Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Plant Cell ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38723165

ABSTRACT

Arabidopsis (Arabidopsis thaliana) plants can produce photosynthetic tissue with active chloroplasts at temperatures as low as 4°C, and this process depends on the presence of the nuclear-encoded, chloroplast-localized RNA-binding protein CP29A. In this study, we demonstrate that CP29A undergoes phase separation in vitro and in vivo in a temperature-dependent manner, which is mediated by a prion-like domain (PLD) located between the two RNA recognition motif (RRM) domains of CP29A. The resulting droplets display liquid-like properties and are found near chloroplast nucleoids. The PLD is required to support chloroplast RNA splicing and translation in cold-treated tissue. Together, our findings suggest that plant chloroplast gene expression is compartmentalized by inducible condensation of CP29A at low temperatures, a mechanism that could play a crucial role in plant cold resistance.

2.
PLoS Pathog ; 19(6): e1011451, 2023 06.
Article in English | MEDLINE | ID: mdl-37315106

ABSTRACT

Both the bacterial flagellum and the evolutionary related injectisome encoded on the Salmonella pathogenicity island 1 (SPI-1) play crucial roles during the infection cycle of Salmonella species. The interplay of both is highlighted by the complex cross-regulation that includes transcriptional control of the flagellar master regulatory operon flhDC by HilD, the master regulator of SPI-1 gene expression. Contrary to the HilD-dependent activation of flagellar gene expression, we report here that activation of HilD resulted in a dramatic loss of motility, which was dependent on the presence of SPI-1. Single cell analyses revealed that HilD-activation triggers a SPI-1-dependent induction of the stringent response and a substantial decrease in proton motive force (PMF), while flagellation remains unaffected. We further found that HilD activation enhances the adhesion of Salmonella to epithelial cells. A transcriptome analysis revealed a simultaneous upregulation of several adhesin systems, which, when overproduced, phenocopied the HilD-induced motility defect. We propose a model where the SPI-1-dependent depletion of the PMF and the upregulation of adhesins upon HilD-activation enable flagellated Salmonella to rapidly modulate their motility during infection, thereby enabling efficient adhesion to host cells and delivery of effector proteins.


Subject(s)
Salmonella typhimurium , Transcription Factors , Transcription Factors/metabolism , Virulence/genetics , Genomic Islands/genetics , Proton-Motive Force , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Expression , Gene Expression Regulation, Bacterial
3.
Bioessays ; 44(6): e2100285, 2022 06.
Article in English | MEDLINE | ID: mdl-35393714

ABSTRACT

The tumor microenvironment (TME) plays a pivotal role in the behavior and development of solid tumors as well as shaping the immune response against them. As the tumor cells proliferate, the space they occupy and their physical interactions with the surrounding tissue increases. The growing tumor tissue becomes a complex dynamic structure, containing connective tissue, vascular structures, and extracellular matrix (ECM) that facilitates stimulation, oxygenation, and nutrition, necessary for its fast growth. Mechanical cues such as stiffness, solid stress, interstitial fluid pressure (IFP), matrix density, and microarchitecture influence cellular functions and ultimately tumor progression and metastasis. In this fight, our body is equipped with T cells as its spearhead against tumors. However, the altered biochemical and mechanical environment of the tumor niche affects T cell efficacy and leads to their exhaustion. Understanding the mechanobiological properties of the TME and their effects on T cells is key for developing novel adoptive tumor immunotherapies.


Subject(s)
Neoplasms , Tumor Microenvironment , Biophysics , Cell Communication , Humans , Neoplasms/pathology , Neoplasms/therapy , T-Lymphocytes
4.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Article in English | MEDLINE | ID: mdl-34599101

ABSTRACT

T cells sense and respond to their local environment at the nanoscale by forming small actin-rich protrusions, called microvilli, which play critical roles in signaling and antigen recognition, particularly at the interface with the antigen presenting cells. However, the mechanism by which microvilli contribute to cell signaling and activation is largely unknown. Here, we present a tunable engineered system that promotes microvilli formation and T cell signaling via physical stimuli. We discovered that nanoporous surfaces favored microvilli formation and markedly altered gene expression in T cells and promoted their activation. Mechanistically, confinement of microvilli inside of nanopores leads to size-dependent sorting of membrane-anchored proteins, specifically segregating CD45 phosphatases and T cell receptors (TCR) from the tip of the protrusions when microvilli are confined in 200-nm pores but not in 400-nm pores. Consequently, formation of TCR nanoclustered hotspots within 200-nm pores allows sustained and augmented signaling that prompts T cell activation even in the absence of TCR agonists. The synergistic combination of mechanical and biochemical signals on porous surfaces presents a straightforward strategy to investigate the role of microvilli in T cell signaling as well as to boost T cell activation and expansion for application in the growing field of adoptive immunotherapy.


Subject(s)
Gene Expression/immunology , Lymphocyte Activation/immunology , Microvilli/immunology , T-Lymphocytes/immunology , Actins/immunology , Antigen-Presenting Cells/immunology , Cells, Cultured , Humans , Receptors, Antigen, T-Cell/immunology , Signal Transduction/immunology
5.
Nat Chem Biol ; 17(5): 608-614, 2021 05.
Article in English | MEDLINE | ID: mdl-33686294

ABSTRACT

Many RNA-binding proteins undergo liquid-liquid phase separation, which underlies the formation of membraneless organelles, such as stress granules and P-bodies. Studies of the molecular mechanism of phase separation in vitro are hampered by the coalescence and sedimentation of organelle-sized droplets interacting with glass surfaces. Here, we demonstrate that liquid droplets of fused in sarcoma (FUS)-a protein found in cytoplasmic aggregates of amyotrophic lateral sclerosis and frontotemporal dementia patients-can be stabilized in vitro using an agarose hydrogel that acts as a cytoskeleton mimic. This allows their spectroscopic characterization by liquid-phase NMR and electron paramagnetic resonance spectroscopy. Protein signals from both dispersed and condensed phases can be observed simultaneously, and their respective proportions can be quantified precisely. Furthermore, the agarose hydrogel acts as a cryoprotectant during shock-freezing, which facilitates pulsed electron paramagnetic resonance measurements at cryogenic temperatures. Surprisingly, double electron-electron resonance measurements revealed a compaction of FUS in the condensed phase.


Subject(s)
Cryoprotective Agents/chemistry , Hydrogels/chemistry , RNA-Binding Protein FUS/chemistry , Sepharose/chemistry , Biomimetic Materials/chemistry , Cloning, Molecular , Cytoskeleton/chemistry , Electron Spin Resonance Spectroscopy , Escherichia coli/genetics , Escherichia coli/metabolism , Eukaryotic Cells/chemistry , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Humans , Nuclear Magnetic Resonance, Biomolecular , Protein Conformation , Recombinant Proteins/chemistry
6.
Biochem Soc Trans ; 50(2): 853-866, 2022 04 29.
Article in English | MEDLINE | ID: mdl-35343569

ABSTRACT

Advanced imaging is key for visualizing the spatiotemporal regulation of immune signaling which is a complex process involving multiple players tightly regulated in space and time. Imaging techniques vary in their spatial resolution, spanning from nanometers to micrometers, and in their temporal resolution, ranging from microseconds to hours. In this review, we summarize state-of-the-art imaging methodologies and provide recent examples on how they helped to unravel the mysteries of immune signaling. Finally, we discuss the limitations of current technologies and share our insights on how to overcome these limitations to visualize immune signaling with unprecedented fidelity.


Subject(s)
Signal Transduction , Microscopy, Fluorescence/methods
7.
Nano Lett ; 21(1): 507-514, 2021 01 13.
Article in English | MEDLINE | ID: mdl-33305952

ABSTRACT

When T-cells probe their environment for antigens, the bond between the T-cell receptor (TCR) and the peptide-loaded major histocompatibility complex (MHC) is put under tension, thereby influencing the antigen discrimination. Yet, the quantification of such forces in the context of T-cell signaling is technically challenging. Here, we developed a traction force microscopy platform which allows for quantifying the pulls and pushes exerted via T-cell microvilli, in both tangential and normal directions, during T-cell activation. We immobilized specific T-cell activating antibodies on the marker beads used to read out the hydrogel deformation. Microvilli targeted the functionalized beads, as confirmed by superresolution microscopy of the local actin organization. Moreover, we found that cellular components, such as actin, TCR, and CD45 reorganize upon interaction with the beads, such that actin forms a vortex-like ring structure around the beads and TCR is enriched at the bead surface, whereas CD45 is excluded from bead-microvilli contacts.


Subject(s)
Lymphocyte Activation , Traction , Receptors, Antigen, T-Cell , Signal Transduction , T-Lymphocytes
8.
J Proteome Res ; 20(6): 3078-3089, 2021 06 04.
Article in English | MEDLINE | ID: mdl-33793249

ABSTRACT

The leukocyte immunoglobulin-like receptor A3 (LILRA3) is a soluble protein primarily expressed by peripheral blood monocytes and is abundant in sera of healthy donors. Extracellular LILRA3 is anti-inflammatory and displays neuro-regenerative functions in vitro. However, its intracellular expression, distribution, and function(s) remain unknown. Using a combination of high-resolution confocal and super-resolution microscopy, we identified intracellular expression of native LILRA3 in the nucleus of peripheral blood monocytes and in vitro-derived macrophages. This unexpected nuclear localization of LILRA3 was confirmed in LILRA3-GFP-transfected HEK293T cells. Western blot of proteins fractionated from primary macrophages and the transfected HEK293T cells confirmed nuclear localization of the native and expressed LILRA3 proteins. Interestingly, most of the LILRA3 in the nucleus was in a monomeric form like the biologically active secreted protein, while that in the other cellular compartments was in mixed monomeric, dimeric, and oligomeric forms. The predominant presence of monomeric LILRA3 in the nucleus was independently corroborated in transfected live HEK293T cells using the number and molecular brightness (N&B) analysis method. Immunoprecipitation and mass spectrometric peptide sequencing studies revealed that nuclear LILRA3 co-immunoprecipitated with several nuclear proteins involved in host protein synthesis machinery via direct interactions to a key multifunctional RNA-binding protein, the Ewing sarcoma breakpoint region 1 protein (EWS) (data are available via ProteomeXchange with identifier PXD024602). The biological significance of the nuclear expression of LILRA3 and its interaction with these key proteins remain to be elucidated.


Subject(s)
Monocytes , Receptors, Immunologic , Gene Expression , HEK293 Cells , Humans , Immunoglobulins , Receptors, Immunologic/genetics
9.
J Cell Sci ; 129(6): 1198-209, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26826187

ABSTRACT

Inhibitory proteins, particularly Nogo 66, a highly conserved 66-amino-acid loop of Nogo A (an isoform of RTN4), play key roles in limiting the intrinsic capacity of the central nervous system (CNS) to regenerate after injury. Ligation of surface Nogo receptors (NgRs) and/or leukocyte immunoglobulin-like receptor B2 (LILRB2) and its mouse orthologue the paired immunoglobulin-like receptor B (PIRB) by Nogo 66 transduces inhibitory signals that potently inhibit neurite outgrowth. Here, we show that soluble leukocyte immunoglobulin-like receptor A3 (LILRA3) is a high-affinity receptor for Nogo 66, suggesting that LILRA3 might be a competitive antagonist to these cell surface inhibitory receptors. Consistent with this, LILRA3 significantly reversed Nogo-66-mediated inhibition of neurite outgrowth and promoted synapse formation in primary cortical neurons through regulation of the ERK/MEK pathway. LILRA3 represents a new antagonist to Nogo-66-mediated inhibition of neurite outgrowth in the CNS, a function distinct from its immune-regulatory role in leukocytes. This report is also the first to demonstrate that a member of LILR family normally not expressed in rodents exerts functions on mouse neurons through the highly homologous Nogo 66 ligand.


Subject(s)
Neurites/metabolism , Neurons/cytology , Nogo Proteins/metabolism , Receptors, Immunologic/metabolism , Synapses/metabolism , Animals , Cells, Cultured , Humans , Mice , Mice, Inbred C57BL , Neurogenesis , Neuronal Outgrowth , Neurons/metabolism , Nogo Proteins/genetics , Protein Binding , Receptors, Immunologic/genetics , Synapses/genetics
10.
Proc Natl Acad Sci U S A ; 112(1): 130-5, 2015 Jan 06.
Article in English | MEDLINE | ID: mdl-25535394

ABSTRACT

Because different proteins compete for the proton gradient across the inner mitochondrial membrane, an efficient mechanism is required for allocation of associated chemical potential to the distinct demands, such as ATP production, thermogenesis, regulation of reactive oxygen species (ROS), etc. Here, we used the superresolution technique dSTORM (direct stochastic optical reconstruction microscopy) to visualize several mitochondrial proteins in primary mouse neurons and test the hypothesis that uncoupling protein 4 (UCP4) and F0F1-ATP synthase are spatially separated to eliminate competition for the proton motive force. We found that UCP4, F0F1-ATP synthase, and the mitochondrial marker voltage-dependent anion channel (VDAC) have various expression levels in different mitochondria, supporting the hypothesis of mitochondrial heterogeneity. Our experimental results further revealed that UCP4 is preferentially localized in close vicinity to VDAC, presumably at the inner boundary membrane, whereas F0F1-ATP synthase is more centrally located at the cristae membrane. The data suggest that UCP4 cannot compete for protons because of its spatial separation from both the proton pumps and the ATP synthase. Thus, mitochondrial morphology precludes UCP4 from acting as an uncoupler of oxidative phosphorylation but is consistent with the view that UCP4 may dissipate the excessive proton gradient, which is usually associated with ROS production.


Subject(s)
Membrane Transport Proteins/metabolism , Microscopy/methods , Mitochondria/metabolism , Neurons/metabolism , Proton-Translocating ATPases/metabolism , Animals , Membrane Potential, Mitochondrial , Mice , Mitochondrial Membranes/metabolism , Mitochondrial Uncoupling Proteins , Protons , Voltage-Dependent Anion Channels/metabolism
11.
Biochim Biophys Acta ; 1853(4): 822-9, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25447546

ABSTRACT

Mechanotransduction describes how a cell senses and interacts with its environment. The concept originated in adhesion biology where adhesion receptors, integrins, facilitate force transmission between the extracellular matrix and the intracellular actin cytoskeleton. Indeed, during any adhesive contacts, cells do exert mechanical force. Hence, the probing of the local environment by cells results in mechanical cues that contribute to cellular functions and cell fate decisions such as migration, proliferation, differentiation and apoptosis. On the molecular level, mechanical forces can rearrange proteins laterally within the membrane, regulate their activity by inducing conformational changes and probe the mechanical properties and bond strength of receptor-ligands. From this point of view, it appears surprising that molecular forces have been largely overlooked in membrane organisation and ligand discrimination processes in lymphocytes. During T cell activation, the T cell receptor recognises and distinguishes antigenic from benign endogenous peptides to initiate the reorganisation of membrane proteins into signalling clusters within the immunological synapse. In this review, we asked whether characteristics of fibroblast force sensing could be applied to immune cell antigen recognition and signalling, and outline state-of-the-art experimental strategies for studying forces in the context of membrane organisation. This article is part of a Special Issue entitled: Nanoscale membrane orgainisation and signalling.


Subject(s)
Cell Membrane/metabolism , Nanoparticles/chemistry , T-Lymphocytes/metabolism , Animals , Biomechanical Phenomena , Humans , Lymphocyte Activation/immunology , Models, Immunological , T-Lymphocytes/cytology
12.
J Biol Chem ; 289(7): 4387-94, 2014 Feb 14.
Article in English | MEDLINE | ID: mdl-24394416

ABSTRACT

The human serotonin transporter (hSERT) is responsible for the termination of synaptic serotonergic signaling. Although there is solid evidence that SERT forms oligomeric complexes, the exact stoichiometry of the complexes and the fractions of different coexisting oligomeric states still remain enigmatic. Here we used single molecule fluorescence microscopy to obtain the oligomerization state of the SERT via brightness analysis of single diffraction-limited fluorescent spots. Heterologously expressed SERT was labeled either with the fluorescent inhibitor JHC 1-64 or via fusion to monomeric GFP. We found a variety of oligomerization states of membrane-associated transporters, revealing molecular associations larger than dimers and demonstrating the coexistence of different degrees of oligomerization in a single cell; the data are in agreement with a linear aggregation model. Furthermore, oligomerization was found to be independent of SERT surface density, and oligomers remained stable over several minutes in the live cell plasma membrane. Together, the results indicate kinetic trapping of preformed SERT oligomers at the plasma membrane.


Subject(s)
Cell Membrane/metabolism , Models, Molecular , Multiprotein Complexes/metabolism , Protein Multimerization/physiology , Serotonin Plasma Membrane Transport Proteins/metabolism , Cell Membrane/chemistry , Cell Membrane/genetics , HEK293 Cells , Humans , Multiprotein Complexes/chemistry , Multiprotein Complexes/genetics , Serotonin Plasma Membrane Transport Proteins/chemistry , Serotonin Plasma Membrane Transport Proteins/genetics
13.
Biophys J ; 106(9): L33-5, 2014 May 06.
Article in English | MEDLINE | ID: mdl-24806941

ABSTRACT

Transmembrane proteins are synthesized and folded in the endoplasmic reticulum (ER), an interconnected network of flattened sacs or tubes. Up to now, this organelle has eluded a detailed analysis of the dynamics of its constituents, mainly due to the complex three-dimensional morphology within the cellular cytosol, which precluded high-resolution, single-molecule microscopy approaches. Recent evidences, however, pointed out that there are multiple interaction sites between ER and the plasma membrane, rendering total internal reflection microscopy of plasma membrane proximal ER regions feasible. Here we used single-molecule fluorescence microscopy to study the diffusion of the human serotonin transporter at the ER and the plasma membrane. We exploited the single-molecule trajectories to map out the structure of the ER close to the plasma membrane at subdiffractive resolution. Furthermore, our study provides a comparative picture of the diffusional behavior in both environments. Under unperturbed conditions, the majority of proteins showed similar mobility in the two compartments; at the ER, however, we found an additional 15% fraction of molecules moving with 25-fold faster mobility. Upon degradation of the actin skeleton, the diffusional behavior in the plasma membrane was strongly influenced, whereas it remained unchanged in the ER.


Subject(s)
Cell Membrane/metabolism , Endoplasmic Reticulum/metabolism , Molecular Imaging , Serotonin Plasma Membrane Transport Proteins/metabolism , Animals , CHO Cells , Cricetinae , Cricetulus , Diffusion , Humans , Temperature
14.
Biophys J ; 104(8): 1670-5, 2013 Apr 16.
Article in English | MEDLINE | ID: mdl-23601314

ABSTRACT

T cell activation is mediated via the recognition of peptides by the T cell receptor (TCR). This receptor ligand interaction is highly specific, and the TCR has to discriminate between a huge number of peptides presented by the products of the major histocompatibility complexes (MHCs). Recent studies indicate that cells probe the TCR-pMHC interaction by imposing force on the interaction. Here we investigated in a theoretical analysis the consequences of such force-induced unbinding for T cell recognition. Our findings are as follows. First, the bond rupture under force is much faster, improving the time resolution of the discrimination process. Second, cells can access additional parameters characterizing the shape of the binding energy surface. Third, load-induced unbinding yields a reduced coefficient of variation of the bond lifetimes, which improves the discriminative power even between peptide/MHCs (pMHCs) with similar off-rates.


Subject(s)
Histocompatibility Antigens/metabolism , Receptors, Antigen, T-Cell/metabolism , Animals , Histocompatibility Antigens/chemistry , Humans , Kinetics , Ligands , Models, Biological , Peptides/immunology , Peptides/metabolism , Protein Binding , Receptors, Antigen, T-Cell/chemistry
15.
Proc Natl Acad Sci U S A ; 106(43): 18267-72, 2009 Oct 27.
Article in English | MEDLINE | ID: mdl-19826086

ABSTRACT

Rather than maximizing toughness, as needed for silk and muscle titin fibers to withstand external impact, the much softer extracellular matrix fibers made from fibronectin (Fn) can be stretched by cell generated forces and display extraordinary extensibility. We show that Fn fibers can be extended more than 8-fold (>700% strain) before 50% of the fibers break. The Young's modulus of single fibers, given by the highly nonlinear slope of the stress-strain curve, changes orders of magnitude, up to MPa. Although many other materials plastically deform before they rupture, evidence is provided that the reversible breakage of force-bearing backbone hydrogen bonds enables the large strain. When tension is released, the nano-sized Fn domains first contract in the crowded environment of fibers within seconds into random coil conformations (molten globule states), before the force-bearing hydrogen bond networks that stabilize the domain's secondary structures are reestablished within minutes (double exponential). The exposure of cryptic binding sites on Fn type III modules increases steeply upon stretching. Thus fiber extension steadily up-regulates fiber rigidity and cryptic epitope exposure, both of which are known to differentially alter cell behavior. Finally, since stress-strain relationships cannot directly be measured in native extracellular matrix (ECM), the stress-strain curves were correlated with stretch-induced alterations of intramolecular fluorescence resonance energy transfer (FRET) obtained from trace amounts of Fn probes (mechanical strain sensors) that can be incorporated into native ECM. Physiological implications of the extraordinary extensibility of Fn fibers and contraction kinetics are discussed.


Subject(s)
Fibronectins/metabolism , Tensile Strength , Binding Sites , Fluorescence Resonance Energy Transfer , Kinetics , Nonlinear Dynamics , Protein Folding , Stress, Mechanical
16.
Nano Lett ; 11(9): 4008-11, 2011 Sep 14.
Article in English | MEDLINE | ID: mdl-21838238

ABSTRACT

Many nucleic acid stains show a strong fluorescence enhancement upon binding to double-stranded DNA. Here we exploit this property to perform superresolution microscopy based on the localization of individual binding events. The dynamic labeling scheme and the optimization of fluorophore brightness yielded a resolution of ∼14 nm (fwhm) and a spatial sampling of 1/nm. We illustrate our approach with two different DNA-binding dyes and apply it to visualize the organization of the bacterial chromosome in fixed Escherichia coli cells. In general, the principle of binding-activated localization microscopy (BALM) can be extended to other dyes and targets such as protein structures.


Subject(s)
DNA/chemistry , Microscopy, Fluorescence/methods , Microscopy/methods , Bacterial Proteins/metabolism , Escherichia coli/metabolism , Fluorescent Dyes/pharmacology , Green Fluorescent Proteins/metabolism , Intercalating Agents/pharmacology , Nanotechnology/methods , Organic Chemicals/pharmacology , Protein Binding
17.
HardwareX ; 11: e00316, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35602241

ABSTRACT

Spin coaters are widely used to apply thin films of a material uniformly over a flat substrate. Despite the simplicity of this technique the entry price for such machines might be prohibitive, ranging from few hundreds to thousands of Euros. Here we present Maasi, an affordable alternative that is easy to build and has all functional key features to be used in a wide range of applications. Our design has a price of less than hundred Euros and an assembly time of only two hours. One of the key design principles was to use only 3D printed parts in combination with affordable Commercial Off-The-Shelf (COTS) components [1]. Reducing the complexity we use an electronic speed controller (ESC) with telemetry, to eliminate the need for a rotor position sensor [2]. A touchscreen further improves its usability, thus setting a perfect startpoint for the design of other affordable lab tools. The Maasi project includes different 3D printable substrate holders allowing treatment of formats up to 80 mm in diameter. We furthermore validate the Maasi spin coater by measuring its speed accuracy and performance for coating polydimethylsiloxane (PDMS) on glass coverslips for mechanobiological assays.

18.
Nano Lett ; 10(5): 1823-30, 2010 May 12.
Article in English | MEDLINE | ID: mdl-20387859

ABSTRACT

Quantifying cellular forces relies on accurate calibrations of the sensor stiffness. Neglecting deformations of elastic substrates to which elastic pillars are anchored systematically overestimates the applied forces (up to 40%). A correction factor considering substrate warping is derived analytically and verified experimentally. The factor scales with the dimensionless pillar aspect ratio. This has significant implications when designing pillar arrays or comparing absolute forces measured on different pillar geometries during cell spreading, motility, or rigidity sensing.


Subject(s)
Fibroblasts/cytology , Fibroblasts/physiology , Mechanotransduction, Cellular/physiology , Microarray Analysis/instrumentation , Nanostructures/chemistry , Nanotechnology/instrumentation , Transducers , Cell Adhesion/physiology , Cell Line , Cell Movement/physiology , Elastic Modulus , Equipment Design , Equipment Failure Analysis , Humans , Materials Testing , Nanostructures/ultrastructure , Stress, Mechanical , Surface Properties
19.
Acta Biomater ; 133: 222-230, 2021 10 01.
Article in English | MEDLINE | ID: mdl-33636402

ABSTRACT

Immunotherapy stands out as a powerful and promising therapeutic strategy in the treatment of cancer, infections, and autoimmune diseases. Adoptive immune therapies are usually centered on modified T cells and their specific expansion towards antigen-specific T cells against cancer and other diseases. However, despite their unmatched features, the potential of B cells in immunotherapy is just beginning to be explored. The main role of B cells in the immune response is to secrete antigen-specific antibodies and provide long-term protection against foreign pathogens. They further function as antigen-presenting cells (APCs) and secrete pro- and anti-inflammatory cytokines and thus exert positive and negative regulatory stimuli on other cells involved in the immune response such as T cells. Therefore, while hyperactivation of B cells can cause autoimmunity, their dysfunctions lead to severe immunodeficiencies. Only suitably activated B cells can play an active role in the treatment of cancers, infections, and autoimmune diseases. As a result, studies have focused on B cell-targeted immunotherapies in recent years. For this, the development, functions, interactions with the microenvironment, and clinical importance of B cells should be well understood. In this review, we summarize the main events during B cell activation. From the viewpoint of mechanobiology we discuss the translation of external cues such as surface topology, substrate stiffness, and biochemical signaling into B cell functions. We further dive into current B cell-targeted therapy strategies and their clinical applications. STATEMENT OF SIGNIFICANCE: B cells are proving as a promising tool in the field of immunotherapy. B cells exhibit various functions such as antibody production, antigen presentation or secretion of immune-regulatory factors which can be utilized in the fight against oncological or immunological disorders. In this review we discuss the importance of external mechanobiological cues such as surface topology, substrate stiffness, and biochemical signaling on B cell function. We further summarize B cell-targeted therapy strategies and their clinical applications, as in the context of anti-tumor responses and autoimmune diseases.


Subject(s)
Cues , Immunotherapy , Antigen Presentation , B-Lymphocytes , Immunologic Factors
20.
Nat Commun ; 12(1): 2502, 2021 05 04.
Article in English | MEDLINE | ID: mdl-33947864

ABSTRACT

Mechanical forces acting on ligand-engaged T-cell receptors (TCRs) have previously been implicated in T-cell antigen recognition, yet their magnitude, spread, and temporal behavior are still poorly defined. We here report a FRET-based sensor equipped either with a TCR-reactive single chain antibody fragment or peptide-loaded MHC, the physiological TCR-ligand. The sensor was tethered to planar glass-supported lipid bilayers (SLBs) and informed most directly on the magnitude and kinetics of TCR-imposed forces at the single molecule level. When confronting T-cells with gel-phase SLBs we observed both prior and upon T-cell activation a single, well-resolvable force-peak of approximately 5 pN and force loading rates on the TCR of 1.5 pN per second. When facing fluid-phase SLBs instead, T-cells still exerted tensile forces yet of threefold reduced magnitude and only prior to but not upon activation.


Subject(s)
Fluorescence Resonance Energy Transfer/methods , Histocompatibility Antigens/chemistry , Receptors, Antigen, T-Cell/chemistry , Single Molecule Imaging/methods , Single-Chain Antibodies/chemistry , Animals , CD4-Positive T-Lymphocytes/chemistry , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/chemistry , CD8-Positive T-Lymphocytes/immunology , Cytochromes c/chemistry , Fluorescence Resonance Energy Transfer/instrumentation , Histocompatibility Antigens/immunology , Kinetics , Ligands , Lipid Bilayers/chemistry , Mice , Peptides/chemistry , Receptors, Antigen, T-Cell/immunology , Single Molecule Imaging/instrumentation , Single-Chain Antibodies/immunology , Spatio-Temporal Analysis
SELECTION OF CITATIONS
SEARCH DETAIL