Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 873
Filter
Add more filters

Publication year range
1.
Nature ; 603(7899): 124-130, 2022 03.
Article in English | MEDLINE | ID: mdl-35197626

ABSTRACT

A hallmark pathological feature of the neurodegenerative diseases amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) is the depletion of RNA-binding protein TDP-43 from the nucleus of neurons in the brain and spinal cord1. A major function of TDP-43 is as a repressor of cryptic exon inclusion during RNA splicing2-4. Single nucleotide polymorphisms in UNC13A are among the strongest hits associated with FTD and ALS in human genome-wide association studies5,6, but how those variants increase risk for disease is unknown. Here we show that TDP-43 represses a cryptic exon-splicing event in UNC13A. Loss of TDP-43 from the nucleus in human brain, neuronal cell lines and motor neurons derived from induced pluripotent stem cells resulted in the inclusion of a cryptic exon in UNC13A mRNA and reduced UNC13A protein expression. The top variants associated with FTD or ALS risk in humans are located in the intron harbouring the cryptic exon, and we show that they increase UNC13A cryptic exon splicing in the face of TDP-43 dysfunction. Together, our data provide a direct functional link between one of the strongest genetic risk factors for FTD and ALS (UNC13A genetic variants), and loss of TDP-43 function.


Subject(s)
Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Amyotrophic Lateral Sclerosis/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Exons/genetics , Frontotemporal Dementia/metabolism , Genome-Wide Association Study , Humans , Motor Neurons/pathology , Nerve Tissue Proteins
2.
Brain ; 147(4): 1483-1496, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-37831661

ABSTRACT

There is a longstanding ambiguity regarding the clinical diagnosis of dementia syndromes predominantly targeting executive functions versus behaviour and personality. This is due to an incomplete understanding of the macro-scale anatomy underlying these symptomatologies, a partial overlap in clinical features and the fact that both phenotypes can emerge from the same pathology and vice versa. We collected data from a patient cohort of which 52 had dysexecutive Alzheimer's disease, 30 had behavioural variant frontotemporal dementia (bvFTD), seven met clinical criteria for bvFTD but had Alzheimer's disease pathology (behavioural Alzheimer's disease) and 28 had amnestic Alzheimer's disease. We first assessed group-wise differences in clinical and cognitive features and patterns of fluorodeoxyglucose (FDG) PET hypometabolism. We then performed a spectral decomposition of covariance between FDG-PET images to yield latent patterns of relative hypometabolism unbiased by diagnostic classification, which are referred to as 'eigenbrains'. These eigenbrains were subsequently linked to clinical and cognitive data and meta-analytic topics from a large external database of neuroimaging studies reflecting a wide range of mental functions. Finally, we performed a data-driven exploratory linear discriminant analysis to perform eigenbrain-based multiclass diagnostic predictions. Dysexecutive Alzheimer's disease and bvFTD patients were the youngest at symptom onset, followed by behavioural Alzheimer's disease, then amnestic Alzheimer's disease. Dysexecutive Alzheimer's disease patients had worse cognitive performance on nearly all cognitive domains compared with other groups, except verbal fluency which was equally impaired in dysexecutive Alzheimer's disease and bvFTD. Hypometabolism was observed in heteromodal cortices in dysexecutive Alzheimer's disease, temporo-parietal areas in amnestic Alzheimer's disease and frontotemporal areas in bvFTD and behavioural Alzheimer's disease. The unbiased spectral decomposition analysis revealed that relative hypometabolism in heteromodal cortices was associated with worse dysexecutive symptomatology and a lower likelihood of presenting with behaviour/personality problems, whereas relative hypometabolism in frontotemporal areas was associated with a higher likelihood of presenting with behaviour/personality problems but did not correlate with most cognitive measures. The linear discriminant analysis yielded an accuracy of 82.1% in predicting diagnostic category and did not misclassify any dysexecutive Alzheimer's disease patient for behavioural Alzheimer's disease and vice versa. Our results strongly suggest a double dissociation in that distinct macro-scale underpinnings underlie predominant dysexecutive versus personality/behavioural symptomatology in dementia syndromes. This has important implications for the implementation of criteria to diagnose and distinguish these diseases and supports the use of data-driven techniques to inform the classification of neurodegenerative diseases.


Subject(s)
Alzheimer Disease , Frontotemporal Dementia , Humans , Alzheimer Disease/pathology , Fluorodeoxyglucose F18 , Frontotemporal Dementia/pathology , Executive Function , Cerebral Cortex/pathology , Neuropsychological Tests
3.
Brain ; 147(3): 980-995, 2024 03 01.
Article in English | MEDLINE | ID: mdl-37804318

ABSTRACT

Given the prevalence of dementia and the development of pathology-specific disease-modifying therapies, high-value biomarker strategies to inform medical decision-making are critical. In vivo tau-PET is an ideal target as a biomarker for Alzheimer's disease diagnosis and treatment outcome measure. However, tau-PET is not currently widely accessible to patients compared to other neuroimaging methods. In this study, we present a convolutional neural network (CNN) model that imputes tau-PET images from more widely available cross-modality imaging inputs. Participants (n = 1192) with brain T1-weighted MRI (T1w), fluorodeoxyglucose (FDG)-PET, amyloid-PET and tau-PET were included. We found that a CNN model can impute tau-PET images with high accuracy, the highest being for the FDG-based model followed by amyloid-PET and T1w. In testing implications of artificial intelligence-imputed tau-PET, only the FDG-based model showed a significant improvement of performance in classifying tau positivity and diagnostic groups compared to the original input data, suggesting that application of the model could enhance the utility of the metabolic images. The interpretability experiment revealed that the FDG- and T1w-based models utilized the non-local input from physically remote regions of interest to estimate the tau-PET, but this was not the case for the Pittsburgh compound B-based model. This implies that the model can learn the distinct biological relationship between FDG-PET, T1w and tau-PET from the relationship between amyloid-PET and tau-PET. Our study suggests that extending neuroimaging's use with artificial intelligence to predict protein specific pathologies has great potential to inform emerging care models.


Subject(s)
Artificial Intelligence , Deep Learning , Neuroimaging , Tauopathies , Humans , Amyloidogenic Proteins , Biomarkers , Fluorodeoxyglucose F18 , Neuroimaging/methods , Tauopathies/diagnostic imaging
4.
Lancet ; 402(10404): 786-797, 2023 09 02.
Article in English | MEDLINE | ID: mdl-37478886

ABSTRACT

BACKGROUND: Hearing loss is associated with increased cognitive decline and incident dementia in older adults. We aimed to investigate whether a hearing intervention could reduce cognitive decline in cognitively healthy older adults with hearing loss. METHODS: The ACHIEVE study is a multicentre, parallel-group, unmasked, randomised controlled trial of adults aged 70-84 years with untreated hearing loss and without substantial cognitive impairment that took place at four community study sites across the USA. Participants were recruited from two study populations at each site: (1) older adults participating in a long-standing observational study of cardiovascular health (Atherosclerosis Risk in Communities [ARIC] study), and (2) healthy de novo community volunteers. Participants were randomly assigned (1:1) to a hearing intervention (audiological counselling and provision of hearing aids) or a control intervention of health education (individual sessions with a health educator covering topics on chronic disease prevention) and followed up every 6 months. The primary endpoint was 3-year change in a global cognition standardised factor score from a comprehensive neurocognitive battery. Analysis was by intention to treat. This trial was registered at ClinicalTrials.gov, NCT03243422. FINDINGS: From Nov 9, 2017, to Oct 25, 2019, we screened 3004 participants for eligibility and randomly assigned 977 (32·5%; 238 [24%] from ARIC and 739 [76%] de novo). We randomly assigned 490 (50%) to the hearing intervention and 487 (50%) to the health education control. The cohort had a mean age of 76·8 years (SD 4·0), 523 (54%) were female, 454 (46%) were male, and most were White (n=858 [88%]). Participants from ARIC were older, had more risk factors for cognitive decline, and had lower baseline cognitive scores than those in the de novo cohort. In the primary analysis combining the ARIC and de novo cohorts, 3-year cognitive change (in SD units) was not significantly different between the hearing intervention and health education control groups (-0·200 [95% CI -0·256 to -0·144] in the hearing intervention group and -0·202 [-0·258 to -0·145] in the control group; difference 0·002 [-0·077 to 0·081]; p=0·96). However, a prespecified sensitivity analysis showed a significant difference in the effect of the hearing intervention on 3-year cognitive change between the ARIC and de novo cohorts (pinteraction=0·010). Other prespecified sensitivity analyses that varied analytical parameters used in the total cohort did not change the observed results. No significant adverse events attributed to the study were reported with either the hearing intervention or health education control. INTERPRETATION: The hearing intervention did not reduce 3-year cognitive decline in the primary analysis of the total cohort. However, a prespecified sensitivity analysis showed that the effect differed between the two study populations that comprised the cohort. These findings suggest that a hearing intervention might reduce cognitive change over 3 years in populations of older adults at increased risk for cognitive decline but not in populations at decreased risk for cognitive decline. FUNDING: US National Institutes of Health.


Subject(s)
Atherosclerosis , Cognitive Dysfunction , Hearing Loss , Humans , Male , Female , Aged , Cognitive Dysfunction/prevention & control , Cognition , Hearing Loss/prevention & control , Hearing , Health Education
5.
Acta Neuropathol ; 147(1): 73, 2024 04 19.
Article in English | MEDLINE | ID: mdl-38641715

ABSTRACT

The most prominent genetic cause of both amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) is a repeat expansion in the gene C9orf72. Importantly, the transcriptomic consequences of the C9orf72 repeat expansion remain largely unclear. Here, we used short-read RNA sequencing (RNAseq) to profile the cerebellar transcriptome, detecting alterations in patients with a C9orf72 repeat expansion. We focused on the cerebellum, since key C9orf72-related pathologies are abundant in this neuroanatomical region, yet TDP-43 pathology and neuronal loss are minimal. Consistent with previous work, we showed a reduction in the expression of the C9orf72 gene and an elevation in homeobox genes, when comparing patients with the expansion to both patients without the C9orf72 repeat expansion and control subjects. Interestingly, we identified more than 1000 alternative splicing events, including 4 in genes previously associated with ALS and/or FTLD. We also found an increase of cryptic splicing in C9orf72 patients compared to patients without the expansion and controls. Furthermore, we demonstrated that the expression level of select RNA-binding proteins is associated with cryptic splice junction inclusion. Overall, this study explores the presence of widespread transcriptomic changes in the cerebellum, a region not confounded by severe neurodegeneration, in post-mortem tissue from C9orf72 patients.


Subject(s)
Amyotrophic Lateral Sclerosis , C9orf72 Protein , Cerebellum , Frontotemporal Lobar Degeneration , Humans , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , C9orf72 Protein/genetics , C9orf72 Protein/metabolism , Cerebellum/pathology , DNA Repeat Expansion/genetics , Frontotemporal Lobar Degeneration/genetics , Frontotemporal Lobar Degeneration/metabolism , Frontotemporal Lobar Degeneration/pathology , Gene Expression Profiling , Transcriptome
6.
Article in English | MEDLINE | ID: mdl-38514176

ABSTRACT

BACKGROUND: Primary progressive aphasia (PPA) defines a group of neurodegenerative disorders characterised by language decline. Three PPA variants correlate with distinct underlying pathologies: semantic variant PPA (svPPA) with transactive response DNA-binding protein of 43 kD (TDP-43) proteinopathy, agrammatic variant PPA (agPPA) with tau deposition and logopenic variant PPA (lvPPA) with Alzheimer's disease (AD). Our objectives were to differentiate PPA variants using clinical and neuroimaging features, assess progression and evaluate structural MRI and a novel 18-F fluorodeoxyglucose positron emission tomography (FDG-PET) image decomposition machine learning algorithm for neuropathology prediction. METHODS: We analysed 82 autopsied patients diagnosed with PPA from 1998 to 2022. Clinical histories, language characteristics, neuropsychological results and brain imaging were reviewed. A machine learning framework using a k-nearest neighbours classifier assessed FDG-PET scans from 45 patients compared with a large reference database. RESULTS: PPA variant distribution: 35 lvPPA (80% AD), 28 agPPA (89% tauopathy) and 18 svPPA (72% frontotemporal lobar degeneration-TAR DNA-binding protein (FTLD-TDP)). Apraxia of speech was associated with 4R-tauopathy in agPPA, while pure agrammatic PPA without apraxia was linked to 3R-tauopathy. Longitudinal data revealed language dysfunction remained the predominant deficit for patients with lvPPA, agPPA evolved to corticobasal or progressive supranuclear palsy syndrome (64%) and svPPA progressed to behavioural variant frontotemporal dementia (44%). agPPA-4R-tauopathy exhibited limited pre-supplementary motor area atrophy, lvPPA-AD displayed temporal atrophy extending to the superior temporal sulcus and svPPA-FTLD-TDP had severe temporal pole atrophy. The FDG-PET-based machine learning algorithm accurately predicted clinical diagnoses and underlying pathologies. CONCLUSIONS: Distinguishing 3R-taupathy and 4R-tauopathy in agPPA may rely on apraxia of speech presence. Additional linguistic and clinical features can aid neuropathology prediction. Our data-driven brain metabolism decomposition approach effectively predicts underlying neuropathology.

7.
Neuroepidemiology ; 58(1): 23-30, 2024.
Article in English | MEDLINE | ID: mdl-37918374

ABSTRACT

INTRODUCTION: Commonly occurring dementias include those of Alzheimer's, vascular, and mixtures of these and other pathologies. They are believed to evolve over many years, but that time interval has been difficult to establish. Our objective was to determine how many years in advance of a dementia diagnosis cognitive scores begin to change. METHODS: 14,086 dementia-free ARIC participants underwent a cognitive exam at baseline visit 2 (1990-1992, mean age 57 ± 5.72), and 11,244 at visit 4 (1996-1998), 5,640 at visit 5 (2011-2013), and 3,574 at visit 6 (2016-2017) with surveillance for dementias of all-causes combined. Within 5-year intervals after each visit, we compared performance on the Delayed Word Recall Test (DWRT), the Digit Symbol Substitution Test (DSST), the Word Fluency Test (WFT), and the combined mean of three cognitive tests at baseline in participants who were diagnosed with dementia within each interval versus those who survived the interval without a dementia diagnosis. Z-scores were adjusted for demographics and education in separate regression models for each visit. We plotted adjusted z-score means by time interval following each visit. RESULTS: During follow-up 3,334, 2,821, 1,218, and 329 dementia cases were ascertained after visits 2, 4, 5, and 6, respectively. Adjusted DWRT z-scores were significantly lower 20-25 years before dementia than those who did not experience dementia within 25 years. DSST z-scores were significantly lower at 25-30 years and 3-test combination z-scores were significantly lower as early as 30-31 years before onset. The difference between dementia and non-dementia group in the visit 2 3-test combination z-score was -0.20 at 30-31 years prior to dementia diagnosis. As expected, differences between the dementia and non-dementia groups increased closer to the time of dementia occurrence, up to their widest point at 0-5 years prior to dementia diagnosis. The difference between dementia and non-dementia groups in the visit 2 3-test combination z-score at 0-5 years was -0.90. WFT z-score differences were smaller than for the DSST or DWRT and began later. Patterns were similar in Black and White participants. CONCLUSION: DWRT, DSST, and combined 3-test z-scores were significantly lower more than 20 years prior to diagnosis in the dementia group versus the non-dementia group. Findings contribute to our knowledge of the long prodromal period in Blacks and Whites.


Subject(s)
Atherosclerosis , Cognitive Dysfunction , Dementia , Humans , Middle Aged , Dementia/diagnosis , Dementia/epidemiology , Dementia/etiology , Cognitive Dysfunction/complications , Causality , Neuropsychological Tests , Atherosclerosis/diagnosis , Atherosclerosis/epidemiology , Risk Factors
8.
J Int Neuropsychol Soc ; 30(2): 138-151, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37385974

ABSTRACT

OBJECTIVE: The Stricker Learning Span (SLS) is a computer-adaptive digital word list memory test specifically designed for remote assessment and self-administration on a web-based multi-device platform (Mayo Test Drive). We aimed to establish criterion validity of the SLS by comparing its ability to differentiate biomarker-defined groups to the person-administered Rey's Auditory Verbal Learning Test (AVLT). METHOD: Participants (N = 353; mean age = 71, SD = 11; 93% cognitively unimpaired [CU]) completed the AVLT during an in-person visit, the SLS remotely (within 3 months) and had brain amyloid and tau PET scans available (within 3 years). Overlapping groups were formed for 1) those on the Alzheimer's disease (AD) continuum (amyloid PET positive, A+, n = 125) or not (A-, n = 228), and those with biological AD (amyloid and tau PET positive, A+T+, n = 55) vs no evidence of AD pathology (A-T-, n = 195). Analyses were repeated among CU participants only. RESULTS: The SLS and AVLT showed similar ability to differentiate biomarker-defined groups when comparing AUROCs (p's > .05). In logistic regression models, SLS contributed significantly to predicting biomarker group beyond age, education, and sex, including when limited to CU participants. Medium (A- vs A+) to large (A-T- vs A+T+) unadjusted effect sizes were observed for both SLS and AVLT. Learning and delay variables were similar in terms of ability to separate biomarker groups. CONCLUSIONS: Remotely administered SLS performed similarly to in-person-administered AVLT in its ability to separate biomarker-defined groups, providing evidence of criterion validity. Results suggest the SLS may be sensitive to detecting subtle objective cognitive decline in preclinical AD.


Subject(s)
Alzheimer Disease , Learning , Humans , Aged , Memory , Verbal Learning , Educational Status , Alzheimer Disease/diagnostic imaging , Biomarkers
9.
J Int Neuropsychol Soc ; 30(4): 389-401, 2024 May.
Article in English | MEDLINE | ID: mdl-38014536

ABSTRACT

OBJECTIVE: Normative neuropsychological data are essential for interpretation of test performance in the context of demographic factors. The Mayo Normative Studies (MNS) aim to provide updated normative data for neuropsychological measures administered in the Mayo Clinic Study of Aging (MCSA), a population-based study of aging that randomly samples residents of Olmsted County, Minnesota, from age- and sex-stratified groups. We examined demographic effects on neuropsychological measures and validated the regression-based norms in comparison to existing normative data developed in a similar sample. METHOD: The MNS includes cognitively unimpaired adults ≥30 years of age (n = 4,428) participating in the MCSA. Multivariable linear regressions were used to determine demographic effects on test performance. Regression-based normative formulas were developed by first converting raw scores to normalized scaled scores and then regressing on age, age2, sex, and education. Total and sex-stratified base rates of low scores (T < 40) were examined in an older adult validation sample and compared with Mayo's Older Americans Normative Studies (MOANS) norms. RESULTS: Independent linear regressions revealed variable patterns of linear and/or quadratic effects of age (r2 = 6-27% variance explained), sex (0-13%), and education (2-10%) across measures. MNS norms improved base rates of low performance in the older adult validation sample overall and in sex-specific patterns relative to MOANS. CONCLUSIONS: Our results demonstrate the need for updated norms that consider complex demographic associations on test performance and that specifically exclude participants with mild cognitive impairment from the normative sample.


Subject(s)
Aging , Male , Female , Humans , Aged , Trail Making Test , Neuropsychological Tests , Language Tests , Age Factors , Aging/psychology , Educational Status , Reference Values
10.
J Int Neuropsychol Soc ; : 1-9, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38525671

ABSTRACT

OBJECTIVE: To determine whether poorer performance on the Boston Naming Test (BNT) in individuals with transactive response DNA-binding protein 43 pathology (TDP-43+) is due to greater loss of word knowledge compared to retrieval-based deficits. METHODS: Retrospective clinical-pathologic study of 282 participants with Alzheimer's disease neuropathologic changes (ADNC) and known TDP-43 status. We evaluated item-level performance on the 60-item BNT for first and last available assessment. We fit cross-sectional negative binomial count models that assessed total number of incorrect items, number correct of responses with phonemic cue (reflecting retrieval difficulties), and number of "I don't know" (IDK) responses (suggestive of loss of word knowledge) at both assessments. Models included TDP-43 status and adjusted for sex, age, education, years from test to death, and ADNC severity. Models that evaluated the last assessment adjusted for number of prior BNT exposures. RESULTS: 43% were TDP-43+. The TDP-43+ group had worse performance on BNT total score at first (p = .01) and last assessments (p = .01). At first assessment, TDP-43+ individuals had an estimated 29% (CI: 7%-56%) higher mean number of incorrect items after adjusting for covariates, and a 51% (CI: 15%-98%) higher number of IDK responses compared to TDP-43-. At last assessment, compared to TDP-43-, the TDP-43+ group on average missed 31% (CI: 6%-62%; p = .01) more items and had 33% more IDK responses (CI: 1% fewer to 78% more; p = .06). CONCLUSIONS: An important component of poorer performance on the BNT in participants who are TDP-43+ is having loss of word knowledge versus retrieval difficulties.

11.
Brain ; 146(11): 4508-4519, 2023 11 02.
Article in English | MEDLINE | ID: mdl-37279785

ABSTRACT

Blood-based biomarkers offer strong potential to revolutionize diagnosis, trial enrolment and treatment monitoring in Alzheimer's disease (AD). However, further advances are needed before these biomarkers can achieve wider deployment beyond selective research studies and specialty memory clinics, including the development of frameworks for optimal interpretation of biomarker profiles. We hypothesized that integrating Alzheimer's disease genetic risk score (AD-GRS) data would enhance the diagnostic value of plasma AD biomarkers by better capturing extant disease heterogeneity. Analysing 962 individuals from a population-based sample, we observed that an AD-GRS was independently associated with amyloid PET levels (an early marker of AD pathophysiology) over and above APOE ε4 or plasma p-tau181, amyloid-ß42/40, glial fibrillary acidic protein or neurofilament light chain. Among individuals with a high or moderately high plasma p-tau181, integrating AD-GRS data significantly improved classification accuracy of amyloid PET positivity, including the finding that the combination of a high AD-GRS and high plasma p-tau181 outperformed p-tau181 alone in classifying amyloid PET positivity (88% versus 68%; P = 0.001). A machine learning approach incorporating plasma biomarkers, demographics and the AD-GRS was highly accurate in predicting amyloid PET levels (90% training set; 89% test set) and Shapley value analyses (an explainer method based in cooperative game theory) indicated that the AD-GRS and plasma biomarkers had differential importance in explaining amyloid deposition across individuals. Polygenic risk for AD dementia appears to account for a unique portion of disease heterogeneity, which could non-invasively enhance the interpretation of blood-based AD biomarker profiles in the population.


Subject(s)
Alzheimer Disease , Amyloidosis , Humans , Alzheimer Disease/diagnosis , Alzheimer Disease/genetics , Amyloid beta-Peptides/metabolism , tau Proteins/metabolism , Brain/diagnostic imaging , Brain/metabolism , Biomarkers , Amyloidogenic Proteins/metabolism , Risk Factors
12.
Brain ; 146(5): 2029-2044, 2023 05 02.
Article in English | MEDLINE | ID: mdl-36789483

ABSTRACT

Staging the severity of Alzheimer's disease pathology using biomarkers is useful for therapeutic trials and clinical prognosis. Disease staging with amyloid and tau PET has face validity; however, this would be more practical with plasma biomarkers. Our objectives were, first, to examine approaches for staging amyloid and tau PET and, second, to examine prediction of amyloid and tau PET stages using plasma biomarkers. Participants (n = 1136) were enrolled in either the Mayo Clinic Study of Aging or the Alzheimer's Disease Research Center; had a concurrent amyloid PET, tau PET and blood draw; and met clinical criteria for cognitively unimpaired (n = 864), mild cognitive impairment (n = 148) or Alzheimer's clinical syndrome with dementia (n = 124). The latter two groups were combined into a cognitively impaired group (n = 272). We used multinomial regression models to estimate discrimination [concordance (C) statistics] among three amyloid PET stages (low, intermediate, high), four tau PET stages (Braak 0, 1-2, 3-4, 5-6) and a combined amyloid and tau PET stage (none/low versus intermediate/high severity) using plasma biomarkers as predictors separately within unimpaired and impaired individuals. Plasma analytes, p-tau181, Aß1-42 and Aß1-40 (analysed as the Aß42/Aß40 ratio), glial fibrillary acidic protein and neurofilament light chain were measured on the HD-X Simoa Quanterix platform. Plasma p-tau217 was also measured in a subset (n = 355) of cognitively unimpaired participants using the Lilly Meso Scale Discovery assay. Models with all Quanterix plasma analytes along with risk factors (age, sex and APOE) most often provided the best discrimination among amyloid PET stages (C = 0.78-0.82). Models with p-tau181 provided similar discrimination of tau PET stages to models with all four plasma analytes (C = 0.72-0.85 versus C = 0.73-0.86). Discriminating a PET proxy of intermediate/high from none/low Alzheimer's disease neuropathological change with all four Quanterix plasma analytes was excellent but not better than p-tau181 only (C = 0.88 versus 0.87 for unimpaired and C = 0.91 versus 0.90 for impaired). Lilly p-tau217 outperformed the Quanterix p-tau181 assay for discriminating high versus intermediate amyloid (C = 0.85 versus 0.74) but did not improve over a model with all Quanterix plasma analytes and risk factors (C = 0.85 versus 0.83). Plasma analytes along with risk factors can discriminate between amyloid and tau PET stages and between a PET surrogate for intermediate/high versus none/low neuropathological change with accuracy in the acceptable to excellent range. Combinations of plasma analytes are better than single analytes for many staging predictions with the exception that Quanterix p-tau181 alone usually performed equivalently to combinations of Quanterix analytes for tau PET discrimination.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Amyloidogenic Proteins , Biomarkers , Aging , tau Proteins , Amyloid beta-Peptides
13.
Neurocase ; 30(1): 1-7, 2024 02.
Article in English | MEDLINE | ID: mdl-38758704

ABSTRACT

A research participant was monitored over nearly two decades at Mayo Clinic, undergoing annual neurologic assessments, neuropsychological tests, and multimodal imaging. Initially, he was cognitively normal but developed symptoms consistent with Posterior Cortical Atrophy (PCA) during the study. Early tests indicated mild, yet normal-range declines in language and visuospatial skills. FDG-PET scans revealed increased metabolism in posterior brain regions long before symptoms appeared. Advanced analysis using a novel in-house machine-learning tool predicted concurrent Alzheimer's disease and dementia with Lewy bodies. Autopsy confirmed a mixed neurodegenerative condition with significant Alzheimer's pathology and dense neocortical Lewy bodies. This case underscores the value of longitudinal imaging in predicting complex neurodegenerative diseases, offering vital insights into the early neurocognitive changes associated with PCA and dementia with Lewy bodies.


Subject(s)
Atrophy , Lewy Body Disease , Positron-Emission Tomography , Humans , Lewy Body Disease/pathology , Lewy Body Disease/metabolism , Lewy Body Disease/diagnostic imaging , Male , Atrophy/pathology , Cerebral Cortex/pathology , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/metabolism , Aged , Alzheimer Disease/pathology , Alzheimer Disease/metabolism , Alzheimer Disease/diagnostic imaging , Prodromal Symptoms , Neuropsychological Tests
14.
Cereb Cortex ; 33(11): 7026-7043, 2023 05 24.
Article in English | MEDLINE | ID: mdl-36721911

ABSTRACT

Dysexecutive Alzheimer's disease (dAD) manifests as a progressive dysexecutive syndrome without prominent behavioral features, and previous studies suggest clinico-radiological heterogeneity within this syndrome. We uncovered this heterogeneity using unsupervised machine learning in 52 dAD patients with multimodal imaging and cognitive data. A spectral decomposition of covariance between FDG-PET images yielded six latent factors ("eigenbrains") accounting for 48% of variance in patterns of hypometabolism. These eigenbrains differentially related to age at onset, clinical severity, and cognitive performance. A hierarchical clustering on the eigenvalues of these eigenbrains yielded four dAD subtypes, i.e. "left-dominant," "right-dominant," "bi-parietal-dominant," and "heteromodal-diffuse." Patterns of FDG-PET hypometabolism overlapped with those of tau-PET distribution and MRI neurodegeneration for each subtype, whereas patterns of amyloid deposition were similar across subtypes. Subtypes differed in age at onset and clinical severity where the heteromodal-diffuse exhibited a worse clinical picture, and the bi-parietal had a milder clinical presentation. We propose a conceptual framework of executive components based on the clinico-radiological associations observed in dAD. We demonstrate that patients with dAD, despite sharing core clinical features, are diagnosed with variability in their clinical and neuroimaging profiles. Our findings support the use of data-driven approaches to delineate brain-behavior relationships relevant to clinical practice and disease physiology.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/diagnostic imaging , Fluorodeoxyglucose F18 , Brain/diagnostic imaging , Positron-Emission Tomography/methods , Neuroimaging , Magnetic Resonance Imaging
15.
Alzheimers Dement ; 20(7): 4559-4571, 2024 07.
Article in English | MEDLINE | ID: mdl-38877664

ABSTRACT

INTRODUCTION: The contribution of neuropsychological assessments to risk assessment for incident dementia is underappreciated. METHODS: We analyzed neuropsychological testing results in dementia-free participants in the Atherosclerosis Risk in Communities (ARIC) study. We examined associations of index domain-specific neuropsychological test performance with incident dementia using cumulative incidence curves and Cox proportional hazards models. RESULTS: Among 5296 initially dementia-free participants (mean [standard deviation] age of 75.8 [5.1] years; 60.1% women, 22.2% Black) over a median follow-up of 7.9 years, the covariate-adjusted hazard ratio varied substantially depending on the pattern of domain-specific performance and age, in an orderly manner from single domain language abnormalities (lowest risk) to single domain executive or memory abnormalities, to multidomain abnormalities including memory (highest risk). DISCUSSION: By identifying normatively defined cognitive abnormalities by domains based on neuropsychological test performance, there is a conceptually orderly and age-sensitive spectrum of risk for incident dementia that provides valuable information about the likelihood of progression. HIGHLIGHTS: Domain-specific cognitive profiles carry enhanced prognostic value compared to mild cognitive impairment. Single-domain non-amnestic cognitive abnormalities have the most favorable prognosis. Multidomain amnestic abnormalities have the greatest risk for incident dementia. Patterns of domain-specific risks are similar by sex and race.


Subject(s)
Dementia , Neuropsychological Tests , Humans , Female , Male , Dementia/epidemiology , Dementia/diagnosis , Aged , Neuropsychological Tests/statistics & numerical data , Risk Assessment , Cognitive Dysfunction/epidemiology , Cognitive Dysfunction/diagnosis , Incidence , Risk Factors , Aged, 80 and over , Cognition Disorders/epidemiology , Cognition Disorders/diagnosis , Proportional Hazards Models
16.
Alzheimers Dement ; 20(2): 1225-1238, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37963289

ABSTRACT

INTRODUCTION: The timing of plasma biomarker changes is not well understood. The goal of this study was to evaluate the temporal co-evolution of plasma and positron emission tomography (PET) Alzheimer's disease (AD) biomarkers. METHODS: We included 1408 Mayo Clinic Study of Aging and Alzheimer's Disease Research Center participants. An accelerated failure time (AFT) model was fit with amyloid beta (Aß) PET, tau PET, plasma p-tau217, p-tau181, and glial fibrillary acidic protein (GFAP) as endpoints. RESULTS: Individual timing of plasma p-tau progression was strongly associated with Aß PET and GFAP progression. In the population, GFAP became abnormal first, then Aß PET, plasma p-tau, and tau PET temporal meta-regions of interest when applying cut points based on young, cognitively unimpaired participants. DISCUSSION: Plasma p-tau is a stronger indicator of a temporally linked response to elevated brain Aß than of tau pathology. While Aß deposition and a rise in GFAP are upstream events associated with tau phosphorylation, the temporal link between p-tau and Aß PET was the strongest. HIGHLIGHTS: Plasma p-tau progression was more strongly associated with Aß than tau PET. Progression on plasma p-tau was associated with Aß PET and GFAP progression. P-tau181 and p-tau217 become abnormal after Aß PET and before tau PET. GFAP became abnormal first, before plasma p-tau and Aß PET.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Amyloid beta-Peptides , Alzheimer Disease/diagnostic imaging , Positron-Emission Tomography , Aging , Brain/diagnostic imaging , tau Proteins , Biomarkers
17.
Alzheimers Dement ; 20(2): 1201-1213, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37932910

ABSTRACT

INTRODUCTION: Cost-effective screening tools for vascular contributions to cognitive impairment and dementia (VCID) has significant implications. We evaluated non-imaging indicators of VCID using magnetic resonance imaging (MRI)-measured white matter (WM) damage and hypothesized that these indicators differ based on age. METHODS: In 745 participants from the Mayo Clinic Study of Aging (≥50 years of age) with serial WM assessments from diffusion MRI and fluid-attenuated inversion recovery (FLAIR)-MRI, we examined associations between baseline non-imaging indicators (demographics, vascular risk factors [VRFs], gait, behavioral, plasma glial fibrillary acidic protein [GFAP], and plasma neurofilament light chain [NfL]) and WM damage across three age tertiles. RESULTS: VRFs and gait were associated with diffusion changes even in low age strata. All measures (VRFs, gait, behavioral, plasma GFAP, plasma NfL) were associated with white matter hyperintensities (WMHs) but mainly in intermediate and high age strata. DISCUSSION: Non-imaging indicators of VCID were related to WM damage and may aid in screening participants and assessing outcomes for VCID. HIGHLIGHTS: Non-imaging indicators of VCID can aid in prediction of MRI-measured WM damage but their importance differed by age. Vascular risk and gait measures were associated with early VCID changes measured using diffusion MRI. Plasma markers explained variability in WMH across age strata. Most non-imaging measures explained variability in WMH and vascular WM scores in intermediate and older age groups. The framework developed here can be used to evaluate new non-imaging VCID indicators proposed in the future.


Subject(s)
Cognitive Dysfunction , Dementia, Vascular , White Matter , Humans , Aged , Magnetic Resonance Imaging/methods , White Matter/diagnostic imaging , White Matter/pathology , Diffusion Magnetic Resonance Imaging/methods , Cognitive Dysfunction/pathology , Aging/pathology , Dementia, Vascular/pathology
18.
Alzheimers Dement ; 20(3): 1923-1932, 2024 03.
Article in English | MEDLINE | ID: mdl-38159060

ABSTRACT

INTRODUCTION: The implications of positive tau positron emission tomography (T) with negative beta amyloid positron emission tomography (A) are not well understood. We investigated cognitive performance in participants who were T+ but A-. METHODS: We evaluated 98 participants from the Mayo Clinic who were T+ and A-. Participants were matched 2:1 to A- and T- cognitively unimpaired (CU) controls. Cognitive test scores were compared between different groups. RESULTS: The A-T+ group demonstrated lower performance than the A-T- group on the Mini-Mental Status Exam (MMSE) (p < 0.001), Wechsler Memory Scale-Revised Logical Memory I (p < 0.001) and Logical Memory II (p < 0.001), Auditory Verbal Learning Test (AVLT) delayed recall (p = 0.004), category fluency (animals p = 0.005; vegetables p = 0.021), Trail Making Test A and B (p < 0.001), and others. There were no significant differences in demographic features or apolipoprotein E (APOE) e4 genotype between CU A-T+ and CI A-T+. DISCUSSION: A-T+ participants show an association with lower cognitive performance.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Brain/metabolism , tau Proteins/metabolism , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/psychology , Amyloid/metabolism , Amyloid beta-Peptides/metabolism , Positron-Emission Tomography , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/psychology
19.
Alzheimers Dement ; 20(3): 2143-2154, 2024 03.
Article in English | MEDLINE | ID: mdl-38265198

ABSTRACT

BACKGROUND: We compared the ability of several plasma biomarkers versus amyloid positron emission tomography (PET) to predict rates of memory decline among cognitively unimpaired individuals. METHODS: We studied 645 Mayo Clinic Study of Aging participants. Predictor variables were age, sex, education, apolipoprotein E (APOE) ε4 genotype, amyloid PET, and plasma amyloid beta (Aß)42/40, phosphorylated tau (p-tau)181, neurofilament light (NfL), glial fibrillary acidic protein (GFAP), and p-tau217. The outcome was a change in a memory composite measure. RESULTS: All plasma biomarkers, except NfL, were associated with mean memory decline in models with individual biomarkers. However, amyloid PET and plasma p-tau217, along with age, were key variables independently associated with mean memory decline in models combining all predictors. Confidence intervals were narrow for estimates of population mean prediction, but person-level prediction intervals were wide. DISCUSSION: Plasma p-tau217 and amyloid PET provide useful information about predicting rates of future cognitive decline in cognitively unimpaired individuals at the population mean level, but not at the individual person level.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Amyloid beta-Peptides/metabolism , tau Proteins/metabolism , Positron-Emission Tomography , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/complications , Biomarkers , Memory Disorders/diagnostic imaging
20.
Alzheimers Dement ; 20(4): 2485-2496, 2024 04.
Article in English | MEDLINE | ID: mdl-38329197

ABSTRACT

INTRODUCTION: Patients with dementia with Lewy bodies (DLB) may have Alzheimers disease (AD) pathology that can be detected by plasma biomarkers. Our objective was to evaluate plasma biomarkers of AD and their association with positron emission tomography (PET) biomarkers of amyloid and tau deposition in the continuum of DLB, starting from prodromal stages of the disease. METHODS: The cohort included patients with isolated rapid eye movement (REM) sleep behavior disorder (iRBD), mild cognitive impairment with Lewy bodies (MCI-LB), or DLB, with a concurrent blood draw and PET scans. RESULTS: Abnormal levels of plasma glial fibrillary acidic protein (GFAP) were found at the prodromal stage of MCI-LB in association with increased amyloid PET. Abnormal levels of plasma phosphorylated tau (p-tau)-181 and neurofilament light (NfL) were found at the DLB stage. Plasma p-tau-181 showed the highest accuracy in detecting abnormal amyloid and tau PET in patients with DLB. DISCUSSION: The range of AD co-pathology can be detected with plasma biomarkers in the DLB continuum, particularly with plasma p-tau-181 and GFAP.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Lewy Body Disease , REM Sleep Behavior Disorder , Humans , Alzheimer Disease/diagnosis , Lewy Body Disease/diagnosis , Amyloid beta-Peptides , tau Proteins , Biomarkers/metabolism , Cognitive Dysfunction/diagnosis
SELECTION OF CITATIONS
SEARCH DETAIL