Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters

Publication year range
1.
Rev Sci Instrum ; 95(8)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39150549

ABSTRACT

Measurement of the internal magnetic field is crucial for determining the equilibrium, stability, and current density of a plasma in a tokamak. A motional Stark Effect (MSE) diagnostic was developed to provide a measurement of the internal magnetic field in tokamaks by analyzing the emission from the interaction of the plasma particle with an injected neutral beam. The Stark effect causes the shifting and splitting of deuterium spectral lines due to the Lorentz electric field. However, it is difficult to accurately measure the internal magnetic field components since the radial electric field inherently formed inside the plasma is mixed with the Lorentz field. Under the circumstances in the Korea Superconducting Tokamak Advanced Research (KSTAR) device, one possible approach is to derive a radial electric field by measuring and comparing the polarization angles from the full and half-energy components of the neutral beam. To utilize the polychromatic MSE diagnostics in KSTAR, the half-energy component wavelength bands according to various magnetic field and beam energy combinations have been calculated, and the filter combinations required for those measurements have been selected. The Stokes-filter model used to evaluate the effect of multiple-ion-source neutral beam injection on the MSE measurements has been extended to infer the sensitivity of this approach to take the non-ideal bandpass filter effects into account.

2.
Rev Sci Instrum ; 93(8): 083503, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-36050049

ABSTRACT

The motional Stark effect (MSE) diagnostic system at KSTAR (Korea Superconducting Tokamak Advanced Research) often suffers from the drawback of possible systematic uncertainties in measurements due to overlap of the MSE spectra generated from three different ion sources that constitute a single neutral beam injection system. In particular, one ion source injected in the most tangential direction always causes strong spectral overlaps which, therefore, imposes regulations and constraints on the energy combination among the ion sources. A Stokes-vector analysis has been performed to produce operation windows for the energy combination between the ion source used in the MSE measurement and the ion source with the largest tangential injection angle. The analysis includes various practical factors, such as the distortion of the transmission function of bandpass filters and pitch angle profiles collected from a vast amount of KSTAR discharges. The two-dimensional parameter space, or the contour plot, on the expected systematic offsets in the measured pitch angle has been generated from this analysis, which can serve as a quantitative guideline for operating the multiple-ion-source neutral beam heating system.

3.
Nat Commun ; 13(1): 6477, 2022 Oct 29.
Article in English | MEDLINE | ID: mdl-36309494

ABSTRACT

A tokamak, a torus-shaped nuclear fusion device, needs an electric current in the plasma to produce magnetic field in the poloidal direction for confining fusion plasmas. Plasma current is conventionally generated by electromagnetic induction. However, for a steady-state fusion reactor, minimizing the inductive current is essential to extend the tokamak operating duration. Several non-inductive current drive schemes have been developed for steady-state operations such as radio-frequency waves and neutral beams. However, commercial reactors require minimal use of these external sources to maximize the fusion gain, Q, the ratio of the fusion power to the external power. Apart from these external current drives, a self-generated current, so-called bootstrap current, was predicted theoretically and demonstrated experimentally. Here, we reveal another self-generated current that can exist in a tokamak and this has not yet been discussed by present theories. We report conclusive experimental evidence of this self-generated current observed in the KSTAR tokamak.

4.
Rev Sci Instrum ; 92(3): 033513, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33820105

ABSTRACT

A polychrometer-type motional Stark effect (MSE) diagnostic technique, originally developed for the Alcator C-Mod tokamak, has been extended and applied to the Korea Superconducting Advanced Tokamak Research (KSTAR) device, the long-pulse superconducting tokamak, for the first time. It demonstrates a successful in situ subtraction of the polarized reflections off the vacuum vessel wall, sometimes up to half the total signal in some sightlines. To avoid the secondary neutral beam emission that may contaminate conventional beam-into-gas calibrations, a new approach, where the beam-into-gas measurements are made at various torus pressures with fixed vacuum fields, has been devised, which is possible with the stable superconducting coil systems of KSTAR. The validity of this new calibration scheme has been checked via plasma jog experiments. The experimental evidence of the polarized background light and the necessity of its correction in the MSE measurements made in KSTAR are presented as well.

5.
Rev Sci Instrum ; 89(10): 10D104, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30399935

ABSTRACT

Many tokamak devices utilize high-power neutral beams for various beam-based active spectroscopic diagnostics such as the motional Stark effect (MSE). For higher heating performance, it is customary for the neutral beam injection to be made with a multiple number of ion sources, which often makes unfavorable conditions for the active spectroscopic diagnostics. This is mainly because the atomic and molecular emissions taking place from the interactions with multiple beams, or from different flux surfaces, are collected through the front optics at the same time, resulting in systematic errors in the measured quantities. In this work, the effect of the multiple ion source injections on the pitch angle measurements by the MSE diagnostic is quantitatively studied based on both numerical modeling and measurements made from the plasma discharges for the Korea Superconducting Tokamak Advanced Research. The sensitivity of the pitch angle against various combinations of the acceleration voltages of the ion sources is evaluated, yielding the optimum configuration of the beam injection that can maximize the heating efficiency with an acceptable level of the systematic offset in the MSE measurements.

6.
Rev Sci Instrum ; 89(6): 066102, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29960579

ABSTRACT

The visible TV system used in the Korea Superconducting Tokamak Advanced Research device has been equipped with a periscope to minimize the damage on its CCD pixels from neutron radiation. The periscope with more than 2.3 m in overall length has been designed for the visible camera system with its semi-diagonal field of view as wide as 30° and its effective focal length as short as 5.57 mm. The design performance of the periscope includes the modulation transfer function greater than 0.25 at 68 cycles/mm with low distortion. The installed periscope system has confirmed the image qualities as designed and also as comparable as those from its predecessor but with far less probabilities of neutral damages on the camera.

7.
Rev Sci Instrum ; 85(5): 053505, 2014 May.
Article in English | MEDLINE | ID: mdl-24880367

ABSTRACT

The capability to calibrate diagnostics, such as the Motional Stark Effect (MSE) diagnostic, without using plasma or beam-into-gas discharges will become increasingly important on next step fusion facilities due to machine availability and operational constraints. A robotic calibration system consisting of a motorized three-axis positioning system and a polarization light source capable of generating arbitrary polarization states with a linear polarization angle accuracy of <0.05° has been constructed and has been used to calibrate the MSE diagnostic deployed on Alcator C-Mod. The polarization response of the complex diagnostic is shown to be fully captured using a Fourier expansion of the detector signals in terms of even harmonics of the input polarization angle. The system's high precision robotic control of position and orientation allow it to be used also to calibrate the geometry of the instrument's view. Combined with careful measurements of the narrow bandpass spectral filters, this system fully calibrates the diagnostic without any plasma discharges. The system's high repeatability, flexibility, and speed has been exploited to quantify several systematics in the MSE diagnostic response, providing a more complete understanding of the diagnostic performance.

8.
Rev Sci Instrum ; 81(3): 033505, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20370176

ABSTRACT

The spurious drift in pitch angle of order several degrees measured by the motional Stark effect (MSE) diagnostic in the Alcator C-Mod tokamak over the course of an experimental run day has precluded direct utilization of independent absolute calibrations. Recently, the underlying cause of the drift has been identified as thermal stress-induced birefringence in a set of in-vessel lenses. The shot-to-shot drift can be avoided by using MSE to measure only the change in pitch angle between a reference phase and a phase of physical interest within a single plasma discharge. This intrashot calibration technique has been applied to the lower hybrid current drive (LHCD) experiments and the measured current profiles qualitatively demonstrate several predictions of LHCD theory such as an inverse dependence of current drive efficiency on the parallel refractive index and the presence of off-axis current drive.

9.
Rev Sci Instrum ; 79(10): 10F520, 2008 Oct.
Article in English | MEDLINE | ID: mdl-19044665

ABSTRACT

The motional Stark effect (MSE) diagnostic on Alcator C-Mod uses an in-vessel optical system (five lenses and three mirrors) to relay polarized light to an external polarimeter because port access limitations on Alcator C-Mod preclude a direct view of the diagnostic beam. The system experiences unacceptable, spurious drifts of order several degrees in measured pitch angle over the course of a run day. Recent experiments illuminated the MSE diagnostic with polarized light of fixed orientation as heat was applied to various optical elements. A large change in measured angle was observed as two particular lenses were heated, indicating that thermal-stress-induced birefringence is a likely cause of the spurious variability. Several new optical designs have been evaluated to eliminate the affected in-vessel lenses and to replace the focusing they provide with curved mirrors; however, ray tracing calculations imply that this method is not feasible. A new approach is under consideration that utilizes in situ calibrations with in-vessel reference polarized light sources.

10.
Rev Sci Instrum ; 79(10): 10E927, 2008 Oct.
Article in English | MEDLINE | ID: mdl-19044582

ABSTRACT

The paper describes a new scheme for wide-angle point-to-point x-ray imaging with almost arbitrarily large angles of incidence by a matched pair of spherically bent crystals to eliminate the astigmatism, which is a well-known imaging error of spherical mirrors. In addition to x rays, the scheme should be applicable to a very broad spectrum of the electromagnetic radiation, including microwaves, infrared and visible light, as well as UV and extreme UV radiation, if the crystals are replaced with appropriate spherical reflectors. The scheme may also be applicable to the imaging with ultrasound.

SELECTION OF CITATIONS
SEARCH DETAIL