Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
J Cell Sci ; 134(1)2021 01 13.
Article in English | MEDLINE | ID: mdl-33441326

ABSTRACT

Cell division, differentiation and function are largely dependent on accurate proteome composition and regulated gene expression. To control this, protein synthesis is an intricate process governed by upstream signalling pathways. Eukaryotic translation is a multistep process and can be separated into four distinct phases: initiation, elongation, termination and recycling of ribosomal subunits. Translation initiation, the focus of this article, is highly regulated to control the activity and/or function of eukaryotic initiation factors (eIFs) and permit recruitment of mRNAs to the ribosomes. In this Cell Science at a Glance and accompanying poster, we outline the mechanisms by which tumour cells alter the process of translation initiation and discuss how this benefits tumour formation, proliferation and metastasis.


Subject(s)
Neoplasms , Ribosomes , Eukaryotic Initiation Factors/metabolism , Humans , Neoplasms/genetics , Neoplasms/metabolism , Peptide Chain Initiation, Translational , Protein Biosynthesis , RNA, Messenger/metabolism , Ribosomes/genetics , Ribosomes/metabolism
2.
Genes Dev ; 29(18): 1891-6, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-26338418

ABSTRACT

We show that a common polymorphic variant in the ERCC5 5' untranslated region (UTR) generates an upstream ORF (uORF) that affects both the background expression of this protein and its ability to be synthesized following exposure to agents that cause bulky adduct DNA damage. Individuals that harbor uORF1 have a marked resistance to platinum-based agents, illustrated by the significantly reduced progression-free survival of pediatric ependymoma patients treated with such compounds. Importantly, inhibition of DNA-PKcs restores sensitivity to platinum-based compounds by preventing uORF1-dependent ERCC5 expression. Our data support a model in which a heritable 5' noncoding mRNA element influences individuals' responses to platinum-based chemotherapy.


Subject(s)
5' Untranslated Regions/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Drug Resistance, Neoplasm/genetics , Endonucleases/genetics , Endonucleases/metabolism , Ependymoma/genetics , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Open Reading Frames/genetics , Polymorphism, Genetic/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Calcium-Binding Proteins/metabolism , Cell Line , Cell Line, Tumor , Cisplatin/pharmacology , Cisplatin/therapeutic use , DNA Damage , Ependymoma/drug therapy , Ependymoma/mortality , Gene Expression Regulation, Neoplastic/drug effects , Gene Expression Regulation, Neoplastic/genetics , HeLa Cells , Humans
3.
Proc Natl Acad Sci U S A ; 115(24): 6219-6224, 2018 06 12.
Article in English | MEDLINE | ID: mdl-29844156

ABSTRACT

TAp73 is a transcription factor that plays key roles in brain development, aging, and cancer. At the cellular level, TAp73 is a critical homeostasis-maintaining factor, particularly following oxidative stress. Although major studies focused on TAp73 transcriptional activities have indicated a contribution of TAp73 to cellular metabolism, the mechanisms underlying its role in redox homeostasis have not been completely elucidated. Here we show that TAp73 contributes to the oxidative stress response by participating in the control of protein synthesis. Regulation of mRNA translation occupies a central position in cellular homeostasis during the stress response, often by reducing global rates of protein synthesis and promoting translation of specific mRNAs. TAp73 depletion results in aberrant ribosomal RNA (rRNA) processing and impaired protein synthesis. In particular, polysomal profiles show that TAp73 promotes the integration of mRNAs that encode rRNA-processing factors in polysomes, supporting their translation. Concurrently, TAp73 depletion causes increased sensitivity to oxidative stress that correlates with reduced ATP levels, hyperactivation of AMPK, and translational defects. TAp73 is important for maintaining active translation of mitochondrial transcripts in response to oxidative stress, thus promoting mitochondrial activity. Our results indicate that TAp73 contributes to redox homeostasis by affecting the translational machinery, facilitating the translation of specific mitochondrial transcripts. This study identifies a mechanism by which TAp73 contributes to the oxidative stress response and describes a completely unexpected role for TAp73 in regulating protein synthesis.


Subject(s)
Oxidative Stress/genetics , Protein Biosynthesis/genetics , Tumor Protein p73/genetics , Tumor Protein p73/metabolism , A549 Cells , HEK293 Cells , Humans , Mitochondria/metabolism , Reactive Oxygen Species/metabolism , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism
5.
RNA ; 22(4): 623-35, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26857222

ABSTRACT

The RNA exosome is essential for 3' processing of functional RNA species and degradation of aberrant RNAs in eukaryotic cells. Recent reports have defined the substrates of the exosome catalytic domains and solved the multimeric structure of the exosome complex. However, regulation of exosome activity remains poorly characterized, especially in response to physiological stress. Following the observation that cooling of mammalian cells results in a reduction in 40S:60S ribosomal subunit ratio, we uncover regulation of the nuclear exosome as a result of reduced temperature. Using human cells and an in vivo model system allowing whole-body cooling, we observe reduced EXOSC10 (hRrp6, Pm/Scl-100) expression in the cold. In parallel, both models of cooling increase global SUMOylation, leading to the identification of specific conjugation of SUMO1 to EXOSC10, a process that is increased by cooling. Furthermore, we define the major SUMOylation sites in EXOSC10 by mutagenesis and show that overexpression of SUMO1 alone is sufficient to suppress EXOSC10 abundance. Reducing EXOSC10 expression by RNAi in human cells correlates with the 3' preribosomal RNA processing defects seen in the cold as well as reducing the 40S:60S ratio, a previously uncharacterized consequence of EXOSC10 suppression. Together, this work illustrates that EXOSC10 can be modified by SUMOylation and identifies a physiological stress where this regulation is prevalent both in vitro and in vivo.


Subject(s)
Exoribonucleases/metabolism , Exosome Multienzyme Ribonuclease Complex/metabolism , Ribosome Subunits, Large, Eukaryotic/metabolism , Ribosome Subunits, Small, Eukaryotic/metabolism , Amino Acid Sequence , Animals , Cold-Shock Response , Enzyme Repression , Exoribonucleases/genetics , Exosome Multienzyme Ribonuclease Complex/genetics , HEK293 Cells , Humans , Mice , Molecular Sequence Data , Protein Biosynthesis , RNA, Ribosomal/metabolism , SUMO-1 Protein/metabolism , Sumoylation
6.
Biochem J ; 465(2): 213-25, 2015 Jan 15.
Article in English | MEDLINE | ID: mdl-25329545

ABSTRACT

One of the key cellular responses to stress is the attenuation of mRNA translation and protein synthesis via the phosphorylation of eIF2α (eukaryotic translation initiation factor 2α). This is mediated by four eIF2α kinases and it has been suggested that each kinase is specific to the cellular stress imposed. In the present study, we show that both PERK (PKR-like endoplasmic reticulum kinase/eIF2α kinase 3) and GCN2 (general control non-derepressible 2/eIF2α kinase 4) are required for the stress responses associated with conditions encountered by cells overexpressing secreted recombinant protein. Importantly, whereas GCN2 is the kinase that is activated following cold-shock/hypothermic culturing of mammalian cells, PERK and GCN2 have overlapping functions since knockdown of one of these at the mRNA level is compensated for by the cell by up-regulating levels of the other. The protein p58IPK {also known as DnaJ3C [DnaJ heat-shock protein (hsp) 40 homologue, subfamily C, member 3]} is known to inhibit the eIF2α kinases PKR (dsRNA-dependent protein kinase/eIF2α kinase 2) and PERK and hence prevent or delay eIF2α phosphorylation and consequent inhibition of translation. However, we show that p58IPK is a general inhibitor of the eIF2α kinases in that it also interacts with GCN2. Thus forced overexpression of cytoplasmic p58 delays eIF2α phosphorylation, suppresses GCN2 phosphorylation and prolongs protein synthesis under endoplasmic reticulum (ER), hypothermic and prolonged culture stress conditions. Taken together, our data suggest that there is considerable cross talk between the eIF2α kinases to ensure that protein synthesis is tightly regulated. Their activation is controlled by p58 and the expression levels and localization of this protein are crucial in the capacity the cells to respond to cellular stress via control of protein synthesis rates and subsequent folding in the ER.


Subject(s)
Endoplasmic Reticulum/metabolism , HSP40 Heat-Shock Proteins/biosynthesis , Protein Biosynthesis/physiology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Animals , Cytoplasm/genetics , Cytoplasm/metabolism , Endoplasmic Reticulum/genetics , Eukaryotic Initiation Factor-2/genetics , Eukaryotic Initiation Factor-2/metabolism , Gene Expression Regulation/physiology , HSP40 Heat-Shock Proteins/genetics , HeLa Cells , Humans , Mice , Mice, Knockout , Phosphorylation/physiology , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Transport/physiology , RNA, Messenger/genetics , RNA, Messenger/metabolism , eIF-2 Kinase/antagonists & inhibitors , eIF-2 Kinase/genetics , eIF-2 Kinase/metabolism
7.
Biochem J ; 465(2): 227-38, 2015 Jan 15.
Article in English | MEDLINE | ID: mdl-25353634

ABSTRACT

Cells respond to external stress conditions by controlling gene expression, a process which occurs rapidly via post-transcriptional regulation at the level of protein synthesis. Global control of translation is mediated by modification of translation factors to allow reprogramming of the translatome and synthesis of specific proteins that are required for stress protection or initiation of apoptosis. In the present study, we have investigated how global protein synthesis rates are regulated upon mild cooling. We demonstrate that although there are changes to the factors that control initiation, including phosphorylation of eukaryotic translation initiation factor 2 (eIF2) on the α-subunit, the reduction in the global translation rate is mediated by regulation of elongation via phosphorylation of eukaryotic elongation factor 2 (eEF2) by its specific kinase, eEF2K (eukaryotic elongation factor 2 kinase). The AMP/ATP ratio increases following cooling, consistent with a reduction in metabolic rates, giving rise to activation of AMPK (5'-AMP-activated protein kinase), which is upstream of eEF2K. However, our data show that the major trigger for activation of eEF2K upon mild cooling is the release of Ca2+ ions from the endoplasmic reticulum (ER) and, importantly, that it is possible to restore protein synthesis rates in cooled cells by inhibition of this pathway at multiple points. As cooling has both therapeutic and industrial applications, our data provide important new insights into how the cellular responses to this stress are regulated, opening up new possibilities to modulate these responses for medical or industrial use at physiological or cooler temperatures.


Subject(s)
Cold-Shock Response/physiology , Elongation Factor 2 Kinase/metabolism , Peptide Chain Elongation, Translational/physiology , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , Adenosine Monophosphate/genetics , Adenosine Monophosphate/metabolism , Adenosine Triphosphate/genetics , Adenosine Triphosphate/metabolism , Calcium/metabolism , Elongation Factor 2 Kinase/genetics , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/metabolism , HEK293 Cells , Humans , Phosphorylation/physiology
8.
Biochem Soc Trans ; 43(3): 333-7, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26009172

ABSTRACT

Controlled whole-body cooling has been used since the 1950s to protect the brain from injury where cerebral blood flow is reduced. Therapeutic hypothermia has been used successfully during heart surgery, following cardiac arrest and with varied success in other instances of reduced blood flow to the brain. However, why reduced temperature is beneficial is largely unknown. Here we review the use of therapeutic hypothermia with a view to understanding the underlying biology contributing to the phenomenon. Interestingly, the benefits of cooling have recently been extended to treatment of chronic neurodegenerative diseases in two mouse models. Concurrently studies have demonstrated the importance of the regulation of protein synthesis, translation, to the cooling response, which is also emerging as a targetable process in neurodegeneration. Through these studies the potential importance of the rewarming process following cooling is also beginning to emerge. Altogether, these lines of research present new opportunities to manipulate cooling pathways for therapeutic gain.


Subject(s)
Brain Injuries/genetics , Brain Injuries/therapy , Hypothermia, Induced/methods , Protein Biosynthesis , Animals , Brain/blood supply , Brain/physiopathology , Brain Injuries/physiopathology , Cold Temperature , Heart Arrest/physiopathology , Humans , Mice , Thoracic Surgery/methods
9.
Biochem J ; 458(2): 213-24, 2014 Mar 01.
Article in English | MEDLINE | ID: mdl-24320561

ABSTRACT

eIF3 (eukaryotic initiation factor 3) is the largest and most complex eukaryotic mRNA translation factor in terms of the number of protein components or subunits. In mammals, eIF3 is composed of 13 different polypeptide subunits, of which five, i.e. a, b, c, g and i, are conserved and essential in vivo from yeasts to mammals. In the present study, we show that the eukaryotic cytosolic chaperonin CCT [chaperonin containing TCP-1 (tailless complex polypeptide 1)] binds to newly synthesized eIF3b and promotes the correct folding of eIF3h and eIF3i. Interestingly, overexpression of these last two subunits is associated with enhanced translation of specific mRNAs over and above the general enhancement of global translation. In agreement with this, our data show that, as CCT is required for the correct folding of eIF3h and eIF3i subunits, it indirectly influences gene expression with eIF3i overexpression enhancing both cap- and IRES (internal ribosome entry segment)-dependent translation initiation, whereas eIF3h overexpression selectively increases IRES-dependent translation initiation. Importantly, these studies demonstrate the requirement of the chaperonin machinery for the correct folding of essential components of the translational machinery and provide further evidence of the close interplay between the cell environment, cell signalling, cell proliferation, the chaperone machinery and translational apparatus.


Subject(s)
Chaperonin Containing TCP-1/physiology , Eukaryotic Initiation Factor-3/chemistry , Eukaryotic Initiation Factor-3/metabolism , Protein Folding , Protein Subunits/chemistry , Protein Subunits/metabolism , Animals , CHO Cells , Chaperonin Containing TCP-1/metabolism , Cricetinae , Cricetulus , HeLa Cells , Humans , Mice , NIH 3T3 Cells , Protein Binding/physiology
10.
Nucleic Acids Res ; 41(7): 4185-97, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23462953

ABSTRACT

Active regulator of SIRT1 (AROS) binds and upregulates SIRT1, an NAD(+)-dependent deacetylase. In addition, AROS binds RPS19, a structural ribosomal protein, which also functions in ribosome biogenesis and is implicated in multiple disease states. The significance of AROS in relation to ribosome biogenesis and function is unknown. Using human cells, we now show that AROS localizes to (i) the nucleolus and (ii) cytoplasmic ribosomes. Co-localization with nucleolar proteins was verified by confocal immunofluorescence of endogenous protein and confirmed by AROS depletion using RNAi. AROS association with cytoplasmic ribosomes was analysed by sucrose density fractionation and immunoprecipitation, revealing that AROS selectively associates with 40S ribosomal subunits and also with polysomes. RNAi-mediated depletion of AROS leads to deficient ribosome biogenesis with aberrant precursor ribosomal RNA processing, reduced 40S subunit ribosomal RNA and 40S ribosomal proteins (including RPS19). Together, this results in a reduction in 40S subunits and translating polysomes, correlating with reduced overall cellular protein synthesis. Interestingly, knockdown of AROS also results in a functionally significant increase in eIF2α phosphorylation. Overall, our results identify AROS as a factor with a role in both ribosome biogenesis and ribosomal function.


Subject(s)
Nuclear Proteins/physiology , Protein Biosynthesis , Ribosomal Proteins/metabolism , Ribosomes/metabolism , Transcription Factors/physiology , Amino Acid Sequence , Cell Line, Tumor , Cell Nucleolus/chemistry , Cytoplasm/chemistry , Eukaryotic Initiation Factor-2/metabolism , Humans , Molecular Sequence Data , Nuclear Proteins/chemistry , Nuclear Proteins/metabolism , RNA Processing, Post-Transcriptional , RNA, Ribosomal/metabolism , Ribosome Subunits, Small, Eukaryotic/metabolism , Ribosomes/chemistry , Transcription Factors/chemistry , Transcription Factors/metabolism
11.
Nucleic Acids Res ; 39(7): 2671-7, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21109536

ABSTRACT

Cyclin E supports pre-replication complex (pre-RC) assembly, while cyclin A-associated kinase activates DNA synthesis. We show that cyclin E, but not A, is mounted upon the nuclear matrix in sub-nuclear foci in differentiated vertebrate cells, but not in undifferentiated cells or cancer cells. In murine embryonic stem cells, Xenopus embryos and human urothelial cells, cyclin E is recruited to the nuclear matrix as cells differentiate and this can be manipulated in vitro. This suggests that pre-RC assembly becomes spatially restricted as template usage is defined. Furthermore, failure to become restricted may contribute to the plasticity of cancer cells.


Subject(s)
Cyclin E/metabolism , Neoplasms/metabolism , Nuclear Matrix/metabolism , Active Transport, Cell Nucleus , Animals , Cell Differentiation , Cell Line, Tumor , Cells, Cultured , Humans , Mice , Protein Transport , Xenopus laevis
12.
Curr Opin Oncol ; 24(1): 68-75, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22080944

ABSTRACT

PURPOSE OF REVIEW: SIRT1 impacts upon diverse cellular processes via its roles in the determination of chromatin structure, chromatin remodelling and gene expression. This review covers the recent discoveries linking SIRT1 with the regulation of mammalian metabolism and considers ways in which abnormal metabolism in disease may, in turn, impact upon SIRT1 because of SIRT1's functional dependency upon NAD. RECENT FINDINGS: Diverse signalling pathways are integrated to regulate energy metabolism and homeostasis. Such pathways involve intracellular networks and mitochondria, and also intercellular signalling within and between tissues to co-ordinate adaptive metabolic responses within the organism as a whole. Here, we outline the recent studies exploring the regulatory links between SIRT1 and mitochondrial biogenesis, cellular redox and associated metabolic pathways, and angiogenesis/Notch signalling. These links are effected by the SIRT1-mediated deacetylation of transcriptional regulators and enzymes with key roles in metabolism. SUMMARY: SIRT1 activity is directly coupled with homeostasis and metabolism. SIRT1 is also a metabolic sensor. It follows that disease-related metabolic abnormalities are likely to impinge upon SIRT1 functioning. Disease-related functions of SIRT1, in their turn, offer potential targets for the development of novel SIRT1-based therapies. In cancer, for example, the survival function of SIRT1 may reflect abnormal cancer metabolism and identifies SIRT1 as a target for anticancer therapy.


Subject(s)
Energy Metabolism/physiology , Neoplasms/metabolism , Sirtuin 1/metabolism , Cell Hypoxia/physiology , Glycolysis/physiology , Humans , Isoenzymes/metabolism , L-Lactate Dehydrogenase/metabolism , Lactate Dehydrogenase 5 , Mitochondria/metabolism , NAD/metabolism , Poly(ADP-ribose) Polymerases/metabolism
13.
Mol Cell Oncol ; 8(2): 1884034, 2021 Feb 22.
Article in English | MEDLINE | ID: mdl-33855169

ABSTRACT

~50% of colorectal cancers have an activating mutation in KRAS (encoding the KRAS proto-oncogene) and remain difficult to target in the clinic. We have recently shown that activation of KRAS protein alters the regulation of mRNA translation, increasing total protein synthesis, and maintaining elevated c-MYC (MYC proto-oncogene) expression. Targeting these pathways downstream of KRAS reveals a striking dependency that has potential for clinical translation.

14.
Cancer Discov ; 11(5): 1228-1247, 2021 05.
Article in English | MEDLINE | ID: mdl-33328217

ABSTRACT

KRAS-mutant colorectal cancers are resistant to therapeutics, presenting a significant problem for ∼40% of cases. Rapalogs, which inhibit mTORC1 and thus protein synthesis, are significantly less potent in KRAS-mutant colorectal cancer. Using Kras-mutant mouse models and mouse- and patient-derived organoids, we demonstrate that KRAS with G12D mutation fundamentally rewires translation to increase both bulk and mRNA-specific translation initiation. This occurs via the MNK/eIF4E pathway culminating in sustained expression of c-MYC. By genetic and small-molecule targeting of this pathway, we acutely sensitize KRASG12D models to rapamycin via suppression of c-MYC. We show that 45% of colorectal cancers have high signaling through mTORC1 and the MNKs, with this signature correlating with a 3.5-year shorter cancer-specific survival in a subset of patients. This work provides a c-MYC-dependent cotargeting strategy with remarkable potency in multiple Kras-mutant mouse models and metastatic human organoids and identifies a patient population that may benefit from its clinical application. SIGNIFICANCE: KRAS mutation and elevated c-MYC are widespread in many tumors but remain predominantly untargetable. We find that mutant KRAS modulates translation, culminating in increased expression of c-MYC. We describe an effective strategy targeting mTORC1 and MNK in KRAS-mutant mouse and human models, pathways that are also commonly co-upregulated in colorectal cancer.This article is highlighted in the In This Issue feature, p. 995.


Subject(s)
Colorectal Neoplasms/genetics , Eukaryotic Initiation Factor-4E/drug effects , Intracellular Signaling Peptides and Proteins/drug effects , MTOR Inhibitors/pharmacology , Protein Serine-Threonine Kinases/drug effects , Animals , Colorectal Neoplasms/metabolism , Disease Models, Animal , Eukaryotic Initiation Factor-4E/metabolism , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Mice , Mice, Inbred C57BL , Phosphorylation , Protein Serine-Threonine Kinases/metabolism
15.
Nat Genet ; 53(1): 16-26, 2021 01.
Article in English | MEDLINE | ID: mdl-33414552

ABSTRACT

Oncogenic KRAS mutations and inactivation of the APC tumor suppressor co-occur in colorectal cancer (CRC). Despite efforts to target mutant KRAS directly, most therapeutic approaches focus on downstream pathways, albeit with limited efficacy. Moreover, mutant KRAS alters the basal metabolism of cancer cells, increasing glutamine utilization to support proliferation. We show that concomitant mutation of Apc and Kras in the mouse intestinal epithelium profoundly rewires metabolism, increasing glutamine consumption. Furthermore, SLC7A5, a glutamine antiporter, is critical for colorectal tumorigenesis in models of both early- and late-stage metastatic disease. Mechanistically, SLC7A5 maintains intracellular amino acid levels following KRAS activation through transcriptional and metabolic reprogramming. This supports the increased demand for bulk protein synthesis that underpins the enhanced proliferation of KRAS-mutant cells. Moreover, targeting protein synthesis, via inhibition of the mTORC1 regulator, together with Slc7a5 deletion abrogates the growth of established Kras-mutant tumors. Together, these data suggest SLC7A5 as an attractive target for therapy-resistant KRAS-mutant CRC.


Subject(s)
Colorectal Neoplasms/genetics , Large Neutral Amino Acid-Transporter 1/metabolism , Mutation/genetics , Proto-Oncogene Proteins p21(ras)/genetics , 5' Untranslated Regions/genetics , Amino Acid Transport System ASC/metabolism , Animals , Carcinogenesis/pathology , Cell Proliferation , Colorectal Neoplasms/pathology , Gene Expression Regulation, Neoplastic , Glutamine/metabolism , Humans , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Kaplan-Meier Estimate , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice, Inbred C57BL , Minor Histocompatibility Antigens/metabolism , Neoplasm Metastasis , Oncogenes , RNA, Messenger/genetics , RNA, Messenger/metabolism , Signal Transduction , TOR Serine-Threonine Kinases/metabolism
16.
Dis Model Mech ; 13(3)2020 03 26.
Article in English | MEDLINE | ID: mdl-32298235

ABSTRACT

Regulation of protein synthesis makes a major contribution to post-transcriptional control pathways. During disease, or under stress, cells initiate processes to reprogramme protein synthesis and thus orchestrate the appropriate cellular response. Recent data show that the elongation stage of protein synthesis is a key regulatory node for translational control in health and disease. There is a complex set of factors that individually affect the overall rate of elongation and, for the most part, these influence either transfer RNA (tRNA)- and eukaryotic elongation factor 1A (eEF1A)-dependent codon decoding, and/or elongation factor 2 (eEF2)-dependent ribosome translocation along the mRNA. Decoding speeds depend on the relative abundance of each tRNA, the cognate:near-cognate tRNA ratios and the degree of tRNA modification, whereas eEF2-dependent ribosome translocation is negatively regulated by phosphorylation on threonine-56 by eEF2 kinase. Additional factors that contribute to the control of the elongation rate include epigenetic modification of the mRNA, coding sequence variation and the expression of eIF5A, which stimulates peptide bond formation between proline residues. Importantly, dysregulation of elongation control is central to disease mechanisms in both tumorigenesis and neurodegeneration, making the individual key steps in this process attractive therapeutic targets. Here, we discuss the relative contribution of individual components of the translational apparatus (e.g. tRNAs, elongation factors and their modifiers) to the overall control of translation elongation and how their dysregulation contributes towards disease processes.


Subject(s)
Disease , Health , Peptide Chain Elongation, Translational , Aminoacylation , Animals , Carcinogenesis/genetics , Humans , RNA, Transfer/genetics , RNA, Transfer/metabolism
17.
Cell Death Differ ; 26(12): 2535-2550, 2019 12.
Article in English | MEDLINE | ID: mdl-30858608

ABSTRACT

RNA polymerase III (Pol-III) transcribes tRNAs and other small RNAs essential for protein synthesis and cell growth. Pol-III is deregulated during carcinogenesis; however, its role in vivo has not been studied. To address this issue, we manipulated levels of Brf1, a Pol-III transcription factor that is essential for recruitment of Pol-III holoenzyme at tRNA genes in vivo. Knockout of Brf1 led to embryonic lethality at blastocyst stage. In contrast, heterozygous Brf1 mice were viable, fertile and of a normal size. Conditional deletion of Brf1 in gastrointestinal epithelial tissues, intestine, liver and pancreas, was incompatible with organ homeostasis. Deletion of Brf1 in adult intestine and liver induced apoptosis. However, Brf1 heterozygosity neither had gross effects in these epithelia nor did it modify tumorigenesis in the intestine or pancreas. Overexpression of BRF1 rescued the phenotypes of Brf1 deletion in intestine and liver but was unable to initiate tumorigenesis. Thus, Brf1 and Pol-III activity are absolutely essential for normal homeostasis during development and in adult epithelia. However, Brf1 overexpression or heterozygosity are unable to modify tumorigenesis, suggesting a permissive, but not driving role for Brf1 in the development of epithelial cancers of the pancreas and gut.


Subject(s)
Butyrate Response Factor 1/deficiency , Intestinal Mucosa/metabolism , Liver/metabolism , Pancreas/metabolism , Animals , Butyrate Response Factor 1/biosynthesis , Butyrate Response Factor 1/genetics , Homeostasis , Humans , Mice , TATA-Binding Protein Associated Factors/biosynthesis , TATA-Binding Protein Associated Factors/genetics
18.
Sci Signal ; 12(567)2019 02 05.
Article in English | MEDLINE | ID: mdl-30723174

ABSTRACT

Intratumoral hypoxia causes the formation of dysfunctional blood vessels, which contribute to tumor metastasis and reduce the efficacy of therapeutic treatments. Blood vessels are embedded in the tumor stroma of which cancer-associated fibroblasts (CAFs) constitute a prominent cellular component. We found that hypoxic human mammary CAFs promoted angiogenesis in CAF-endothelial cell cocultures in vitro. Mass spectrometry-based proteomic analysis of the CAF secretome unraveled that hypoxic CAFs contributed to blood vessel abnormalities by altering their secretion of various pro- and anti-angiogenic factors. Hypoxia induced pronounced remodeling of the CAF proteome, including proteins that have not been previously related to this process. Among those, the uncharacterized protein NCBP2-AS2 that we renamed HIAR (hypoxia-induced angiogenesis regulator) was the protein most increased in abundance in hypoxic CAFs. Silencing of HIAR abrogated the pro-angiogenic and pro-migratory function of hypoxic CAFs by decreasing secretion of the pro-angiogenic factor VEGFA and consequently reducing VEGF/VEGFR downstream signaling in the endothelial cells. Our study has identified a regulator of angiogenesis and provides a map of hypoxia-induced molecular alterations in mammary CAFs.


Subject(s)
Cancer-Associated Fibroblasts/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Neovascularization, Pathologic/metabolism , Vascular Endothelial Growth Factor A/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Cells, Cultured , Coculture Techniques , Gene Expression Regulation, Neoplastic , HEK293 Cells , Humans , Hypoxia , Neovascularization, Pathologic/genetics , Proteome/metabolism , Proteomics/methods , Signal Transduction/genetics , Vascular Endothelial Growth Factor A/genetics
20.
Curr Biol ; 27(5): 638-650, 2017 Mar 06.
Article in English | MEDLINE | ID: mdl-28238655

ABSTRACT

Cooling and hypothermia are profoundly neuroprotective, mediated, at least in part, by the cold shock protein, RBM3. However, the neuroprotective effector proteins induced by RBM3 and the mechanisms by which mRNAs encoding cold shock proteins escape cooling-induced translational repression are unknown. Here, we show that cooling induces reprogramming of the translatome, including the upregulation of a new cold shock protein, RTN3, a reticulon protein implicated in synapse formation. We report that this has two mechanistic components. Thus, RTN3 both evades cooling-induced translational elongation repression and is also bound by RBM3, which drives the increased expression of RTN3. In mice, knockdown of RTN3 expression eliminated cooling-induced neuroprotection. However, lentivirally mediated RTN3 overexpression prevented synaptic loss and cognitive deficits in a mouse model of neurodegeneration, downstream and independently of RBM3. We conclude that RTN3 expression is a mediator of RBM3-induced neuroprotection, controlled by novel mechanisms of escape from translational inhibition on cooling.


Subject(s)
Cold Shock Proteins and Peptides/genetics , Cold-Shock Response/genetics , Nerve Tissue Proteins/genetics , RNA-Binding Proteins/genetics , Animals , Cold Shock Proteins and Peptides/metabolism , Cold Temperature , HEK293 Cells , Humans , Mice , Nerve Tissue Proteins/metabolism , Neuroprotective Agents/metabolism , RNA-Binding Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL