Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
Add more filters

Country/Region as subject
Affiliation country
Publication year range
1.
Hum Mol Genet ; 31(23): 4019-4033, 2022 11 28.
Article in English | MEDLINE | ID: mdl-35796564

ABSTRACT

To nominate novel disease genes for obesity and type 2 diabetes (T2D), we recently generated two mouse backcross populations of the T2D-susceptible New Zealand Obese (NZO/HI) mouse strain and two genetically different, lean and T2D-resistant strains, 129P2/OlaHsd and C3HeB/FeJ. Comparative linkage analysis of our two female backcross populations identified seven novel body fat-associated quantitative trait loci (QTL). Only the locus Nbw14 (NZO body weight on chromosome 14) showed linkage to obesity-related traits in both backcross populations, indicating that the causal gene variant is likely specific for the NZO strain as NZO allele carriers in both crosses displayed elevated body weight and fat mass. To identify candidate genes for Nbw14, we used a combined approach of gene expression and haplotype analysis to filter for NZO-specific gene variants in gonadal white adipose tissue, defined as the main QTL-target tissue. Only two genes, Arl11 and Sgcg, fulfilled our candidate criteria. In addition, expression QTL analysis revealed cis-signals for both genes within the Nbw14 locus. Moreover, retroviral overexpression of Sgcg in 3T3-L1 adipocytes resulted in increased insulin-stimulated glucose uptake. In humans, mRNA levels of SGCG correlated with body mass index and body fat mass exclusively in diabetic subjects, suggesting that SGCG may present a novel marker for metabolically unhealthy obesity. In conclusion, our comparative-cross analysis could substantially improve the mapping resolution of the obesity locus Nbw14. Future studies will throw light on the mechanism by which Sgcg may protect from the development of obesity.


Subject(s)
Diabetes Mellitus, Type 2 , Mice , Humans , Female , Animals , Diabetes Mellitus, Type 2/genetics , Chromosome Mapping , Genes, Modifier , Obesity/genetics , Obesity/metabolism , Body Weight/genetics , Mice, Inbred Strains , Genomics , ADP-Ribosylation Factors/genetics , Sarcoglycans/metabolism
2.
Diabetes Metab Res Rev ; 40(5): e3834, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38961642

ABSTRACT

AIMS: We recently reported that genetic variability in the TKT gene encoding transketolase, a key enzyme in the pentose phosphate pathway, is associated with measures of diabetic sensorimotor polyneuropathy (DSPN) in recent-onset diabetes. Here, we aimed to substantiate these findings in a population-based KORA F4 study. MATERIALS AND METHODS: In this cross-sectional study, we assessed seven single nucleotide polymorphisms (SNPs) in the transketolase gene in 952 participants from the KORA F4 study with normal glucose tolerance (NGT; n = 394), prediabetes (n = 411), and type 2 diabetes (n = 147). DSPN was defined by the examination part of the Michigan Neuropathy Screening Instrument (MNSI) using the original MNSI > 2 cut-off and two alternative versions extended by touch/pressure perception (TPP) (MNSI > 3) and by TPP plus cold perception (MNSI > 4). RESULTS: After adjustment for sex, age, BMI, and HbA1c, in type 2 diabetes participants, four out of seven transketolase SNPs were associated with DSPN for all three MNSI versions (all p ≤ 0.004). The odds ratios of these associations increased with extending the MNSI score, for example, OR (95% CI) for SNP rs62255988 with MNSI > 2: 1.99 (1.16-3.41), MNSI > 3: 2.27 (1.26-4.09), and MNSI > 4: 4.78 (2.22-10.26); SNP rs9284890 with MNSI > 2: 2.43 (1.42-4.16), MNSI > 3: 3.46 (1.82-6.59), and MNSI > 4: 4.75 (2.15-10.51). In contrast, no associations were found between transketolase SNPs and the three MNSI versions in the NGT and prediabetes groups. CONCLUSIONS: The link of genetic variation in transketolase enzyme to diabetic polyneuropathy corroborated at the population level strengthens the concept suggesting an important role of pathways metabolising glycolytic intermediates in the evolution of diabetic polyneuropathy.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetic Neuropathies , Polymorphism, Single Nucleotide , Transketolase , Humans , Transketolase/genetics , Female , Male , Diabetic Neuropathies/genetics , Diabetic Neuropathies/epidemiology , Diabetic Neuropathies/etiology , Middle Aged , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/complications , Cross-Sectional Studies , Aged , Genetic Predisposition to Disease , Prediabetic State/genetics , Prediabetic State/complications , Prognosis , Adult , Follow-Up Studies
3.
Cell Mol Life Sci ; 80(4): 108, 2023 Mar 29.
Article in English | MEDLINE | ID: mdl-36988756

ABSTRACT

Episodes of chronic stress can result in psychic disorders like post-traumatic stress disorder, but also promote the development of metabolic syndrome and type 2 diabetes. We hypothesize that muscle, as main regulator of whole-body energy expenditure, is a central target of acute and adaptive molecular effects of stress in this context. Here, we investigate the immediate effect of a stress period on energy metabolism in Musculus gastrocnemius in our established C57BL/6 chronic variable stress (Cvs) mouse model. Cvs decreased lean body mass despite increased energy intake, reduced circadian energy expenditure (EE), and substrate utilization. Cvs altered the proteome of metabolic components but not of the oxidative phosphorylation system (OXPHOS), or other mitochondrial structural components. Functionally, Cvs impaired the electron transport chain (ETC) capacity of complex I and complex II, and reduces respiratory capacity of the ETC from complex I to ATP synthase. Complex I-OXPHOS correlated to diurnal EE and complex II-maximal uncoupled respiration correlated to diurnal and reduced nocturnal EE. Bioenergetics assessment revealed higher optimal thermodynamic efficiencies (ƞ-opt) of mitochondria via complex II after Cvs. Interestingly, transcriptome and methylome were unaffected by Cvs, thus excluding major contributions to supposed metabolic adaptation processes. In summary, the preclinical Cvs model shows that metabolic pressure by Cvs is initially compensated by adaptation of mitochondria function associated with high thermodynamic efficiency and decreased EE to manage the energy balance. This counter-regulation of mitochondrial complex II may be the driving force to longitudinal metabolic changes of muscle physiological adaptation as the basis of stress memory.


Subject(s)
Diabetes Mellitus, Type 2 , Mice , Animals , Diabetes Mellitus, Type 2/metabolism , Mice, Inbred C57BL , Mitochondria/metabolism , Muscle, Skeletal/metabolism , Oxidative Phosphorylation , Energy Metabolism , Electron Transport Complex I/genetics , Electron Transport Complex I/metabolism , Mitochondria, Muscle/metabolism
4.
Nutr Metab Cardiovasc Dis ; 33(9): 1785-1796, 2023 09.
Article in English | MEDLINE | ID: mdl-37495452

ABSTRACT

BACKGROUND AND AIMS: Increased hepatocellular lipid content (HCL) is linked to insulin resistance, risk of type 2 diabetes and related complications. Conversely, a single-nucleotide polymorphism (TM6SF2EK; rs58542926) in the transmembrane 6 superfamily member 2-gene has been associated with nonalcoholic fatty liver disease (NAFLD), but lower cardiovascular risk. This case-control study tested the role of this polymorphism for tissue-specific insulin sensitivity during early course of diabetes. METHODS AND RESULTS: Males with recent-onset type 2 diabetes with (TM6SF2EK: n = 16) or without (TM6SF2EE: n = 16) the heterozygous TM6SF2-polymorphism of similar age and body mass index, underwent Botnia-clamps with [6,6-2H2]glucose to measure whole-body-, hepatic- and adipose tissue-insulin sensitivity. HCL was assessed with 1H-magnetic-resonance-spectroscopy. A subset of both groups (n = 24) was re-evaluated after 5 years. Despite doubled HCL, TM6SF2EK had similar hepatic- and adipose tissue-insulin sensitivity and 27% higher whole-body-insulin sensitivity than TM6SF2EE. After 5 years, whole-body-insulin sensitivity, HCL were similar between groups, while adipose tissue-insulin sensitivity decreased by 87% and 55% within both groups and circulating triacylglycerol increased in TM6SF2EE only. CONCLUSIONS: The TM6SF2-polymorphism rs58542926 dissociates HCL from insulin resistance in recent-onset type 2 diabetes, which is attenuated by disease duration. This suggests that diabetes-related metabolic alterations dominate over effects of the TM6SF2-polymorphism during early course of diabetes and NAFLD.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Liver Neoplasms , Non-alcoholic Fatty Liver Disease , Humans , Male , Case-Control Studies , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/complications , Insulin Resistance/genetics , Liver/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Non-alcoholic Fatty Liver Disease/diagnosis , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/complications , Polymorphism, Single Nucleotide , Triglycerides/metabolism
5.
Int J Mol Sci ; 24(1)2023 Jan 03.
Article in English | MEDLINE | ID: mdl-36614300

ABSTRACT

Type 2 diabetes (T2D) represents a multifactorial metabolic disease with a strong genetic predisposition. Despite elaborate efforts in identifying the genetic variants determining individual susceptibility towards T2D, the majority of genetic factors driving disease development remain poorly understood. With the aim to identify novel T2D risk genes we previously generated an N2 outcross population using the two inbred mouse strains New Zealand obese (NZO) and C3HeB/FeJ (C3H). A linkage study performed in this population led to the identification of the novel T2D-associated quantitative trait locus (QTL) Nbg15 (NZO blood glucose on chromosome 15, Logarithm of odds (LOD) 6.6). In this study we used a combined approach of positional cloning, gene expression analyses and in silico predictions of DNA polymorphism on gene/protein function to dissect the genetic variants linking Nbg15 to the development of T2D. Moreover, we have generated congenic strains that associated the distal sublocus of Nbg15 to mechanisms altering pancreatic beta cell function. In this sublocus, Cbx6, Fam135b and Kdelr3 were nominated as potential causative genes associated with the Nbg15 driven effects. Moreover, a putative mutation in the Kdelr3 gene from NZO was identified, negatively influencing adaptive responses associated with pancreatic beta cell death and induction of endoplasmic reticulum stress. Importantly, knockdown of Kdelr3 in cultured Min6 beta cells altered insulin granules maturation and pro-insulin levels, pointing towards a crucial role of this gene in islets function and T2D susceptibility.


Subject(s)
Diabetes Mellitus, Type 2 , Genetic Predisposition to Disease , Obesity , Receptors, Peptide , Animals , Mice , Diabetes Mellitus, Type 2/genetics , Insulin/metabolism , Insulin-Secreting Cells/metabolism , Mice, Inbred C3H , Mice, Obese , Obesity/genetics , Receptors, Peptide/genetics
6.
Int J Mol Sci ; 23(12)2022 Jun 20.
Article in English | MEDLINE | ID: mdl-35743314

ABSTRACT

Alterations in mitochondrial function are an important control variable in the progression of metabolic dysfunction-associated fatty liver disease (MAFLD), while also noted by increased de novo lipogenesis (DNL) and hepatic insulin resistance. We hypothesized that the organization and function of a mitochondrial electron transport chain (ETC) in this pathologic condition is a consequence of shifted substrate availability. We addressed this question using a transgenic mouse model with increased hepatic insulin resistance and DNL due to constitutively active human SREBP-1c. The abundance of ETC complex subunits and components of key metabolic pathways are regulated in the liver of these animals. Further omics approaches combined with functional assays in isolated liver mitochondria and primary hepatocytes revealed that the SREBP-1c-forced fatty liver induced a substrate limitation for oxidative phosphorylation, inducing enhanced complex II activity. The observed increased expression of mitochondrial genes may have indicated a counteraction. In conclusion, a shift of available substrates directed toward activated DNL results in increased electron flows, mainly through complex II, to compensate for the increased energy demand of the cell. The reorganization of key compounds in energy metabolism observed in the SREBP-1c animal model might explain the initial increase in mitochondrial function observed in the early stages of human MAFLD.


Subject(s)
Fatty Liver , Insulin Resistance , Animals , Fatty Liver/metabolism , Lipogenesis/genetics , Liver/metabolism , Mice , Oxidative Phosphorylation , Sterol Regulatory Element Binding Protein 1/genetics , Sterol Regulatory Element Binding Protein 1/metabolism
7.
Int J Mol Sci ; 23(6)2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35328627

ABSTRACT

Current attempts to prevent and manage type 2 diabetes have been moderately effective, and a better understanding of the molecular roots of this complex disease is important to develop more successful and precise treatment options. Recently, we initiated the collective diabetes cross, where four mouse inbred strains differing in their diabetes susceptibility were crossed with the obese and diabetes-prone NZO strain and identified the quantitative trait loci (QTL) Nidd13/NZO, a genomic region on chromosome 13 that correlates with hyperglycemia in NZO allele carriers compared to B6 controls. Subsequent analysis of the critical region, harboring 644 genes, included expression studies in pancreatic islets of congenic Nidd13/NZO mice, integration of single-cell data from parental NZO and B6 islets as well as haplotype analysis. Finally, of the five genes (Acot12, S100z, Ankrd55, Rnf180, and Iqgap2) within the polymorphic haplotype block that are differently expressed in islets of B6 compared to NZO mice, we identified the calcium-binding protein S100z gene to affect islet cell proliferation as well as apoptosis when overexpressed in MIN6 cells. In summary, we define S100z as the most striking gene to be causal for the diabetes QTL Nidd13/NZO by affecting ß-cell proliferation and apoptosis. Thus, S100z is an entirely novel diabetes gene regulating islet cell function.


Subject(s)
Diabetes Mellitus, Type 2 , Hyperglycemia , Animals , Diabetes Mellitus, Type 2/genetics , Genotype , Hyperglycemia/genetics , Mice , Mice, Inbred C57BL , Mice, Obese , Quantitative Trait Loci
8.
Diabetologia ; 64(2): 458-468, 2021 02.
Article in English | MEDLINE | ID: mdl-33084971

ABSTRACT

AIMS/HYPOTHESIS: Emerging evidence suggests that in addition to hyperglycaemia, dyslipidaemia could represent a contributing pathogenetic factor to diabetic neuropathy, while obesity and insulin resistance play a role in the development of diabetic cardiac autonomic neuropathy (CAN) characterised by reduced heart rate variability (HRV), particularly in type 2 diabetes. We hypothesised that distinct lipid metabolites are associated with diminished HRV in recent-onset type 2 diabetes rather than type 1 diabetes. METHODS: We analysed 127 plasma lipid metabolites (11 acylcarnitines, 39 NEFA, 12 sphingomyelins (SMs), 56 phosphatidylcholines and nine lysophosphatidylcholines) using MS in participants from the German Diabetes Study baseline cohort recently diagnosed with type 1 (n = 100) and type 2 diabetes (n = 206). Four time-domain HRV indices (number of normal-to-normal (NN) intervals >50 ms divided by the number of all NN intervals [pNN50]; root mean square of successive differences [RMSSD]; SD of NN intervals [SDNN]; and SD of differences between adjacent NN intervals) and three frequency-domain HRV indices (very-low-frequency [VLF], low-frequency [LF] and high-frequency [HF] power spectrum) were computed from NN intervals recorded during a 3 h hyperinsulinaemic-euglycaemic clamp at baseline and in subsets of participants with type 1 (n = 60) and type 2 diabetes (n = 95) after 5 years. RESULTS: In participants with type 2 diabetes, after Bonferroni correction and rigorous adjustment, SDNN was inversely associated with higher levels of diacyl-phosphatidylcholine (PCaa) C32:0, PCaa C34:1, acyl-alkyl-phosphatidylcholine (PCae) C36:0, SM C16:0 and SM C16:1. SD of differences between NN intervals was inversely associated with PCaa C32:0, PCaa C34:1, PCaa C34:2, PCae C36:0 and SM C16:1, and RMSSD with PCae C36:0. For VLF power, inverse associations were found with PCaa C30:0, PCaa C32:0, PCaa C32:1, PCaa C34:2 and SM C16:1, and for LF power inverse associations were found with PCaa C32:0 and SM C16:1 (r = -0.242 to r = -0.349; p ≤ 0.0005 for all correlations). In contrast, no associations of lipid metabolites with measures of cardiac autonomic function were noted in participants recently diagnosed with type 1 diabetes. After 5 years, HRV declined due to ageing rather than diabetes, whereby prediction analyses for lipid metabolites were hampered. CONCLUSIONS/INTERPRETATION: Higher plasma levels of specific lipid metabolites are closely linked to cardiac autonomic dysfunction in recent-onset type 2 diabetes but not type 1 diabetes, suggesting a role for perturbed lipid metabolism in the early development of CAN in type 2 diabetes. Graphical abstract.


Subject(s)
Autonomic Nervous System Diseases/blood , Diabetes Mellitus, Type 1/blood , Diabetes Mellitus, Type 2/blood , Diabetic Neuropathies/blood , Lipidomics , Adult , Autonomic Nervous System Diseases/etiology , Autonomic Nervous System Diseases/physiopathology , Carnitine/analogs & derivatives , Carnitine/blood , Diabetes Mellitus, Type 1/complications , Diabetes Mellitus, Type 2/complications , Diabetic Neuropathies/etiology , Diabetic Neuropathies/physiopathology , Dyslipidemias/blood , Fatty Acids, Nonesterified/blood , Female , Glucose Clamp Technique , Heart Rate , Humans , Insulin Resistance , Lipid Metabolism , Lysophosphatidylcholines/blood , Male , Middle Aged , Obesity/blood , Phosphatidylcholines/blood , Sphingomyelins/blood , Young Adult
9.
J Biol Chem ; 295(35): 12378-12397, 2020 08 28.
Article in English | MEDLINE | ID: mdl-32611765

ABSTRACT

Cytokine signaling is transmitted by cell-surface receptors that function as biological switches controlling mainly immune-related processes. Recently, we have designed synthetic cytokine receptors (SyCyRs) consisting of GFP and mCherry nanobodies fused to transmembrane and intracellular domains of cytokine receptors that phenocopy cytokine signaling induced by nonphysiological homo- and heterodimeric GFP-mCherry ligands. Interleukin 22 (IL-22) signals via both IL-22 receptor α1 (IL-22Rα1) and the common IL-10R2, belongs to the IL-10 cytokine family, and is critically involved in tissue regeneration. Here, IL-22 SyCyRs phenocopied native IL-22 signal transduction, indicated by induction of cytokine-dependent cellular proliferation, signal transduction, and transcriptome analysis. Whereas homodimeric IL-22Rα1 SyCyRs failed to activate signaling, homodimerization of the second IL-22 signaling chain, SyCyR(IL-10R2), which previously was considered not to induce signal transduction, led to induction of signal transduction. Interestingly, the SyCyR(IL-10R2) and SyCyR(IL-22Rα1) constructs could form functional heterodimeric receptor signaling complexes with the synthetic IL-6 receptor chain SyCyR(gp130). In summary, we have demonstrated that IL-22 signaling can be phenocopied by synthetic cytokine receptors, identified a functional IL-10R2 homodimeric receptor complex, and uncovered broad receptor cross-talk of IL-22Rα1 and IL-20R2 with gp130.


Subject(s)
Cytokine Receptor gp130/metabolism , Interleukin-10 Receptor beta Subunit/metabolism , Interleukins/metabolism , Protein Multimerization , Animals , CHO Cells , Cricetulus , Cytokine Receptor gp130/genetics , HEK293 Cells , Humans , Interleukin-10 Receptor beta Subunit/genetics , Interleukins/genetics , Mice , Protein Domains , Receptors, Interleukin/genetics , Receptors, Interleukin/metabolism , Interleukin-22
10.
Mamm Genome ; 32(3): 153-172, 2021 06.
Article in English | MEDLINE | ID: mdl-33880624

ABSTRACT

Type 2 diabetes (T2D) has a strong genetic component. Most of the gene variants driving the pathogenesis of T2D seem to target pancreatic ß-cell function. To identify novel gene variants acting at early stage of the disease, we analyzed whole transcriptome data to identify differential expression (DE) and alternative exon splicing (AS) transcripts in pancreatic islets collected from two metabolically diverse mouse strains at 6 weeks of age after three weeks of high-fat-diet intervention. Our analysis revealed 1218 DE and 436 AS genes in islets from NZO/Hl vs C3HeB/FeJ. Whereas some of the revealed genes present well-established markers for ß-cell failure, such as Cd36 or Aldh1a3, we identified numerous DE/AS genes that have not been described in context with ß-cell function before. The gene Lgals2, previously associated with human T2D development, was DE as well as AS and localizes in a quantitative trait locus (QTL) for blood glucose on Chr.15 that we reported recently in our N2(NZOxC3H) population. In addition, pathway enrichment analysis of DE and AS genes showed an overlap of only half of the revealed pathways, indicating that DE and AS in large parts influence different pathways in T2D development. PPARG and adipogenesis pathways, two well-established metabolic pathways, were overrepresented for both DE and AS genes, probably as an adaptive mechanism to cope for increased cellular stress. Our results provide guidance for the identification of novel T2D candidate genes and demonstrate the presence of numerous AS transcripts possibly involved in islet function and maintenance of glucose homeostasis.


Subject(s)
Diabetes Mellitus, Type 2/genetics , Galectin 2/genetics , Insulin/genetics , PPAR gamma/genetics , Adipogenesis/genetics , Alternative Splicing/genetics , Animals , Blood Glucose/genetics , CD36 Antigens/genetics , Diabetes Mellitus, Type 2/pathology , Exons/genetics , Gene Expression Regulation/genetics , Humans , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/pathology , Islets of Langerhans/growth & development , Islets of Langerhans/pathology , Metabolic Networks and Pathways/genetics , Mice , Quantitative Trait Loci/genetics , Retinal Dehydrogenase/genetics , Transcriptome/genetics
11.
Int J Mol Sci ; 21(22)2020 Nov 20.
Article in English | MEDLINE | ID: mdl-33233602

ABSTRACT

Lipodystrophies are a heterogeneous group of physiological changes characterized by a selective loss of fatty tissue. Here, no fat cells are present, either through lack of differentiation, loss of function or premature apoptosis. As a consequence, lipids can only be stored ectopically in non-adipocytes with the major health consequences as fatty liver and insulin resistance. This is a crucial difference to being slim where the fat cells are present and store lipids if needed. A simple clinical classification of lipodystrophies is based on congenital vs. acquired and generalized vs. partial disturbance of fat distribution. Complications in patients with lipodystrophy depend on the clinical manifestations. For example, in diabetes mellitus microangiopathic complications such as nephropathy, retinopathy and neuropathy may develop. In addition, due to ectopic lipid accumulation in the liver, fatty liver hepatitis may also develop, possibly with cirrhosis. The consequences of extreme hypertriglyceridemia are typically acute pancreatitis or eruptive xanthomas. The combination of severe hyperglycemia with dyslipidemia and signs of insulin resistance can lead to premature atherosclerosis with its associated complications of coronary heart disease, peripheral vascular disease and cerebrovascular changes. Overall, lipodystrophy is rare with an estimated incidence for congenital (<1/1.000.000) and acquired (1-9/100.000) forms. Due to the rarity of the syndrome and the phenotypic range of metabolic complications, only studies with limited patient numbers can be considered. Experimental animal models are therefore useful to understand the molecular mechanisms in lipodystrophy and to identify possible therapeutic approaches.


Subject(s)
Atherosclerosis/genetics , Coronary Disease/genetics , Diabetes Mellitus/genetics , Fatty Liver/genetics , Hypertriglyceridemia/genetics , Lipodystrophy/genetics , Acyltransferases/deficiency , Acyltransferases/genetics , Adipose Tissue/metabolism , Adipose Tissue/pathology , Animals , Atherosclerosis/etiology , Atherosclerosis/metabolism , Atherosclerosis/pathology , Body Fat Distribution , Coronary Disease/etiology , Coronary Disease/metabolism , Coronary Disease/pathology , Diabetes Mellitus/etiology , Diabetes Mellitus/metabolism , Diabetes Mellitus/pathology , Disease Models, Animal , Fatty Liver/complications , Fatty Liver/metabolism , Fatty Liver/pathology , Humans , Hypertriglyceridemia/complications , Hypertriglyceridemia/metabolism , Hypertriglyceridemia/pathology , Insulin Resistance , Lamin Type A/deficiency , Lamin Type A/genetics , Lipid Metabolism/genetics , Lipodystrophy/complications , Lipodystrophy/metabolism , Lipodystrophy/pathology , Pancreatitis/etiology , Pancreatitis/genetics , Pancreatitis/metabolism , Pancreatitis/pathology , Xanthomatosis/etiology , Xanthomatosis/genetics , Xanthomatosis/metabolism , Xanthomatosis/pathology
12.
Int J Mol Sci ; 21(11)2020 Jun 10.
Article in English | MEDLINE | ID: mdl-32532003

ABSTRACT

Fatty liver occurs from simple steatosis with accumulated hepatic lipids and hepatic insulin resistance to severe steatohepatitis, with aggravated lipid accumulation and systemic insulin resistance, but this progression is still poorly understood. Analyses of hepatic gene expression patterns from alb-SREBP-1c mice with moderate, or aP2-SREBP-1c mice with aggravated, hepatic lipid accumulation revealed IGFBP2 as key nodal molecule differing between moderate and aggravated fatty liver. Reduced IGFBP2 expression in aggravated fatty liver was paralleled with promoter hypermethylation, reduced hepatic IGFBP2 secretion and IGFBP2 circulating in plasma. Physiologically, the decrease of IGFBP2 was accompanied with reduced fatty acid oxidation and increased de novo lipogenesis potentially mediated by IGF1 in primary hepatocytes. Furthermore, methyltransferase and sirtuin activities were enhanced. In humans, IGFBP2 serum concentration was lower in obese men with non-alcoholic fatty liver disease (NAFLD) and steatohepatitis (NASH) compared to non-obese controls, and liver fat reduction by weight-loss intervention correlated with an increase of IGFBP2 serum levels. In conclusion, hepatic IGFBP2 abundance correlates to its circulating level and is related to hepatic energy metabolism and de novo lipogenesis. This designates IGFBP2 as non-invasive biomarker for fatty liver disease progression and might further provide an additional variable for risk prediction for pathogenesis of fatty liver in diabetes subtype clusters.


Subject(s)
Energy Metabolism/physiology , Insulin-Like Growth Factor Binding Protein 2/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Adult , Animals , Body Weight , Case-Control Studies , Energy Metabolism/genetics , Hepatocytes/metabolism , Humans , Insulin Resistance , Insulin-Like Growth Factor Binding Protein 2/blood , Insulin-Like Growth Factor Binding Protein 2/metabolism , Insulin-Like Growth Factor Binding Protein 3/blood , Insulin-Like Growth Factor I/analysis , Male , Mice, Inbred C57BL , Mice, Transgenic , Middle Aged , Non-alcoholic Fatty Liver Disease/genetics , Obesity/complications , Obesity/metabolism , Obesity/surgery , Sterol Regulatory Element Binding Protein 1/genetics , Sterol Regulatory Element Binding Protein 1/metabolism
13.
Diabetologia ; 62(2): 286-291, 2019 02.
Article in English | MEDLINE | ID: mdl-30413829

ABSTRACT

AIMS/HYPOTHESIS: The aim of this study was to investigate the modifying effect of the glucose transporter (GLUT2) gene SLC2A2 (rs8192675) variant on the glycaemic response to metformin in individuals recently diagnosed with type 2 diabetes. METHODS: Individuals with type 2 diabetes (n = 508) from the prospective German Diabetes Study (age [mean ± SD] 53 ± 10 years; 65% male; BMI 32 ± 6 kg/m2, metformin use 57%) underwent detailed metabolic characterisation (hyperinsulinaemic-euglycaemic clamp, IVGTT) during the first year after diagnosis. Participants provided self-reported data from the time of diagnosis. The change in fasting glucose was assessed in relation to SLC2A2 genotype and glucose-lowering treatment using two-way ANCOVA with gene×treatment interactions adjusted for age, sex, BMI and diabetes duration. RESULTS: The C variant allele of rs8192675 was associated with a higher prevalence of diabetes symptoms at diabetes diagnosis. In the metformin monotherapy group only, patients with a C allele showed a larger adjusted blood glucose reduction during the first year after diabetes diagnosis than patients with the TT genotype (6.3 mmol/l vs 3.9 mmol/l; genotype difference 2.4 mmol/l, p = 0.02; p value for genotype interaction [metformin monotherapy vs non-pharmacological therapy] <0.01). The greater decline in fasting glucose (CC/CT vs TT) in metformin monotherapy persisted after further adjusting for glucose values at diagnosis (genotype difference 1.0 mmol/l, p = 0.01; genotype×treatment interaction p = 0.06). CONCLUSIONS/INTERPRETATION: The variant rs8192675 in the SLC2A2 gene (C allele) is associated with an improved glucose response to metformin monotherapy during the first year after diagnosis in type 2 diabetes. TRIAL REGISTRATION: ClinicalTrials.gov NCT01055093.


Subject(s)
Blood Glucose/genetics , Diabetes Mellitus, Type 2/genetics , Glucose Transporter Type 2/genetics , Hypoglycemic Agents/therapeutic use , Metformin/therapeutic use , Adult , Alleles , Diabetes Mellitus, Type 2/drug therapy , Female , Genotype , Glucose Clamp Technique , Humans , Male , Middle Aged , Pharmacogenetics , Polymorphism, Single Nucleotide
14.
Int J Mol Sci ; 20(10)2019 May 24.
Article in English | MEDLINE | ID: mdl-31137678

ABSTRACT

Adipocyte and hepatic lipid metabolism govern whole-body metabolic homeostasis, whereas a disbalance of de novo lipogenesis (DNL) in fat and liver might lead to obesity, with severe co-morbidities. Nevertheless, some obese people are metabolically healthy, but the "protective" mechanisms are not yet known in detail. Especially, the adipocyte-derived molecular mediators that indicate adipose functionality are poorly understood. We studied transgenic mice (alb-SREBP-1c) with a "healthy" obese phenotype, and obob mice with hyperphagia-induced "sick" obesity to analyze the impact of the tissue-specific DNL on the secreted proteins, i.e., the adipokinome, of the primary adipose cells by label-free proteomics. Compared to the control mice, adipose DNL is reduced in both obese mouse models. In contrast, the hepatic DNL is reduced in obob but elevated in alb-SREBP-1c mice. To investigate the relationship between lipid metabolism and adipokinomes, we formulated the "liver-to-adipose-tissue DNL" ratio. Knowledge-based analyses of these results revealed adipocyte functionality with proteins, which was involved in tissue remodeling or metabolism in the alb-SREBP-1c mice and in the control mice, but mainly in fibrosis in the obob mice. The adipokinome in "healthy" obesity is similar to that in a normal condition, but it differs from that in "sick" obesity, whereas the serum lipid patterns reflect the "liver-to-adipose-tissue DNL" ratio and are associated with the adipokinome signature.


Subject(s)
Adipokines/metabolism , Adipose Tissue/metabolism , Fatty Acids, Nonesterified/blood , Obesity/metabolism , Adipokines/genetics , Animals , Lipogenesis , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Obesity/blood , Obesity/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sterol Regulatory Element Binding Protein 1/genetics
15.
Int J Obes (Lond) ; 42(5): 1039-1050, 2018 06.
Article in English | MEDLINE | ID: mdl-29467502

ABSTRACT

BACKGROUND: CDH13, an atypical member of the cadherin superfamily, has been identified in adipocyte secretomes of lean mouse models. CDH13 abundance differs in mouse models according to their susceptibility to develop metabolic disorders, but the role of CDH13 in adipose tissue is unknown. METHODS: Secreted CDH13 protein levels and mRNA levels in visceral adipose tissue were determined in lean and obese mouse models. In vitro studies were performed in 3T3-L1 adipocytes to determine the role of CDH13 in adipocyte differentiation. The pathophysiological impact of visceral adipose tissue CDH13 mRNA and circulating CDH13 levels were determined in humans (normal-weight men n = 37, obese men n = 109 including n = 51 type 2 diabetes patients) and in obese patients (n = 14) pre- and post-metabolic surgery. RESULTS: This study shows that in visceral adipose tissue CDH13 protein secretion and mRNA levels were decreased in obese mouse models. Mechanistically, CDH13 affects lipid metabolism during adipogenesis but not in mature adipocytes. CDH13 knockdown during adipogenesis reduced fatty acid uptake and lipid content in developing adipocytes. Furthermore, CDH13 depletion during adipogenesis lowered the induction of PPARγ and C/EBPα expression. These observations are of pathophysiological impact since visceral adipose tissue CDH13 mRNA and circulating CDH13 levels were decreased in obese men compared to normal-weight controls. Weight loss induced by bariatric surgery restored circulating CDH13 to levels found in normal-weight controls. CONCLUSIONS: CDH13 levels in adipose tissue and the circulation are affected by obesity in mouse models and humans and are restored by weight loss in humans. CDH13 interferes with the differentiation potential of adipocytes and therefore is a marker for plasticity of fat tissue that might reflect the health status of adipose tissue.


Subject(s)
Adipocytes/cytology , Adipose Tissue/chemistry , Cadherins/metabolism , Cell Differentiation/physiology , Obesity/metabolism , Adipocytes/metabolism , Adipogenesis/drug effects , Adipogenesis/physiology , Adipose Tissue/metabolism , Adult , Animals , Biomarkers/analysis , Biomarkers/metabolism , Cadherins/analysis , Cadherins/genetics , Cadherins/pharmacology , Cell Differentiation/drug effects , Female , Humans , Male , Mice , Mice, Obese , Middle Aged , Obesity/blood , Obesity/physiopathology , RNA, Messenger/analysis , RNA, Messenger/genetics , RNA, Messenger/metabolism
16.
Int J Mol Sci ; 19(4)2018 Mar 25.
Article in English | MEDLINE | ID: mdl-29587401

ABSTRACT

The key lipid metabolism transcription factor sterol regulatory element-binding protein (SREBP)-1a integrates gene regulatory effects of hormones, cytokines, nutrition and metabolites as lipids, glucose, or cholesterol via phosphorylation by different mitogen activated protein kinase (MAPK) cascades. We have previously reported the impact of SREBP-1a phosphorylation on the phenotype in transgenic mouse models with liver-specific overexpression of the N-terminal transcriptional active domain of SREBP-1a (alb-SREBP-1a) or a MAPK phosphorylation site-deficient variant (alb-SREBP-1a∆P; (S63A, S117A, T426V)), respectively. In this report, we investigated the molecular basis of the systemic observations by holistic analyses of gene expression in liver and of proteome patterns in lipid-degrading organelles involved in the pathogenesis of metabolic syndrome, i.e., peroxisomes, using 2D-DIGE and mass spectrometry. The differences in hepatic gene expression and peroxisomal protein patterns were surprisingly small between the control and alb-SREBP-1a mice, although the latter develop a severe phenotype with visceral obesity and fatty liver. In contrast, phosphorylation site-deficient alb-SREBP-1a∆P mice, which are protected from fatty liver disease, showed marked differences in hepatic gene expression and peroxisomal proteome patterns. Further knowledge-based analyses revealed that disruption of SREBP-1a phosphorylation resulted in massive alteration of cellular processes, including signs for loss of targeting lipid pathways.


Subject(s)
Disease Models, Animal , Fatty Liver/metabolism , Mice , Proteome/metabolism , Sterol Regulatory Element Binding Protein 1/metabolism , Animals , Fatty Liver/genetics , Gene Deletion , Humans , Male , Metabolic Syndrome/metabolism , Mice, Inbred C57BL , Mice, Transgenic , Obesity, Abdominal/metabolism , Peroxisomes/pathology , Phosphorylation , Sterol Regulatory Element Binding Protein 1/genetics , Transcriptome
17.
Diabetes Metab Res Rev ; 33(4)2017 05.
Article in English | MEDLINE | ID: mdl-27103086

ABSTRACT

BACKGROUND: Shunting of glycolytic intermediates into the pentose phosphate pathway has been suggested to protect from hyperglycaemia-induced microvascular damage. We hypothesized that genetic variability in the gene encoding transketolase, a key pentose phosphate pathway enzyme, contributes to early nerve dysfunction in recent-onset diabetes. METHODS: In this cross-sectional study, we assessed nine single nucleotide polymorphisms (SNPs) in the transketolase gene, plasma methylglyoxal concentrations, and clinical and quantitative measures of peripheral nerve function in 165 type 1 and 373 type 2 diabetic patients with a diabetes duration up to 1 year. RESULTS: The Total Symptom Score was associated with transketolase SNPs rs7648309, rs62255988, and rs7633966, while peroneal motor nerve conduction velocity (MNCV) correlated only with rs7648309 (P < 0.01). Cold thermal detection threshold (TDT) (foot) was associated with transketolase SNPs rs11130362 and rs7648309, while warm TDT (hand) correlated with rs62255988 and rs7648309 (P < 0.01). After Bonferroni correction, the correlations of transketolase SNP rs7648309 with Total Symptom Score and rs62255988 with warm TDT (hand) remained statistically significant. Among subgroups, men with type 2 diabetes showed the strongest associations. No associations were observed between each of the nine tagged transketolase SNPs and plasma methylglyoxal concentrations. CONCLUSIONS: The observed associations of genetic variation in transketolase enzyme with neuropathic symptoms and reduced thermal sensation in recent-onset diabetes suggest a role of pathways metabolizing glycolytic intermediates in early diabetic neuropathy. Copyright © 2016 John Wiley & Sons, Ltd.


Subject(s)
Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 2/genetics , Diabetic Neuropathies/genetics , Polymorphism, Single Nucleotide , Transketolase/genetics , Adult , Aged , Cross-Sectional Studies , Diabetes Mellitus, Type 1/physiopathology , Diabetes Mellitus, Type 2/physiopathology , Diabetic Neuropathies/physiopathology , Female , Genetic Association Studies , Humans , Male , Middle Aged , Neural Conduction/physiology
18.
Mol Biol Rep ; 44(1): 51-61, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27878529

ABSTRACT

Polygenic diseases with a broad phenotypic spectrum, such as polycystic ovary syndrome (PCOS), present a particular challenge in terms of identifying the underlying genetic mechanisms, nevertheless genetic variants have impact on the individual phenotype. We aimed to determine if next to genetic variations like SNPs further mechanisms might play a role in the pathogenesis of PCOS. We examined the effect of copy-number variations (CNVs) on metabolic phenotypes in PCOS. The intragenic rs1244979, rs2815752 in NEGR1 gene, and rs780094 in GCKR gene were genotyped and CNVs were determined by droplet digital polymerase chain reaction (ddPCR) in PCOS patients (n = 153) and controls without metabolic syndrome (n = 142). The study indicated that SNPs are not associated with the pathogenesis of PCOS but affect metabolic phenotypes. The CNVs investigated show a lower variability in PCOS than in CON. Furthermore, we provided direct evidence that the copy number, but not the genotype of the CNV in the genomic regions of rs780094(GCKR) is associated with low level of high-density lipoprotein cholesterol in PCOS. This study supports the hypothesis that not only genetic variants, but also CNVs in metabolically relevant genes, have an effect on metabolic phenotypes in our group of PCOS patients.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Cell Adhesion Molecules, Neuronal/genetics , Cholesterol, HDL/metabolism , DNA Copy Number Variations , Metabolic Syndrome/genetics , Polycystic Ovary Syndrome/genetics , Adult , Bone Density , Case-Control Studies , Female , GPI-Linked Proteins/genetics , Genetic Association Studies , Genetic Predisposition to Disease , Humans , Middle Aged , Polycystic Ovary Syndrome/metabolism , Polymorphism, Single Nucleotide , Prospective Studies , Young Adult
19.
Int J Mol Sci ; 18(9)2017 Sep 08.
Article in English | MEDLINE | ID: mdl-28885548

ABSTRACT

The group of adipokines comprises hundreds of biological active proteins and peptides released from adipose tissue. Alterations of those complex protein signatures are suggested to play a crucial role in the pathophysiology of multifactorial, metabolic diseases. We hypothesized that also the pathophysiology of type-2-diabetes is linked to the dysregulation of the adipocyte secretome. To test this, we investigated mouse models with monogenic defects in leptin signaling which are susceptible to adipositas (C57BL/6 Cg-Lepob (obob)) or adipositas with diabetes (C57BL/KS Cg-Leprdb (dbdb)) according to their genetic background. At the age of 17 weeks, visceral fat was obtained and primary murine adipocytes were isolated to harvest secretomes. Quantitative proteome analyses (LC-ESI-MS/MS) identified more than 800 potential secreted proteins. The secretome patterns revealed significant differences connected to the pathophysiology of obese mice. Pathway analyses indicated that these differences focus on exosome modelling, but failed to provide more precise specifications. To investigate the relationship of secretome data to insulin sensitivity, we examined the content of diabetogenic lipids, i.e., diacylglycerols (DAGs), identified as key players in lipid-induced insulin resistance. In contrast to obob mice, fat tissue of dbdb mice showed elevated DAG content, especially of DAG species with saturated fatty acid C16:0 and C18:0, while unsaturated fatty acid C16:1 were only changed in obob. Furthermore, DAG signatures of the models specifically correlate to secreted regulated adipokines indicating specific pathways. In conclusion, our data further support the concept that the fat tissue is an endocrine organ that releases bioactive factors corresponding to adipose tissue health status.


Subject(s)
Adipokines/metabolism , Diabetes Mellitus, Type 2/metabolism , Obesity/metabolism , Proteomics , Adipocytes/metabolism , Adipose Tissue/metabolism , Animals , Biomarkers , Cluster Analysis , Disease Models, Animal , Lipid Metabolism , Male , Mass Spectrometry , Mice , Mice, Obese , Proteome , Proteomics/methods
20.
Diabetologia ; 59(10): 2203-7, 2016 10.
Article in English | MEDLINE | ID: mdl-27376543

ABSTRACT

AIMS/HYPOTHESIS: Both inherited and acquired insulin resistance have been associated with abnormal muscle mitochondrial function. At whole-body level, maximal oxygen uptake ([Formula: see text]) and/or metabolic flexibility (as given by ΔRQ) reflect certain features of mitochondrial function. This study tests the hypotheses (1) that [Formula: see text] and ΔRQ correlate tightly with each other and with insulin sensitivity and (2) that glycaemia, lipidaemia or subclinical inflammation would explain such relationships. METHODS: Near-normoglycaemic individuals with type 2 diabetes mellitus (n = 136) with a short known disease duration (<12 months) underwent cycling spiroergometry, indirect calorimetry and hyperinsulinaemic-euglycaemic clamp tests. RESULTS: Both [Formula: see text] (r = 0.39, p < 0.0001) and ΔRQ (r = 0.32, p < 0.0001) correlated positively with whole-body insulin sensitivity, even after adjusting for anthropometric variables, glycaemia and glucose-lowering medication, but not after adjusting for NEFA. [Formula: see text] further correlated negatively with circulating high-sensitivity C-reactive protein concentration. However, [Formula: see text] did not relate to ΔRQ, even after adjusting for whole-body insulin sensitivity. CONCLUSIONS/INTERPRETATION: Oxidative capacity and metabolic flexibility are independent determinants of insulin sensitivity but are influenced by circulating NEFA in recent-onset type 2 diabetes. ClinicalTrial.gov registration no: NCT01055093.


Subject(s)
Blood Glucose/metabolism , Diabetes Mellitus, Type 2/blood , Adolescent , Adult , Aged , C-Reactive Protein/metabolism , Calorimetry, Indirect , Diabetes Mellitus, Type 2/metabolism , Female , Glucose Clamp Technique , Humans , Insulin/metabolism , Insulin Resistance/physiology , Male , Middle Aged , Muscle, Skeletal/metabolism , Obesity/blood , Obesity/metabolism , Overweight/blood , Overweight/metabolism , Oxidation-Reduction , Oxygen Consumption/physiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL