Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
PLoS Biol ; 14(3): e1002404, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26981861

ABSTRACT

Chemotaxis is fundamentally important, but the sources of gradients in vivo are rarely well understood. Here, we analyse self-generated chemotaxis, in which cells respond to gradients they have made themselves by breaking down globally available attractants, using both computational simulations and experiments. We show that chemoattractant degradation creates steep local gradients. This leads to surprising results, in particular the existence of a leading population of cells that moves highly directionally, while cells behind this group are undirected. This leading cell population is denser than those following, especially at high attractant concentrations. The local gradient moves with the leading cells as they interact with their surroundings, giving directed movement that is unusually robust and can operate over long distances. Even when gradients are applied from external sources, attractant breakdown greatly changes cells' responses and increases robustness. We also consider alternative mechanisms for directional decision-making and show that they do not predict the features of population migration we observe experimentally. Our findings provide useful diagnostics to allow identification of self-generated gradients and suggest that self-generated chemotaxis is unexpectedly universal in biology and medicine.


Subject(s)
Chemotactic Factors/metabolism , Chemotaxis , Cell Movement , Dictyostelium
2.
PLoS Biol ; 12(10): e1001966, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25313567

ABSTRACT

The high mortality of melanoma is caused by rapid spread of cancer cells, which occurs unusually early in tumour evolution. Unlike most solid tumours, thickness rather than cytological markers or differentiation is the best guide to metastatic potential. Multiple stimuli that drive melanoma cell migration have been described, but it is not clear which are responsible for invasion, nor if chemotactic gradients exist in real tumours. In a chamber-based assay for melanoma dispersal, we find that cells migrate efficiently away from one another, even in initially homogeneous medium. This dispersal is driven by positive chemotaxis rather than chemorepulsion or contact inhibition. The principal chemoattractant, unexpectedly active across all tumour stages, is the lipid agonist lysophosphatidic acid (LPA) acting through the LPA receptor LPAR1. LPA induces chemotaxis of remarkable accuracy, and is both necessary and sufficient for chemotaxis and invasion in 2-D and 3-D assays. Growth factors, often described as tumour attractants, cause negligible chemotaxis themselves, but potentiate chemotaxis to LPA. Cells rapidly break down LPA present at substantial levels in culture medium and normal skin to generate outward-facing gradients. We measure LPA gradients across the margins of melanomas in vivo, confirming the physiological importance of our results. We conclude that LPA chemotaxis provides a strong drive for melanoma cells to invade outwards. Cells create their own gradients by acting as a sink, breaking down locally present LPA, and thus forming a gradient that is low in the tumour and high in the surrounding areas. The key step is not acquisition of sensitivity to the chemoattractant, but rather the tumour growing to break down enough LPA to form a gradient. Thus the stimulus that drives cell dispersal is not the presence of LPA itself, but the self-generated, outward-directed gradient.


Subject(s)
Cell Movement , Chemotaxis , Lysophospholipids/metabolism , Melanoma/metabolism , Neoplasm Metastasis , Animals , Intercellular Signaling Peptides and Proteins/metabolism , Mice
3.
mSphere ; 9(5): e0021024, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38712943

ABSTRACT

Metallothioneins (MTs) are small cysteine-rich proteins that play important roles in homeostasis and protection against heavy metal toxicity and oxidative stress. The opportunistic pathogen, Pseudomonas aeruginosa, expresses a bacterial MT known as PmtA. Utilizing genetically modified P. aeruginosa PAO1 strains (a human clinical wound isolate), we show that inducing pmtA increases levels of pyocyanin and biofilm compared to other PAO1 isogenic strains, supporting previous results that pmtA is important for pyocyanin and biofilm production. We also show that overexpression of pmtA in vitro provides protection for cells exposed to oxidants, which is a characteristic of inflammation, indicating a role for PmtA as an antioxidant in inflammation. We found that a pmtA clean deletion mutant is phagocytized faster than other PAO1 isogenic strains in THP-1 human macrophage cells, indicating that PmtA provides protection from the phagocytic attack. Interestingly, we observed that monoclonal anti-PmtA antibody binds to PmtA, which is accessible on the surface of PAO1 strains using both flow cytometry and enzyme-linked immunosorbent assay techniques. Finally, we investigated intracellular persistence of these PAO1 strains within THP-1 macrophages cells and found that the phagocytic endurance of PAO1 strains is affected by pmtA expression. These data show for the first time that a bacterial MT (pmtA) can play a role in the phagocytic process and can be found on the outer surface of PAO1. Our results suggest that PmtA plays a role both in protection from oxidative stress and in the resistance to the host's innate immune response, identifying PmtA as a potential therapeutic target in P. aeruginosa infection. IMPORTANCE: The pathogen Pseudomonas aeruginosa is a highly problematic multidrug-resistant (MDR) pathogen with complex virulence networks. MDR P. aeruginosa infections have been associated with increased clinical visits, very poor healthcare outcomes, and these infections are ranked as critical on priority lists of both the Centers for Disease Control and Prevention and the World Health Organization. Known P. aeruginosa virulence factors have been extensively studied and are implicated in counteracting host defenses, causing direct damage to the host tissues, and increased microbial competitiveness. Targeting virulence factors has emerged as a new line of defense in the battle against MDR P. aeruginosa strains. Bacterial metallothionein is a newly recognized virulence factor that enables evasion of the host immune response. The studies described here identify mechanisms in which bacterial metallothionein (PmtA) plays a part in P. aeruginosa pathogenicity and identifies PmtA as a potential therapeutic target.


Subject(s)
Bacterial Proteins , Biofilms , Macrophages , Metallothionein , Oxidative Stress , Phagocytosis , Pseudomonas aeruginosa , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/pathogenicity , Pseudomonas aeruginosa/metabolism , Humans , Metallothionein/genetics , Metallothionein/metabolism , Macrophages/microbiology , Macrophages/immunology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biofilms/growth & development , THP-1 Cells , Pyocyanine/metabolism
4.
Apoptosis ; 18(3): 271-85, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23329178

ABSTRACT

Chronic inhalation of crystalline silica is an occupational hazard that results in silicosis due to the toxicity of silica particles to lung cells. Alveolar macrophages play an important role in clearance of these particles, and exposure of macrophages to silica particles causes cell death and induction of markers of apoptosis. Using time-lapse imaging of MH-S alveolar macrophages, a temporal sequence was established for key molecular events mediating cell death. The results demonstrate that 80 % of macrophages die by apoptosis and 20 % by necrosis by clearly distinguishable pathways. The earliest detectable cellular event is phago-lysosomal leakage, which occurs between 30 and 120 min after particle uptake in both modes of death. Between 3 and 6 h later, cells undergoing apoptosis showed a dramatic increase in mitochondrial transmembrane potential, closely correlated with activation of both caspase-3 and 9 and cell blebbing. Externalization of phosphatidyl serine and nuclear condensation occurred 30 min-2 h after the initiation of cell blebbing. Cells undergoing necrosis demonstrated mitochondrial membrane depolarization but not hyperpolarization and no caspase activation. Cell swelling followed the decrease in mitochondrial membrane potential, distinguishing necrosis from apoptosis. All cells undergoing apoptosis followed the same temporal sequence, but the time lag between phago-lysosomal leakage and the other events was highly variable from cell to cell. These results demonstrate that crystalline silica exposure can result in either apoptosis or necrosis and each occurs in a well-defined but temporally variable order. The long time gap between phago-lysosomal leakage and hyperpolarization is not consistent with a simple scenario of phago-lysosomal leakage leading directly to cell death. The results highlight the importance of using a cell by cell time-lapse analysis to investigate a complex pathway such as silica induced cell death.


Subject(s)
Apoptosis , Macrophages, Alveolar/pathology , Necrosis , Phagocytosis/physiology , Silicon Dioxide/toxicity , Animals , Caspase 3/metabolism , Cell Line , Lysosomes/metabolism , Macrophages, Alveolar/cytology , Macrophages, Alveolar/physiology , Membrane Potential, Mitochondrial/physiology , Mice
5.
Methods Mol Biol ; 2364: 327-338, 2022.
Article in English | MEDLINE | ID: mdl-34542861

ABSTRACT

The unicellular eukaryotic amoeba, Dictyostelium discoideum, represents a superb model for examining the molecular mechanism of chemotaxis. Under vegetative conditions, the amoebae are chemotactically responsive to pterins, such as folic acid. Under starved conditions, they lose their sensitivity to pterins and become chemotactically responsive to cAMP. As an NIH model system, Dictyostelium offers a variety of advantages in studying chemotaxis, including ease of growth, genetic tractability, and the conservation of mammalian signaling pathways. In this chapter, we describe the use of the under-agarose chemotaxis assay to understand the signaling pathways controlling directional sensing and motility in Dictyostelium discoideum. Given the similarities between Dictyostelium and mammalian cells, this allows us to dissect conserved pathways involved in eukaryotic chemotaxis.


Subject(s)
Chemotaxis , Dictyostelium , Amoeba , Animals , Cyclic AMP , Dictyostelium/genetics , Pterins , Sepharose
6.
J Cell Biol ; 169(1): 139-49, 2005 Apr 11.
Article in English | MEDLINE | ID: mdl-15809313

ABSTRACT

The Rho GTPases play a critical role in initiating actin polymerization during phagocytosis. In contrast, the factors directing the disassembly of F-actin required for fission of the phagocytic vacuole are ill defined. We used fluorescent chimeric proteins to monitor the dynamics of association of actin and active Cdc42 and Rac1 with the forming phagosome. Although actin was found to disappear from the base of the forming phagosome before sealing was complete, Rac1/Cdc42 activity persisted, suggesting that termination of GTPase activity is not the main determinant of actin disassembly. Furthermore, fully internalized phagosomes engineered to associate constitutively with active Rac1 showed little associated F-actin. The disappearance of phosphatidylinositol-4,5-bisphosphate (PI(4,5)P(2)) from the phagosomal membrane closely paralleled the course of actin disassembly. Furthermore, inhibition of PI(4,5)P(2) hydrolysis or increased PI(4,5)P(2) generation by overexpression of phosphatidylinositol phosphate kinase I prevented the actin disassembly necessary for the completion of phagocytosis. These observations suggest that hydrolysis of PI(4,5)P(2) dictates the remodeling of actin necessary for completion of phagocytosis.


Subject(s)
Actins/metabolism , Phagocytosis/physiology , Phosphatidylinositol 4,5-Diphosphate/metabolism , Phosphotransferases (Alcohol Group Acceptor)/metabolism , cdc42 GTP-Binding Protein/metabolism , Actins/chemistry , Animals , Cell Line , Dimerization , Erythrocytes/cytology , Green Fluorescent Proteins , Humans , Hydrolysis , Mice , Phagosomes/metabolism , Phosphotransferases (Alcohol Group Acceptor)/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , cdc42 GTP-Binding Protein/genetics , rac1 GTP-Binding Protein/genetics , rac1 GTP-Binding Protein/metabolism
7.
Int J Dev Biol ; 63(8-9-10): 551-561, 2019.
Article in English | MEDLINE | ID: mdl-31840792

ABSTRACT

The Dictyostelium discoideum model system is a powerful tool for undergraduate cell biology teaching laboratories. The cells are biologically safe, grow at room temperature and it is easy to experimentally induce, observe, and perturb a breadth of cellular processes making the system amenable to many teaching lab situations and goals. Here we outline the advantages of Dictyostelium, discuss laboratory courses we teach in three very different educational settings, and provide tips for both the novice and experienced Dictyostelium researcher. With this article and the extensive sets of protocols and tools referenced here, implementing these labs, or parts of them, will be relatively straightforward for any instructor.


Subject(s)
Biology/education , Dictyostelium/genetics , Dictyostelium/physiology , California , Cell Adhesion , Cell Movement , Cell Proliferation , Chemotaxis , Connecticut , Cytoskeleton/metabolism , Electroporation , Endocytosis , Folic Acid/metabolism , Humans , Iowa , Models, Biological , Phagocytosis , Phototaxis , Students , Teaching , Universities
8.
Ultrason Sonochem ; 57: 193-202, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31208614

ABSTRACT

Acoustic tweezers facilitate the manipulation of objects using sound waves. With the current state of the technology one can only control mobility for a single or few microparticles. This article presents a state of the art system where an Acoustic Lens was used for developing a Micro-Acoustic Trap for microparticle assembly in 3D. The model particles, 2 µm diameter polystyrene beads in suspension, were driven via acoustic pressure to form a monolayer at wavelength-defined distances above the substrate defined by the focal point of an Acoustic Lens The transducer was driven at 89 MHz, mixed with 100 ms pulses at a repetition rate of 2 Hz. Beyond a threshold drive amplitude sufficient to overcome Brownian motion, this led to 2D assembly of the microparticles into close-packed rafts >80 µm across (∼5 wavelengths of the carrier wave and >40 particles across). This methodology was further extended to manipulation of live Dictyostelium discoideum amoebae. This approach therefore offers maneuverability in controlling or assembling micrometer-scale objects using continuous or pulsed focused acoustic radiation pressure.

9.
J Vis Exp ; (143)2019 01 25.
Article in English | MEDLINE | ID: mdl-30735174

ABSTRACT

Dictyostelium discoideum is an intriguing model organism for the study of cell differentiation processes during development, cell signaling, and other important cellular biology questions. The technologies available to genetically manipulate Dictyostelium cells are well-developed. Transfections can be performed using different selectable markers and marker re-cycling, including homologous recombination and insertional mutagenesis. This is supported by a well-annotated genome. However, these approaches are optimized for axenic cell lines growing in liquid cultures and are difficult to apply to non-axenic wild-type cells, which feed only on bacteria. The mutations that are present in axenic strains disturb Ras signaling, causing excessive macropinocytosis required for feeding, and impair cell migration, which confounds the interpretation of signal transduction and chemotaxis experiments in those strains. Earlier attempts to genetically manipulate non-axenic cells have lacked efficiency and required complex experimental procedures. We have developed a simple transfection protocol that, for the first time, overcomes these limitations. Those series of large improvements to Dictyostelium molecular genetics allow wild-type cells to be manipulated as easily as standard laboratory strains. In addition to the advantages for studying uncorrupted signaling and motility processes, mutants that disrupt macropinocytosis-based growth can now be readily isolated. Furthermore, the entire transfection workflow is greatly accelerated, with recombinant cells that can be generated in days rather than weeks. Another advantage is that molecular genetics can further be performed with freshly isolated wild-type Dictyostelium samples from the environment. This can help to extend the scope of approaches used in these research areas.


Subject(s)
Bacteria/growth & development , Chemotaxis , Dictyostelium/growth & development , Genetic Engineering/methods , Pinocytosis/physiology , Bacteria/genetics , Dictyostelium/genetics , Homologous Recombination , Mutagenesis, Insertional , Mutation , Signal Transduction
10.
Am J Respir Cell Mol Biol ; 39(5): 619-27, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18556590

ABSTRACT

Silicosis is a chronic lung disease induced by the inhalation of crystalline silica. Exposure of cultured macrophages to crystalline silica leads to cell death; however, the mechanism of cell-particle interaction, the fate of particles, and the cause of death are unknown. Time-lapse imaging shows that mouse macrophages avidly bind particles that settle onto the cell surface and that cells also extend protrusions to capture distant particles. Using confocal optical sectioning, silica particles were shown to be present within the cytoplasmic volume of live cells. In addition, electron microscopy and elemental analysis showed silica in internal cellular sections. To further examine the phagocytosis process, the kinetics of particle uptake was quantified using an assay in which cells were exposed to ovalbumin (OVA)-coated particles, and an anti-OVA antibody was used to distinguish surface-bound from internalized particles. Fc receptor-mediated uptake of antibody-coated silica particles was nearly complete within 5 minutes. In contrast, no OVA-coated particles were internalized at this time. After 30 minutes, 30% of bound silica was internalized and uptake continued slowly thereafter. OVA-coated latex beads, regardless of surface charge, were internalized at a similarly slow rate. These results demonstrate that macrophages internalize silica and that nonopsonized phagocytosis occurs by a temporally, and possibly mechanistically, distinct pathway from Fc receptor-mediated phagocytosis. Eighty percent of macrophages die within 12 hours of silica exposure. Neither OVA coating nor tetramethylrhodamine isothiocyanate labeling has any effect on cell death. Interestingly, antibody coating dramatically reduces silica toxicity. We hypothesize that the route of particle entry and subsequent phagosome trafficking affects the toxicity of internalized particles.


Subject(s)
Macrophages/metabolism , Phagocytosis , Silicon Dioxide/metabolism , Animals , Apoptosis , Cell Line , Chickens , Kinetics , Macrophages/ultrastructure , Mice , Microscopy, Electron , Ovalbumin/chemistry , Receptors, Fc/metabolism , Silicon Dioxide/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL