ABSTRACT
The zinc finger antiviral protein (ZAP) inhibits viral replication by directly binding CpG dinucleotides in cytoplasmic viral RNA to inhibit protein synthesis and target the RNA for degradation. ZAP evolved in tetrapods and there are clear orthologs in reptiles, birds, and mammals. When ZAP emerged, other proteins may have evolved to become cofactors for its antiviral activity. KHNYN is a putative endoribonuclease that is required for ZAP to restrict retroviruses. To determine its evolutionary path after ZAP emerged, we compared KHNYN orthologs in mammals and reptiles to those in fish, which do not encode ZAP. This identified residues in KHNYN that are highly conserved in species that encode ZAP, including several in the CUBAN domain. The CUBAN domain interacts with NEDD8 and Cullin-RING E3 ubiquitin ligases. Deletion of the CUBAN domain decreased KHNYN antiviral activity, increased protein expression and increased nuclear localization. However, mutation of residues required for the CUBAN domain-NEDD8 interaction increased KHNYN abundance but did not affect its antiviral activity or cytoplasmic localization, indicating that Cullin-mediated degradation may control its homeostasis and regulation of protein turnover is separable from its antiviral activity. By contrast, the C-terminal residues in the CUBAN domain form a CRM1-dependent nuclear export signal (NES) that is required for its antiviral activity. Deletion or mutation of the NES increased KHNYN nuclear localization and decreased its interaction with ZAP. The final 2 positions of this NES are not present in fish KHNYN orthologs and we hypothesize their evolution allowed KHNYN to act as a ZAP cofactor. IMPORTANCE The interferon system is part of the innate immune response that inhibits viruses and other pathogens. This system emerged approximately 500 million years ago in early vertebrates. Since then, some genes have evolved to become antiviral interferon-stimulated genes (ISGs) while others evolved so their encoded protein could interact with proteins encoded by ISGs and contribute to their activity. However, this remains poorly characterized. ZAP is an ISG that arose during tetrapod evolution and inhibits viral replication. Because KHNYN interacts with ZAP and is required for its antiviral activity against retroviruses, we conducted an evolutionary analysis to determine how specific amino acids in KHNYN evolved after ZAP emerged. This identified a nuclear export signal that evolved in tetrapods and is required for KHNYN to traffic in the cell and interact with ZAP. Overall, specific residues in KHNYN evolved to allow it to act as a cofactor for ZAP antiviral activity.
Subject(s)
Evolution, Molecular , Nuclear Export Signals , RNA-Binding Proteins , Ubiquitin-Protein Ligases , Animals , Cullin Proteins/metabolism , Interferons/genetics , RNA, Viral/genetics , Virus Replication/physiology , RNA-Binding Proteins/genetics , Ubiquitin-Protein Ligases/geneticsABSTRACT
Emerging strains of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the coronavirus disease 2019 (COVID-19) pandemic, that show increased transmission fitness and/or immune evasion are classified as "variants of concern" (VOCs). Recently, a SARS-CoV-2 variant first identified in November 2021 in South Africa has been recognized as a fifth VOC, termed "Omicron." What makes this VOC so alarming is the high number of changes, especially in the viral Spike protein, and accumulating evidence for increased transmission efficiency and escape from neutralizing antibodies. In an amazingly short time, the Omicron VOC has outcompeted the previously dominating Delta VOC. However, it seems that the Omicron VOC is overall less pathogenic than other SARS-CoV-2 VOCs. Here, we provide an overview of the mutations in the Omicron genome and the resulting changes in viral proteins compared to other SARS-CoV-2 strains and discuss their potential functional consequences.
Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/immunology , COVID-19/virology , Genome, Viral , Humans , Immune Evasion , Mutation , SARS-CoV-2/genetics , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/metabolismABSTRACT
It has recently been shown that an early SARS-CoV-2 isolate (NL-02-2020) hijacks interferon-induced transmembrane proteins (IFITMs) for efficient replication in human lung cells, cardiomyocytes, and gut organoids. To date, several "variants of concern" (VOCs) showing increased infectivity and resistance to neutralization have emerged and globally replaced the early viral strains. Here, we determined whether the five current SARS-CoV-2 VOCs (Alpha, Beta, Gamma, Delta, and Omicron) maintained the dependency on IFITM proteins for efficient replication. We found that depletion of IFITM2 strongly reduces viral RNA production by all VOCs in the human epithelial lung cancer cell line Calu-3. Silencing of IFITM1 had modest effects, while knockdown of IFITM3 resulted in an intermediate phenotype. Strikingly, depletion of IFITM2 generally reduced infectious virus production by more than 4 orders of magnitude. In addition, an antibody directed against the N terminus of IFITM2 inhibited SARS-CoV-2 VOC replication in induced pluripotent stem cell (iPSC)-derived alveolar epithelial type II cells, thought to represent major viral target cells in the lung. In conclusion, endogenously expressed IFITM proteins (especially IFITM2) are critical cofactors for efficient replication of genuine SARS-CoV-2 VOCs, including the currently dominant Omicron variant. IMPORTANCE Recent data indicate that SARS-CoV-2 requires endogenously expressed IFITM proteins for efficient infection. However, the results were obtained with an early SARS-CoV-2 isolate. Thus, it remained to be determined whether IFITMs are also important cofactors for infection of emerging SARS-CoV-2 VOCs that outcompeted the original strains in the meantime. This includes the Omicron VOC, which currently dominates the pandemic. Here, we show that depletion of endogenous IFITM2 expression almost entirely prevents productive infection of Alpha, Beta, Gamma, Delta, and Omicron SARS-CoV-2 VOCs in human lung cells. In addition, an antibody targeting the N terminus of IFITM2 inhibited SARS-CoV-2 VOC replication in iPSC-derived alveolar epithelial type II cells. Our results show that SARS-CoV-2 VOCs, including the currently dominant Omicron variant, are strongly dependent on IFITM2 for efficient replication, suggesting a key proviral role of IFITMs in viral transmission and pathogenicity.
Subject(s)
Lung , Membrane Proteins , SARS-CoV-2 , Virus Replication , COVID-19/virology , Cell Line, Tumor , Humans , Lung/virology , Membrane Proteins/genetics , Membrane Proteins/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Virus InternalizationABSTRACT
The zinc finger antiviral protein (ZAP) is a broad inhibitor of virus replication. Its best-characterized function is to bind CpG dinucleotides present in viral RNAs and, through the recruitment of TRIM25, KHNYN and other cofactors, target them for degradation or prevent their translation. The long and short isoforms of ZAP (ZAP-L and ZAP-S) have different intracellular localization and it is unclear how this regulates their antiviral activity against viruses with different sites of replication. Using ZAP-sensitive and ZAP-insensitive human immunodeficiency virus type I (HIV-1), which transcribe the viral RNA in the nucleus and assemble virions at the plasma membrane, we show that the catalytically inactive poly-ADP-ribose polymerase (PARP) domain in ZAP-L is essential for CpG-specific viral restriction. Mutation of a crucial cysteine in the C-terminal CaaX box that mediates S-farnesylation and, to a lesser extent, the residues in place of the catalytic site triad within the PARP domain, disrupted the activity of ZAP-L. Addition of the CaaX box to ZAP-S partly restored antiviral activity, explaining why ZAP-S lacks antiviral activity for CpG-enriched HIV-1 despite conservation of the RNA-binding domain. Confocal microscopy confirmed the CaaX motif mediated localization of ZAP-L to vesicular structures and enhanced physical association with intracellular membranes. Importantly, the PARP domain and CaaX box together jointly modulate the interaction between ZAP-L and its cofactors TRIM25 and KHNYN, implying that its proper subcellular localisation is required to establish an antiviral complex. The essential contribution of the PARP domain and CaaX box to ZAP-L antiviral activity was further confirmed by inhibition of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication, which replicates in double-membrane vesicles derived from the endoplasmic reticulum. Thus, compartmentalization of ZAP-L on intracellular membranes provides an essential effector function in ZAP-L-mediated antiviral activity against divergent viruses with different subcellular replication sites.
Subject(s)
Prenylation/physiology , RNA Viruses/drug effects , RNA-Binding Proteins/pharmacology , Virus Replication/physiology , CpG Islands/physiology , HEK293 Cells , HIV-1/physiology , HeLa Cells , Humans , RNA Viruses/physiology , RNA, Viral/chemistry , RNA, Viral/metabolism , RNA-Binding Motifs/physiology , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/metabolism , SARS-CoV-2/physiology , Transfection , Virus Replication/drug effectsABSTRACT
Simian immunodeficiency virus infecting sooty mangabeys (SIVsmm) has been transmitted to humans on at least nine occasions, giving rise to human immunodeficiency virus type 2 (HIV-2) groups A to I. SIVsmm isolates replicate in human T cells and seem capable of overcoming major human restriction factors without adaptation. However, only groups A and B are responsible for the HIV-2 epidemic in sub-Saharan Africa, and it is largely unclear whether adaptive changes were associated with spread in humans. To address this, we examined the sensitivity of infectious molecular clones (IMCs) of five HIV-2 strains and representatives of five different SIVsmm lineages to various APOBEC3 proteins. We confirmed that SIVsmm strains replicate in human T cells, albeit with more variable replication fitness and frequently lower efficiency than HIV-2 IMCs. Efficient viral propagation was generally dependent on intact vif genes, highlighting the need for counteraction of APOBEC3 proteins. On average, SIVsmm was more susceptible to inhibition by human APOBEC3D, -F, -G, and -H than HIV-2. For example, human APOBEC3F reduced infectious virus yield of SIVsmm by â¼80% but achieved only â¼40% reduction in the case of HIV-2. Functional and mutational analyses of human- and monkey-derived alleles revealed that an R128T polymorphism in APOBEC3F contributes to species-specific counteraction by HIV-2 and SIVsmm Vifs. In addition, a T84S substitution in SIVsmm Vif increased its ability to counteract human APOBEC3F. Altogether, our results confirm that SIVsmm Vif proteins show intrinsic activity against human APOBEC3 proteins but also demonstrate that epidemic HIV-2 strains evolved an increased ability to counteract this class of restriction factors during human adaptation. IMPORTANCE Viral zoonoses pose a significant threat to human health, and it is important to understand determining factors. SIVs infecting great apes gave rise to HIV-1. In contrast, SIVs infecting African monkey species have not been detected in humans, with one notable exception. SIVsmm from sooty mangabeys has crossed the species barrier to humans on at least nine independent occasions and seems capable of overcoming many innate defense mechanisms without adaptation. Here, we confirmed that SIVsmm Vif proteins show significant activity against human APOBEC3 proteins. Our analyses also revealed, however, that different lineages of SIVsmm are significantly more susceptible to inhibition by various human APOBEC3 proteins than HIV-2 strains. Mutational analyses suggest that an R128T substitution in APOBEC3F and a T84S change in Vif contribute to species-specific counteraction by HIV-2 and SIVsmm. Altogether, our results support that epidemic HIV-2 strains acquired increased activity against human APOBEC3 proteins to clear this restrictive barrier.
Subject(s)
Cytosine Deaminase/metabolism , Gene Products, vif/metabolism , HIV Infections/prevention & control , HIV-2/genetics , Host-Pathogen Interactions , Simian Acquired Immunodeficiency Syndrome/transmission , Simian Immunodeficiency Virus/physiology , Animals , Cercocebus atys , Cytosine Deaminase/genetics , Disease Transmission, Infectious/prevention & control , Gene Products, vif/genetics , HIV Infections/metabolism , HIV Infections/virology , Humans , Mutation , Simian Acquired Immunodeficiency Syndrome/epidemiology , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/classification , Virus ReplicationABSTRACT
The global vaccination programme against smallpox led to its successful eradication and averted millions of deaths. Monkeypox virus (MPXV) is a close relative of the Variola (smallpox) virus. Due to antigenic similarity, smallpox vaccines cross-protect against MPXV. However, over 70% of people living today were never vaccinated against smallpox. Symptoms of monkeypox (MPX) include fever, head- and muscle ache, lymphadenopathy and a characteristic rash that develops into papules, vesicles and pustules which eventually scab over and heal. MPX is less often fatal (case fatality rates range from <1% to up to 11%) than smallpox (up to 30%). MPXV is endemic in sub-Saharan Africa, infecting wild animals and causing zoonotic outbreaks. Exotic animal trade and international travel, combined with the increasing susceptibility of the human population due to halted vaccination, facilitated the spread of MPXV to new areas. The ongoing outbreak, with >10,000 cases in >50 countries between May and July 2022, shows that MPXV can significantly spread between people and may thus become a serious threat to public health with global consequences. Here, we summarize the current knowledge about this re-emerging virus, discuss available strategies to limit its spread and pathogenicity and evaluate its risk to the human population.
Subject(s)
Mpox (monkeypox) , Smallpox , Animals , Humans , Mpox (monkeypox)/epidemiology , Mpox (monkeypox)/prevention & control , Monkeypox virus , Smallpox/epidemiology , Smallpox/prevention & controlABSTRACT
SERINC5 is a host restriction factor that impairs infectivity of HIV-1 and other primate lentiviruses and is counteracted by the viral accessory protein Nef. However, the importance of SERINC5 antagonism for viral replication and cytopathicity remained unclear. Here, we show that the Nef protein of the highly divergent SIVcol lineage infecting mantled guerezas (Colobus guereza) is a potent antagonist of SERINC5, although it lacks the CD4, CD3 and CD28 down-modulation activities exerted by other primate lentiviral Nefs. In addition, SIVcol Nefs decrease CXCR4 cell surface expression, suppress TCR-induced actin remodeling, and counteract Colobus but not human tetherin. Unlike HIV-1 Nef proteins, SIVcol Nef induces efficient proteasomal degradation of SERINC5 and counteracts orthologs from highly divergent vertebrate species, such as Xenopus frogs and zebrafish. A single Y86F mutation disrupts SERINC5 and tetherin antagonism but not CXCR4 down-modulation by SIVcol Nef, while mutation of a C-proximal di-leucine motif has the opposite effect. Unexpectedly, the Y86F change in SIVcol Nef had little if any effect on viral replication and CD4+ T cell depletion in preactivated human CD4+ T cells and in ex vivo infected lymphoid tissue. However, SIVcol Nef increased virion infectivity up to 10-fold and moderately increased viral replication in resting peripheral blood mononuclear cells (PBMCs) that were first infected with HIV-1 and activated three or six days later. In conclusion, SIVcol Nef lacks several activities that are conserved in other primate lentiviruses and utilizes a distinct proteasome-dependent mechanism to counteract SERINC5. Our finding that evolutionarily distinct SIVcol Nefs show potent anti-SERINC5 activity supports a relevant role of SERINC5 antagonism for viral fitness in vivo. Our results further suggest this Nef function is particularly important for virion infectivity under conditions of limited CD4+ T cell activation.
Subject(s)
CD4-Positive T-Lymphocytes/virology , Gene Products, nef/physiology , HIV-1/physiology , Lymphoid Tissue/virology , Membrane Proteins/metabolism , Virus Replication/genetics , Animals , CD4-Positive T-Lymphocytes/metabolism , Cells, Cultured , Colobus/virology , HEK293 Cells , Humans , Jurkat Cells , Membrane Proteins/genetics , Proteasome Endopeptidase Complex/metabolism , Proteolysis , Simian Immunodeficiency Virus/geneticsABSTRACT
The host restriction factor tetherin inhibits virion release from infected cells and poses a significant barrier to successful zoonotic transmission of primate lentiviruses to humans. While most simian immunodeficiency viruses (SIV), including the direct precursors of human immunodeficiency virus type 1 (HIV-1) and HIV-2, use their Nef protein to counteract tetherin in their natural hosts, they fail to antagonize the human tetherin ortholog. Pandemic HIV-1 group M and epidemic group O strains overcame this hurdle by adapting their Vpu and Nef proteins, respectively, whereas HIV-2 group A uses its envelope (Env) glycoprotein to counteract human tetherin. Whether or how the remaining eight groups of HIV-2 antagonize this antiviral factor has remained unclear. Here, we show that Nef proteins from diverse groups of HIV-2 do not or only modestly antagonize human tetherin, while their ability to downmodulate CD3 and CD4 is highly conserved. Experiments in transfected cell lines and infected primary cells revealed that not only Env proteins of epidemic HIV-2 group A but also those of a circulating recombinant form (CRF01_AB) and rare groups F and I decrease surface expression of human tetherin and significantly enhance progeny virus release. Intriguingly, we found that many SIVsmm Envs also counteract human as well as smm tetherin. Thus, Env-mediated tetherin antagonism in different groups of HIV-2 presumably stems from a preadaptation of their SIVsmm precursors to humans. In summary, we identified a phenotypic trait of SIVsmm that may have facilitated its successful zoonotic transmission to humans and the emergence of HIV-2.IMPORTANCE HIV-2 groups A to I resulted from nine independent cross-species transmission events of SIVsmm to humans and differ considerably in their prevalence and geographic spread. Thus, detailed characterization of these viruses offers a valuable means to elucidate immune evasion mechanisms and human-specific adaptations determining viral spread. In a systematic comparison of rare and epidemic HIV-2 groups and their simian SIVsmm counterparts, we found that the ability of Nef to downmodulate the primary viral entry receptor CD4 and the T cell receptor CD3 is conserved, while effects on CD28, CD74, and major histocompatibility complex class I surface expression vary considerably. Furthermore, we show that not only the Env proteins of HIV-2 groups A, AB, F, and I but also those of some SIVsmm isolates antagonize human tetherin. This finding helps to explain why SIVsmm has been able to cross the species barrier to humans on at least nine independent occasions.
Subject(s)
Antigens, CD/genetics , Gene Products, nef/genetics , HIV-2/genetics , Simian Immunodeficiency Virus/genetics , env Gene Products, Human Immunodeficiency Virus/genetics , Antigens, CD/metabolism , CD3 Complex/genetics , CD4 Antigens/genetics , GPI-Linked Proteins/antagonists & inhibitors , GPI-Linked Proteins/genetics , GPI-Linked Proteins/metabolism , HIV-2/metabolism , Host-Pathogen Interactions , Humans , Simian Immunodeficiency Virus/metabolismABSTRACT
Extensive studies on HIV-1 have led to the discovery of a variety of structurally and functionally diverse innate defense factors that target various steps of the retroviral replication cycle. Some of them, such as APOBEC3, tetherin, and SERINC5, are well established. Their importance is evident from the fact that HIV-1 uses its accessory proteins Vif, Vpu, and Nef to counteract them. However, the list of antiviral factors is constantly increasing, and accumulating evidence suggests that innate defense mechanisms, which restrict HIV-1 and/or are counteracted by viral proteins, remain to be discovered. These antiviral factors are relevant to diseases other than HIV/AIDS, since they are commonly active against various viral pathogens. In this review, we provide an overview of recently reported antiretroviral factors and viral countermeasures, present the evidence suggesting that more innate defense mechanisms remain to be discovered, and discuss why this is a challenging but rewarding task.
Subject(s)
HIV Infections , HIV-1 , Immunity, Innate , Humans , HIV-1/physiology , HIV-1/metabolism , HIV Infections/virology , HIV Infections/metabolism , HIV Infections/immunology , Host-Pathogen Interactions , Virus Replication , GPI-Linked Proteins/metabolism , Animals , Bone Marrow Stromal Antigen 2ABSTRACT
Human coronaviruses (hCoVs) infect millions of people every year. Among these, MERS, SARS-CoV-1, and SARS-CoV-2 caused significant morbidity and mortality and their emergence highlights the risk of possible future coronavirus outbreaks. Therefore, broadly-active anti-coronavirus drugs are needed. Pharmacological inhibition of the hCoV protease Nsp5 (3CLpro) is clinically beneficial as shown by the wide and effective use of Paxlovid (nirmatrelvir, ritonavir). However, further treatment options are required due to the risk of drug resistance. To facilitate the assessment of coronavirus protease function and its pharmacological inhibition, we developed an assay allowing rapid and reliable quantification of Nsp5 activity under biosafety level 1 conditions. It is based on an ACE2-Gal4 transcription factor fusion protein separated by a Nsp5 recognition site. Cleavage by Nsp5 releases the Gal4 transcription factor, which then induces the expression of Gaussia luciferase. Our assay is compatible with Nsp5 proteases from all hCoVs and allows simultaneous measurement of inhibitory and cytotoxic effects of the tested compounds. Proof-of-concept measurements confirmed that nirmatrelvir, GC376 and lopinavir inhibit SARS-CoV-2 Nsp5 function. Furthermore, the assay accurately predicted the impact of Nsp5 mutations on catalytic activity and inhibitor sensitivity. Overall, the reporter assay is suitable for evaluating viral protease activity.
Subject(s)
Coronavirus 3C Proteases , Luciferases , Humans , Luciferases/metabolism , Luciferases/genetics , Coronavirus 3C Proteases/metabolism , Coronavirus 3C Proteases/antagonists & inhibitors , Genes, Reporter , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , Antiviral Agents/pharmacology , HEK293 CellsABSTRACT
PYHIN proteins are only found in mammals and play key roles in the defense against bacterial and viral pathogens. The corresponding gene locus shows variable deletion and expansion ranging from 0 genes in bats, over 1 in cows, and 4 in humans to a maximum of 13 in mice. While initially thought to act as cytosolic immune sensors that recognize foreign DNA, increasing evidence suggests that PYHIN proteins also inhibit viral pathogens by more direct mechanisms. Here, we examined the ability of all 13 murine PYHIN proteins to inhibit HIV-1 and murine leukemia virus (MLV). We show that overexpression of p203, p204, p205, p208, p209, p210, p211, and p212 strongly inhibits production of infectious HIV-1; p202, p207, and p213 had no significant effects, while p206 and p214 showed intermediate phenotypes. The inhibitory effects on infectious HIV-1 production correlated significantly with the suppression of reporter gene expression by a proviral Moloney MLV-eGFP construct and HIV-1 and Friend MLV LTR luciferase reporter constructs. Altogether, our data show that the antiretroviral activity of PYHIN proteins is conserved between men and mice and further support the key role of nuclear PYHIN proteins in innate antiviral immunity.
Subject(s)
HIV-1 , Leukemia Virus, Murine , Phosphoproteins , Animals , Mice , Humans , HIV-1/immunology , HIV-1/genetics , Leukemia Virus, Murine/genetics , Leukemia Virus, Murine/immunology , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Nuclear Proteins/immunology , Virus Replication , Cell Line , Retroviridae Infections/immunology , Retroviridae Infections/virologyABSTRACT
Coronavirus infection induces interferon-stimulated genes, one of which encodes Tetherin, a transmembrane protein inhibiting the release of various enveloped viruses from infected cells. Previous studies revealed that SARS-CoV encodes two Tetherin antagonists: the Spike protein (S), inducing lysosomal degradation of Tetherin, and ORF7a, altering its glycosylation. Similarly, SARS-CoV-2 has also been shown to use ORF7a and Spike to enhance virion release in the presence of Tetherin. Here, we directly compare the abilities and mechanisms of these two viral proteins to counteract Tetherin. Therefore, cell surface and total Tetherin levels upon ORF7a or S expression were investigated using flow cytometry and Western blot analysis. SARS-CoV and SARS-CoV-2 S only marginally reduced Tetherin cell surface levels in a cell type-dependent manner. In HEK293T cells, under conditions of high exogenous Tetherin expression, SARS-CoV-2 S and ORF7a reduced total cellular Tetherin levels much more efficiently than the respective counterparts derived from SARS-CoV. Nevertheless, ORF7a from both species was able to alter Tetherin glycosylation. The ability to decrease total protein levels of Tetherin was conserved among S proteins from different SARS-CoV-2 variants (α, γ, δ, ο). While SARS-CoV-2 S and ORF7a both colocalized with Tetherin, only ORF7a directly interacted with the restriction factor in a two-hybrid assay. Despite the presence of multiple Tetherin antagonists, SARS-CoV-2 replication in Caco-2 cells was further enhanced upon Tetherin knockout. Altogether, our data show that endogenous Tetherin restricts SARS-CoV-2 replication and that the antiviral activity of Tetherin is only partially counteracted by viral antagonists with differential and complementary modes of action.
Subject(s)
Bone Marrow Stromal Antigen 2 , COVID-19 , Severe acute respiratory syndrome-related coronavirus , Humans , Caco-2 Cells , COVID-19/metabolism , COVID-19/virology , GPI-Linked Proteins/genetics , GPI-Linked Proteins/metabolism , HEK293 Cells , SARS-CoV-2/genetics , SARS-CoV-2/metabolismABSTRACT
The IFN system constitutes a powerful antiviral defense machinery. Consequently, effective IFN responses protect against severe COVID-19 and exogenous IFNs inhibit SARS-CoV-2 in vitro. However, emerging SARS-CoV-2 variants of concern (VOCs) may have evolved reduced IFN sensitivity. Here, we determined differences in replication and IFN susceptibility of an early SARS-CoV-2 isolate (NL-02-2020) and the Alpha, Beta, Gamma, Delta, and Omicron VOCs in Calu-3 cells, iPSC-derived alveolar type-II cells (iAT2) and air-liquid interface (ALI) cultures of primary human airway epithelial cells. Our data show that Alpha, Beta, and Gamma replicated to similar levels as NL-02-2020. In comparison, Delta consistently yielded higher viral RNA levels, whereas Omicron was attenuated. All viruses were inhibited by type-I, -II, and -III IFNs, albeit to varying extend. Overall, Alpha was slightly less sensitive to IFNs than NL-02-2020, whereas Beta, Gamma, and Delta remained fully sensitive. Strikingly, Omicron BA.1 was least restricted by exogenous IFNs in all cell models. Our results suggest that enhanced innate immune evasion rather than higher replication capacity contributed to the effective spread of Omicron BA.1.
Subject(s)
COVID-19 , Interferons , Humans , Interferons/pharmacology , SARS-CoV-2 , Antiviral Agents/pharmacologyABSTRACT
Opposing effects of interferon-induced transmembrane proteins (IFITMs 1, 2 and 3) on SARS-CoV-2 infection have been reported. The reasons for this are unclear and the role of IFITMs in infection of other human coronaviruses (hCoVs) remains poorly understood. Here, we demonstrate that endogenous expression of IFITM2 and/or IFITM3 is critical for efficient replication of SARS-CoV-1, SARS-CoV-2 and hCoV-OC43 but has little effect on MERS-, NL63-and 229E-hCoVs. In contrast, overexpression of IFITMs inhibits all these hCoVs, and the corresponding spike-containing pseudo-particles, except OC43, which is enhanced by IFITM3. We further demonstrate that overexpression of IFITMs impairs cell surface expression of ACE2 representing the entry receptor of SARS-CoVs and hCoV-NL63 but not hCoV-OC43. Our results explain the inhibitory effects of artificial IFITM overexpression on ACE2-tropic SARS-CoVs and show that three hCoVs, including major causative agents of severe respiratory disease, hijack IFITMs for efficient infection of human cells.
ABSTRACT
Humans evolved numerous cell-intrinsic restriction factors as a first line of defense against viral pathogens. Typically, they inhibit efficient viral replication and thus prevent viral zoonoses and pandemics. However, viruses show enormous adaptability and are well known for their ability to counteract antiviral mechanisms. Accumulating evidence shows that some viruses are even capable of exploiting antiviral factors for efficient infection. In addition, antiviral factors may exert enhancing effects under specific circumstances. While much progress has been made in understanding the antiviral mechanisms of restriction factors, their proviral effects are poorly defined. Here, we summarize current knowledge on how viral pathogens may exploit otherwise antiviral cellular factors for efficient infection and replication.
Subject(s)
Immunity, Innate , Viruses , Animals , Antiviral Agents/pharmacology , Humans , Virus Replication , Viruses/geneticsABSTRACT
The antiviral protein ZAP binds CpG dinucleotides in viral RNA to inhibit replication. This has likely led to the CpG suppression observed in many RNA viruses, including retroviruses. Sequences added to retroviral vector genomes, such as internal promoters, transgenes, or regulatory elements, substantially increase CpG abundance. Because these CpGs could allow retroviral vector RNA to be targeted by ZAP, we analyzed whether it restricts vector production, transduction efficiency, and transgene expression. Surprisingly, even though CpG-high HIV-1 was efficiently inhibited by ZAP in HEK293T cells, depleting ZAP did not substantially increase lentiviral vector titer using several packaging and genome plasmids. ZAP overexpression also did not inhibit lentiviral vector titer. In addition, decreasing CpG abundance in a lentiviral vector genome did not increase its titer, and a gammaretroviral vector derived from murine leukemia virus was not substantially restricted by ZAP. Overall, we show that the increased CpG abundance in retroviral vectors relative to the wild-type retroviruses they are derived from does not intrinsically sensitize them to ZAP. Further understanding of how ZAP specifically targets transcripts to inhibit their expression may allow the development of CpG sequence contexts that efficiently recruit or evade this antiviral system.
ABSTRACT
Subtype C is the most prevalent clade of human immunodeficiency virus type 1 (HIV-1) worldwide. The reasons for this are poorly understood. Here, we demonstrate that a characteristic additional third nuclear factor κB (NF-κB) binding site in the long terminal repeat (LTR) promoter allows subtype C HIV-1 strains to evade restriction by nuclear PYHIN proteins, which sequester the transcription factor Sp1. Further, other LTR alterations are responsible for rare PYHIN resistance of subtype B viruses. Resistance-conferring mutations generally reduce the dependency of HIV-1 on Sp1 for virus production and render LTR transcription highly responsive to stimulation by NF-κB/p65. A third NF-κB binding site increases infectious virus yield in primary CD4+ T cells in an γ-interferon-inducible protein 16 (IFI16)-dependent manner. Comprehensive sequence analyses suggest that the frequency of circulating PYHIN-resistant HIV-1 strains is increasing. Our finding that an additional NF-κB binding site in the LTR confers resistance to nuclear PYHIN proteins helps to explain the dominance of clade C HIV-1 strains.
Subject(s)
HIV-1/genetics , NF-kappa B/chemistry , Nuclear Proteins/metabolism , Binding Sites , CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/metabolism , Disease Susceptibility , Genotype , HEK293 Cells , HIV Infections/metabolism , HIV Infections/pathology , Humans , NF-kappa B/metabolism , Phosphoproteins/metabolism , Sp1 Transcription Factor/genetics , Sp1 Transcription Factor/metabolism , Terminal Repeat Sequences/genetics , Virus ReplicationABSTRACT
Interferon-induced transmembrane proteins (IFITMs 1, 2 and 3) can restrict viral pathogens, but pro- and anti-viral activities have been reported for coronaviruses. Here, we show that artificial overexpression of IFITMs blocks SARS-CoV-2 infection. However, endogenous IFITM expression supports efficient infection of SARS-CoV-2 in human lung cells. Our results indicate that the SARS-CoV-2 Spike protein interacts with IFITMs and hijacks them for efficient viral infection. IFITM proteins were expressed and further induced by interferons in human lung, gut, heart and brain cells. IFITM-derived peptides and targeting antibodies inhibit SARS-CoV-2 entry and replication in human lung cells, cardiomyocytes and gut organoids. Our results show that IFITM proteins are cofactors for efficient SARS-CoV-2 infection of human cell types representing in vivo targets for viral transmission, dissemination and pathogenesis and are potential targets for therapeutic approaches.
Subject(s)
Angiotensin-Converting Enzyme 2/genetics , Antigens, Differentiation/genetics , Membrane Proteins/genetics , RNA-Binding Proteins/genetics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Amino Acid Sequence , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Neutralizing/pharmacology , Antigens, Differentiation/metabolism , Binding Sites , COVID-19/virology , Gene Expression Regulation , Host-Pathogen Interactions/drug effects , Host-Pathogen Interactions/genetics , Humans , Interferon-beta/pharmacology , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/metabolism , Protein Binding , Protein Interaction Domains and Motifs , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , RNA-Binding Proteins/antagonists & inhibitors , RNA-Binding Proteins/metabolism , SARS-CoV-2/drug effects , SARS-CoV-2/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Spike Glycoprotein, Coronavirus/metabolism , Virus Attachment/drug effectsABSTRACT
Restriction factors are structurally and functionally diverse cellular proteins that constitute a first line of defense against viral pathogens. Exceptions exist, but typically these proteins are upregulated by interferons (IFNs), target viral components, and are rapidly evolving due to the continuous virus-host arms race. Restriction factors may target HIV replication at essentially each step of the retroviral replication cycle, and the suppression of viral transcription and the degradation of viral RNA transcripts are emerging as major innate immune defense mechanisms. Recent data show that some antiviral factors, such as the tripartite motif-containing protein 22 (TRIM22) and the g-IFN-inducible protein 16 (IFI16), do not target HIV-1 itself but limit the availability of the cellular transcription factor specificity protein 1 (Sp1), which is critical for effective viral gene expression. In addition, several RNA-interacting cellular factors including RNAse L, the NEDD4-binding protein 1 (N4BP1), and the zinc finger antiviral protein (ZAP) have been identified as important immune effectors against HIV-1 that may be involved in the maintenance of the latent viral reservoirs, representing the major obstacle against viral elimination and cure. Here, we review recent findings on specific cellular antiviral factors targeting HIV-1 transcription or viral RNA transcripts and discuss their potential role in viral latency.
Subject(s)
HIV Infections/metabolism , HIV-1/genetics , RNA, Viral/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , HIV Infections/genetics , HIV Infections/virology , HIV-1/physiology , Host-Pathogen Interactions , Humans , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Phosphoproteins/genetics , Phosphoproteins/metabolism , RNA, Viral/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Virus ReplicationABSTRACT
Recent evidence shows that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is sensitive to interferons (IFNs). However, the most effective types of IFNs and the underlying antiviral effectors remain to be defined. Here, we show that zinc finger antiviral protein (ZAP), which preferentially targets CpG dinucleotides in viral RNA sequences, restricts SARS-CoV-2. We further demonstrate that ZAP and its cofactors KHNYN and TRIM25 are expressed in human lung cells. Type I, II, and III IFNs all strongly inhibited SARS-CoV-2 and further induced ZAP expression. Comprehensive sequence analyses revealed that SARS-CoV-2 and its closest relatives from horseshoe bats showed the strongest CpG suppression among all known human and bat coronaviruses, respectively. Nevertheless, endogenous ZAP expression restricted SARS-CoV-2 replication in human lung cells, particularly upon treatment with IFN-α or IFN-γ. Both the long and the short isoforms of human ZAP reduced SARS-CoV-2 RNA expression levels, but the former did so with greater efficiency. Finally, we show that the ability to restrict SARS-CoV-2 is conserved in ZAP orthologues of the reservoir bat and potential intermediate pangolin hosts of human coronaviruses. Altogether, our results show that ZAP is an important effector of the innate response against SARS-CoV-2, although this pandemic pathogen emerged from zoonosis of a coronavirus that was preadapted to the low-CpG environment in humans.IMPORTANCE Although interferons inhibit SARS-CoV-2 and have been evaluated for treatment of coronavirus disease 2019 (COVID-19), the most effective types and antiviral effectors remain to be defined. Here, we show that IFN-γ is particularly potent in restricting SARS-CoV-2 and in inducing expression of the antiviral factor ZAP in human lung cells. Knockdown experiments revealed that endogenous ZAP significantly restricts SARS-CoV-2. We further show that CpG dinucleotides which are specifically targeted by ZAP are strongly suppressed in the SARS-CoV-2 genome and that the two closest horseshoe bat relatives of SARS-CoV-2 show the lowest genomic CpG content of all coronavirus sequences available from this reservoir host. Nonetheless, both the short and long isoforms of human ZAP reduced SARS-CoV-2 RNA levels, and this activity was conserved in horseshoe bat and pangolin ZAP orthologues. Our findings indicating that type II interferon is particularly efficient against SARS-CoV-2 and that ZAP restricts this pandemic viral pathogen might promote the development of effective immune therapies against COVID-19.