17445269

ABSTRACT

BACKGROUND: In the few years since its discovery, RNAi has turned into a very powerful tool for the study of gene function by allowing post-transcriptional gene silencing. The RNAi mechanism, which is based on the introduction of a double-stranded RNA (dsRNA) trigger whose sequence is similar to that of the targeted messenger RNA (mRNA), is subject to off-target cross-reaction. RESULTS: We use a novel strategy based on phenotypic analysis of paralogs and predict that, in Caenorhabditis elegans, off-target effects occur when an mRNA sequence shares more than 95% identity over 40 nucleotides with the dsRNA. Interestingly, our results suggest that the minimum length necessary of a high-similarity stretch between a dsRNA and its target in order to observe an efficient RNAi effect varies from 30 to 50 nucleotides rather than 22 nucleotides, which is the length of siRNAs in C. elegans. CONCLUSION: Our predictive methods would improve the design of dsRNA and ultimately the use of RNAi as a therapeutic tool upon experimental verification.


Subject(s)
Base Pair Mismatch/genetics , Computational Biology , RNA Interference , RNA, Small Interfering/chemistry , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/physiology , Genetic Techniques/statistics & numerical data , Models, Chemical , RNA Interference/drug effects , RNA, Double-Stranded/chemistry , RNA, Double-Stranded/metabolism , RNA, Small Interfering/genetics , Ribonuclease III , Sensitivity and Specificity
20.
PLoS Comput Biol ; 2(8): e100, 2006 Aug 04.
Article in English | MEDLINE | ID: mdl-16884331

ABSTRACT

Recent proteome-wide screening approaches have provided a wealth of information about interacting proteins in various organisms. To test for a potential association between protein connectivity and the amount of predicted structural disorder, the disorder propensities of proteins with various numbers of interacting partners from four eukaryotic organisms (Caenorhabditis elegans, Saccharomyces cerevisiae, Drosophila melanogaster, and Homo sapiens) were investigated. The results of PONDR VL-XT disorder analysis show that for all four studied organisms, hub proteins, defined here as those that interact with > or = 10 partners, are significantly more disordered than end proteins, defined here as those that interact with just one partner. The proportion of predicted disordered residues, the average disorder score, and the number of predicted disordered regions of various lengths were higher overall in hubs than in ends. A binary classification of hubs and ends into ordered and disordered subclasses using the consensus prediction method showed a significant enrichment of wholly disordered proteins and a significant depletion of wholly ordered proteins in hubs relative to ends in worm, fly, and human. The functional annotation of yeast hubs and ends using GO categories and the correlation of these annotations with disorder predictions demonstrate that proteins with regulation, transcription, and development annotations are enriched in disorder, whereas proteins with catalytic activity, transport, and membrane localization annotations are depleted in disorder. The results of this study demonstrate that intrinsic structural disorder is a distinctive and common characteristic of eukaryotic hub proteins, and that disorder may serve as a determinant of protein interactivity.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Carrier Proteins/metabolism , Drosophila Proteins/metabolism , ELAV Proteins/metabolism , Ligases/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Amino Acids/chemistry , Animals , Caenorhabditis elegans/chemistry , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/chemistry , Caenorhabditis elegans Proteins/classification , Caenorhabditis elegans Proteins/genetics , Carrier Proteins/chemistry , Carrier Proteins/classification , Carrier Proteins/genetics , Computational Biology , Drosophila Proteins/chemistry , Drosophila Proteins/classification , Drosophila Proteins/genetics , Drosophila melanogaster/chemistry , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , ELAV Proteins/chemistry , ELAV Proteins/classification , ELAV Proteins/genetics , ELAV-Like Protein 2 , Humans , Ligases/chemistry , Ligases/classification , Ligases/genetics , Models, Molecular , Protein Binding , Protein Structure, Tertiary , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/classification , Saccharomyces cerevisiae Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL