Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 94
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 184(11): 3006-3021.e17, 2021 05 27.
Article in English | MEDLINE | ID: mdl-33930287

ABSTRACT

Genetic studies have revealed many variant loci that are associated with immune-mediated diseases. To elucidate the disease pathogenesis, it is essential to understand the function of these variants, especially under disease-associated conditions. Here, we performed a large-scale immune cell gene-expression analysis, together with whole-genome sequence analysis. Our dataset consists of 28 distinct immune cell subsets from 337 patients diagnosed with 10 categories of immune-mediated diseases and 79 healthy volunteers. Our dataset captured distinctive gene-expression profiles across immune cell types and diseases. Expression quantitative trait loci (eQTL) analysis revealed dynamic variations of eQTL effects in the context of immunological conditions, as well as cell types. These cell-type-specific and context-dependent eQTLs showed significant enrichment in immune disease-associated genetic variants, and they implicated the disease-relevant cell types, genes, and environment. This atlas deepens our understanding of the immunogenetic functions of disease-associated variants under in vivo disease conditions.


Subject(s)
Gene Expression Regulation/genetics , Gene Expression/immunology , Immune System Diseases/genetics , Adult , Female , Gene Expression/genetics , Gene Expression Regulation/immunology , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study/methods , Humans , Immune System/cytology , Immune System/metabolism , Immune System Diseases/metabolism , Immune System Diseases/physiopathology , Male , Middle Aged , Polymorphism, Single Nucleotide/genetics , Quantitative Trait Loci/genetics , Quantitative Trait Loci/immunology , Transcriptome/genetics , Whole Genome Sequencing/methods
2.
Immunity ; 56(8): 1939-1954.e12, 2023 08 08.
Article in English | MEDLINE | ID: mdl-37442134

ABSTRACT

Lung infection during severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) via the angiotensin-I-converting enzyme 2 (ACE2) receptor induces a cytokine storm. However, the precise mechanisms involved in severe COVID-19 pneumonia are unknown. Here, we showed that interleukin-10 (IL-10) induced the expression of ACE2 in normal alveolar macrophages, causing them to become vectors for SARS-CoV-2. The inhibition of this system in hamster models attenuated SARS-CoV-2 pathogenicity. Genome-wide association and quantitative trait locus analyses identified a IFNAR2-IL10RB readthrough transcript, COVID-19 infectivity-enhancing dual receptor (CiDRE), which was highly expressed in patients harboring COVID-19 risk variants at the IFNAR2 locus. We showed that CiDRE exerted synergistic effects via the IL-10-ACE2 axis in alveolar macrophages and functioned as a decoy receptor for type I interferons. Collectively, our data show that high IL-10 and CiDRE expression are potential risk factors for severe COVID-19. Thus, IL-10R and CiDRE inhibitors might be useful COVID-19 therapies.


Subject(s)
COVID-19 , Humans , COVID-19/genetics , SARS-CoV-2 , Angiotensin-Converting Enzyme 2/genetics , Interleukin-10/genetics , Macrophages, Alveolar/metabolism , Genome-Wide Association Study , Peptidyl-Dipeptidase A/metabolism
3.
Int Immunol ; 2024 May 13.
Article in English | MEDLINE | ID: mdl-38738271

ABSTRACT

B cell initial activity is regulated through a balance of activation and suppression mediated by regulatory molecules expressed in B cells; however, the molecular mechanisms underlying this process remain incompletely understood. In this study, we investigated the function of the Fc receptor-like (Fcrl) family molecule Fcrl5, which is constitutively expressed on naïve B cells, in humoral immune responses. Our study demonstrated that B cell-specific overexpression of Fcrl5 enhanced antibody (Ab) production in both T cell-independent type 1 (TI1) and T cell-dependent (TD) responses. Additionally, it promoted effector B cell formation under competitive conditions in TD responses. Mechanistically, in vitro ligation of Fcrl5 by agonistic Abs reduced cell death and enhanced proliferation in lipopolysaccharide (LPS)-stimulated B cells. In the presence of anti-CD40 Abs and IL-5, the Fcrl5 ligation not only suppressed cell death but also enhanced differentiation into plasma cells. These findings reveal a novel role of Fcrl5 in promoting humoral immune responses by enhancing B cell viability and plasma cell differentiation.

4.
Rheumatology (Oxford) ; 62(2): 905-913, 2023 02 01.
Article in English | MEDLINE | ID: mdl-35689621

ABSTRACT

OBJECTIVES: To investigate metabolite alterations in the plasma of SLE patients to identify novel biomarkers and provide insight into SLE pathogenesis. METHODS: Patients with SLE (n = 41, discovery cohort and n = 37, replication cohort), healthy controls (n = 30 and n = 29) and patients with RA (n = 19, disease control) were recruited. Metabolic profiles of the plasma samples were analysed using liquid chromatography-time-of-flight mass spectrometry and capillary electrophoresis-time-of-flight mass spectrometry. Transcriptome data was analysed using RNA-sequencing for 18 immune cell subsets. The importance of histidine (His) in plasmablast differentiation was investigated by using mouse splenic B cells. RESULTS: We demonstrate that a specific amino acid combination including His can effectively distinguish between SLE patients and healthy controls. Random forest and partial least squares-discriminant analysis identified His as an effective classifier for SLE patients. A decrease in His plasma levels correlated with damage accrual independent of prednisolone dosage and type I IFN signature. The oxidative phosphorylation signature in plasmablasts negatively correlated with His levels. We also showed that plasmablast differentiation induced by innate immune signals was dependent on His. CONCLUSIONS: Plasma His levels are a potential biomarker for SLE patients and are associated with damage accrual. Our data suggest the importance of His as a pathogenic metabolite in SLE pathogenesis.


Subject(s)
Histidine , Lupus Erythematosus, Systemic , Animals , Mice , Transcriptome , Metabolomics/methods , Biomarkers , Lupus Erythematosus, Systemic/genetics
5.
Ann Rheum Dis ; 81(6): 845-853, 2022 06.
Article in English | MEDLINE | ID: mdl-35236659

ABSTRACT

OBJECTIVE: Systemic lupus erythematosus (SLE) is the prototypical systemic autoimmune disease. While the long-term prognosis has greatly improved, better long-term survival is still necessary. The type I interferon (IFN) signature, a prominent feature of SLE, is not an ideal therapeutic target or outcome predictor. To explore immunological pathways in SLE more precisely, we performed transcriptomic, epigenomic and genomic analyses using 19 immune cell subsets from peripheral blood. METHODS: We sorted 19 immune cell subsets and identified the mRNA expression profiles and genetic polymorphisms in 107 patients with SLE and 92 healthy controls. Combined differentially expressed genes and expression quantitative trait loci analysis was conducted to find key driver genes in SLE pathogenesis. RESULTS: We found transcriptomic, epigenetic and genetic importance of oxidative phosphorylation (OXPHOS)/mitochondrial dysfunction in SLE memory B cells. Particularly, we identified an OXPHOS-regulating gene, PRDX6 (peroxiredoxin 6), as a key driver in SLE B cells. Prdx6-deficient B cells showed upregulated mitochondrial respiration as well as antibody production. We revealed OXPHOS signature was associated with type I IFN signalling-related genes (ISRGs) signature in SLE memory B cells. Furthermore, the gene sets related to innate immune signalling among ISRGs presented correlation with OXPHOS and these two signatures showed associations with SLE organ damage as well as specific clinical phenotypes. CONCLUSION: This work elucidated the potential prognostic marker for SLE. Since OXPHOS consists of the electron transport chain, a functional unit in mitochondria, these findings suggest the importance of mitochondrial dysfunction as a key immunological pathway involved in SLE.


Subject(s)
Interferon Type I , Lupus Erythematosus, Systemic , B-Lymphocytes/metabolism , Humans , Interferon Type I/genetics , Interferon Type I/metabolism , Oxidative Phosphorylation , Transcriptome
6.
J Hum Genet ; 67(12): 739-742, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35945270

ABSTRACT

In genetic testing of Mendelian diseases, it is a bioinformatics challenge to effectively prioritize disease-causing candidate genes listed from massively parallel sequencing. Tissue specificity of the gene expression levels may give a clue because it may reflect tissue-specific disease manifestation. However, considering poor correlations between mRNA and protein expression in some genes, it is not clear whether transcriptomics- or proteomics-based tissue specificity should be used to prioritize candidate genes. Therefore, we compared the efficiency of tissue-specific scores (TS scores) obtained from transcriptome and proteome data in prioritizing candidate genes for whole exome sequencing (WES) analysis of Mendelian disease patients. We show that both Protein and RNA TS scores are useful in prioritizing candidate genes in WES analysis, although diseases like coagulopathies get more benefit from Protein TS score. This study may provide useful evidence in developing new methods to effectively identify novel disease-causing genes.


Subject(s)
Exome , Genetic Testing , Humans , Computational Biology/methods , High-Throughput Nucleotide Sequencing , Gene Expression
7.
PLoS Genet ; 15(4): e1008092, 2019 04.
Article in English | MEDLINE | ID: mdl-31022184

ABSTRACT

Human leukocyte antigen (HLA) is a key genetic factor conferring risk of systemic lupus erythematosus (SLE), but precise independent localization of HLA effects is extremely challenging. As a result, the contribution of specific HLA alleles and amino-acid residues to the overall risk of SLE and to risk of specific autoantibodies are far from completely understood. Here, we dissected (a) overall SLE association signals across HLA, (b) HLA-peptide interaction, and (c) residue-autoantibody association. Classical alleles, SNPs, and amino-acid residues of eight HLA genes were imputed across 4,915 SLE cases and 13,513 controls from Eastern Asia. We performed association followed by conditional analysis across HLA, assessing both overall SLE risk and risk of autoantibody production. DR15 alleles HLA-DRB1*15:01 (P = 1.4x10-27, odds ratio (OR) = 1.57) and HLA-DQB1*06:02 (P = 7.4x10-23, OR = 1.55) formed the most significant haplotype (OR = 2.33). Conditioned protein-residue signals were stronger than allele signals and mapped predominantly to HLA-DRB1 residue 13 (P = 2.2x10-75) and its proxy position 11 (P = 1.1x10-67), followed by HLA-DRB1-37 (P = 4.5x10-24). After conditioning on HLA-DRB1, novel associations at HLA-A-70 (P = 1.4x10-8), HLA-DPB1-35 (P = 9.0x10-16), HLA-DQB1-37 (P = 2.7x10-14), and HLA-B-9 (P = 6.5x10-15) emerged. Together, these seven residues increased the proportion of explained heritability due to HLA to 2.6%. Risk residues for both overall disease and hallmark autoantibodies (i.e., nRNP: DRB1-11, P = 2.0x10-14; DRB1-13, P = 2.9x10-13; DRB1-30, P = 3.9x10-14) localized to the peptide-binding groove of HLA-DRB1. Enrichment for specific amino-acid characteristics in the peptide-binding groove correlated with overall SLE risk and with autoantibody presence. Risk residues were in primarily negatively charged side-chains, in contrast with rheumatoid arthritis. We identified novel SLE signals in HLA Class I loci (HLA-A, HLA-B), and localized primary Class II signals to five residues in HLA-DRB1, HLA-DPB1, and HLA-DQB1. These findings provide insights about the mechanisms by which the risk residues interact with each other to produce autoantibodies and are involved in SLE pathophysiology.


Subject(s)
Amino Acid Sequence , Autoantibodies/immunology , Disease Susceptibility , Histocompatibility Antigens Class II/chemistry , Histocompatibility Antigens Class II/immunology , Histocompatibility Antigens Class I/chemistry , Histocompatibility Antigens Class I/immunology , Lupus Erythematosus, Systemic/etiology , Alleles , Amino Acid Substitution , Asian People , Female , Genetic Predisposition to Disease , Genetic Variation , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class II/genetics , Humans , Male , Odds Ratio , Polymorphism, Single Nucleotide
8.
J Allergy Clin Immunol ; 148(5): 1293-1306, 2021 11.
Article in English | MEDLINE | ID: mdl-34116867

ABSTRACT

BACKGROUND: Atopic dermatitis (AD) is the most common allergic disease in the world. While genetic components play critical roles in its pathophysiology, a large proportion of its genetic background is still unexplored. OBJECTIVES: This study sought to illuminate the genetic associations with AD using genome-wide association study (GWAS) and its downstream analyses. METHODS: This study conducted a GWAS for AD comprising 2,639 cases and 115,648 controls in the Japanese population, followed by a trans-ethnic meta-analysis with UK Biobank data and downstream analyses including partitioning heritability analysis by linkage disequilibrium score regression. RESULTS: This study identified 17 significant susceptibility loci, among which 4 loci-AFF1, ITGB8, EHMT1, and EGR2-were novel in the Japanese GWAS. The trans-ethnic meta-analysis revealed 4 additional novel loci, namely-ZBTB38,LOC105755953/LOC101928272, TRAF3, andIQGAP1. This study found a missense variant (R243W) with a deleterious functional effect in NLRP10 and a variant altering expression of CCDC80 via enhancer expression as highly likely causal variants. These 2 regions were Asian-specific, and these population-specific associations could be explained by the frequency of causal variants. The gene-based test showed SMAD4 as an additional novel significant locus. Downstream analyses revealed substantial overlap of GWAS significant signals in enhancers of skin cells and immune cells, especially CD4 T cells. A highly shared polygenic architecture of AD between Europeans and Asians was also found. CONCLUSIONS: This study identified Japanese-specific loci and novel significant loci shared by different populations. Two putative causal variants were illuminated in Japanese-specific loci. Trans-ethnic analyses revealed strong heritability enrichment in immune-related pathways, and relevant cell types shared among populations.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Apoptosis Regulatory Proteins/genetics , Dermatitis, Atopic/genetics , Genetic Loci/genetics , Case-Control Studies , DNA-Binding Proteins/genetics , Female , Genetic Association Studies , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Immunity/genetics , Japan/epidemiology , Linkage Disequilibrium , Male , Polymorphism, Genetic , Transcriptional Elongation Factors/genetics
9.
Ann Rheum Dis ; 80(4): 440-450, 2021 04.
Article in English | MEDLINE | ID: mdl-33139312

ABSTRACT

OBJECTIVES: Synovial fibroblasts (SFs) are one of the major components of the inflamed synovium in rheumatoid arthritis (RA). We aimed to gain insight into the pathogenic mechanisms of SFs through elucidating the genetic contribution to molecular regulatory networks under inflammatory condition. METHODS: SFs from RA and osteoarthritis (OA) patients (n=30 each) were stimulated with eight different cytokines (interferon (IFN)-α, IFN-γ, tumour necrosis factor-α, interleukin (IL)-1ß, IL-6/sIL-6R, IL-17, transforming growth factor-ß1, IL-18) or a combination of all 8 (8-mix). Peripheral blood mononuclear cells were fractioned into five immune cell subsets (CD4+ T cells, CD8+ T cells, B cells, natural killer (NK) cells, monocytes). Integrative analyses including mRNA expression, histone modifications (H3K27ac, H3K4me1, H3K4me3), three-dimensional (3D) genome architecture and genetic variations of single nucleotide polymorphisms (SNPs) were performed. RESULTS: Unstimulated RASFs differed markedly from OASFs in the transcriptome and epigenome. Meanwhile, most of the responses to stimulations were shared between the diseases. Activated SFs expressed pathogenic genes, including CD40 whose induction by IFN-γ was significantly affected by an RA risk SNP (rs6074022). On chromatin remodelling in activated SFs, RA risk loci were enriched in clusters of enhancers (super-enhancers; SEs) induced by synergistic proinflammatory cytokines. An RA risk SNP (rs28411362), located in an SE under synergistically acting cytokines, formed 3D contact with the promoter of metal-regulatory transcription factor-1 (MTF1) gene, whose binding motif showed significant enrichment in stimulation specific-SEs. Consistently, inhibition of MTF1 suppressed cytokine and chemokine production from SFs and ameliorated mice model of arthritis. CONCLUSIONS: Our findings established the dynamic landscape of activated SFs and yielded potential therapeutic targets associated with genetic risk of RA.


Subject(s)
Arthritis, Rheumatoid , Leukocytes, Mononuclear , Animals , CD8-Positive T-Lymphocytes/metabolism , Cells, Cultured , Cytokines/metabolism , Fibroblasts/metabolism , Humans , Leukocytes, Mononuclear/metabolism , Mice , Synovial Membrane/metabolism
10.
J Hum Genet ; 66(2): 219-223, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32901113

ABSTRACT

Type 2 diabetes mellitus (T2DM) and rheumatoid arthritis (RA) are both chronic diseases. Although the link between metabolic abnormalities and dysregulated inflammation has received much attention, it is not known whether T2DM can be a risk for the development of RA. Also, observational studies have the disadvantage that the possibility of confounding factors, such as environmental factors, cannot be ruled out. Therefore, the current study performed the mendelian randomization (MR) analysis using recent large-scale genome-wide association studies datasets of T2DM and RA separately European and Asian ancestries. As a result, T2DM had an inverse causal effect on the risk of RA. This study proposed a novel hypothesis that a protective effect of T2DM for the risk of RA.


Subject(s)
Arthritis, Rheumatoid/prevention & control , Asian People/genetics , Diabetes Mellitus, Type 2/physiopathology , Genome-Wide Association Study , Mendelian Randomization Analysis , Polymorphism, Single Nucleotide , White People/genetics , Arthritis, Rheumatoid/epidemiology , Arthritis, Rheumatoid/genetics , Diabetes Mellitus, Type 2/genetics , Female , Humans , Male , Risk Factors
11.
Proc Natl Acad Sci U S A ; 115(51): 13045-13050, 2018 12 18.
Article in English | MEDLINE | ID: mdl-30498034

ABSTRACT

Takayasu arteritis (TAK) is a systemic vasculitis with severe complications that affects the aorta and its large branches. HLA-B*52 is an established susceptibility locus to TAK. To date, there are still only a limited number of reports concerning non-HLA susceptibility loci to TAK. We conducted a genome-wide association study (GWAS) and a follow-up study in a total of 633 TAK cases and 5,928 controls. A total of 510,879 SNPs were genotyped, and 5,875,450 SNPs were imputed together with HLA-B*52. Functional annotation of significant loci, enhancer enrichment, and pathway analyses were conducted. We identified four unreported significant loci, namely rs2322599, rs103294, rs17133698, and rs1713450, in PTK2B, LILRA3/LILRB2, DUSP22, and KLHL33, respectively. Two additional significant loci unreported in non-European GWAS were identified, namely HSPA6/FCGR3A and chr21q.22. We found that a single variant associated with the expression of MICB, a ligand for natural killer (NK) cell receptor, could explain the entire association with the HLA-B region. Rs2322599 is strongly associated with the expression of PTK2B Rs103294 risk allele in LILRA3/LILRB2 is known to be a tagging SNP for the deletion of LILRA3, a soluble receptor of HLA class I molecules. We found a significant epistasis effect between HLA-B*52 and rs103294 (P = 1.2 × 10-3). Enhancer enrichment analysis and pathway analysis suggested the involvement of NK cells (P = 8.8 × 10-5, enhancer enrichment). In conclusion, four unreported TAK susceptibility loci and an epistasis effect between LILRA3 and HLA-B*52 were identified. HLA and non-HLA regions suggested a critical role for NK cells in TAK.


Subject(s)
Epistasis, Genetic , HLA-B52 Antigen/genetics , Polymorphism, Single Nucleotide , Receptors, Immunologic/genetics , Takayasu Arteritis/genetics , Case-Control Studies , Cells, Cultured , Genetic Predisposition to Disease , Genome-Wide Association Study , Genotype , Humans , Killer Cells, Natural/metabolism , Killer Cells, Natural/pathology , Takayasu Arteritis/pathology
12.
Int J Mol Sci ; 22(9)2021 Apr 26.
Article in English | MEDLINE | ID: mdl-33925887

ABSTRACT

(1) Background: The ERVPb1 gene in humans is derived from an envelope (Env) gene of a human endogenous retrovirus group, HERV-P(b). The ERVPb1 gene reportedly has a conserved open reading frame (ORF) in Old World monkeys. Although its forced expression led to cell-fusion in an ex vivo cell culture system, like other Env-derived genes such as syncytin-1 and -2, its mRNA expression is not placenta-specific, but almost ubiquitous, albeit being quite low in human tissues and organs, implying a distinct role for ERVPb1. (2) Methods: To elucidate the cell lineage(s) in which the ERVPb1 protein is translated in human development, we developed a novel, highly sensitive system for detecting HERV-derived proteins/peptides expressed in the tissue differentiation process of human induced pluripotent stem cells (iPSCs). (3) Results: We first determined that ERVPb1 is also conserved in New World monkeys. Then, we showed that the ERVPb1 protein is translated from a uniquely spliced ERVPb1 transcript in hematopoietic cell lineages, including a subset of macrophages, and further showed that its mRNA expression is upregulated by lipopolysaccharide (LPS) stimulation in primary human monocytes. (4) Conclusions: ERVPb1 is unique to Simiiformes and actually translated in hematopoietic cell lineages, including a subset of macrophages.


Subject(s)
Endogenous Retroviruses , Haplorhini/virology , Macrophages/virology , Animals , CRISPR-Cas Systems , Cell Differentiation , Cell Line , Endogenous Retroviruses/genetics , Endogenous Retroviruses/isolation & purification , Endogenous Retroviruses/metabolism , Fluorescent Dyes , Gene Editing/methods , Genes, Viral , Humans , Induced Pluripotent Stem Cells/metabolism , Macrophages/metabolism , Viral Fusion Proteins/genetics , Viral Fusion Proteins/metabolism , Viral Proteins/genetics , Viral Proteins/metabolism
13.
Nature ; 506(7488): 376-81, 2014 Feb 20.
Article in English | MEDLINE | ID: mdl-24390342

ABSTRACT

A major challenge in human genetics is to devise a systematic strategy to integrate disease-associated variants with diverse genomic and biological data sets to provide insight into disease pathogenesis and guide drug discovery for complex traits such as rheumatoid arthritis (RA). Here we performed a genome-wide association study meta-analysis in a total of >100,000 subjects of European and Asian ancestries (29,880 RA cases and 73,758 controls), by evaluating ∼10 million single-nucleotide polymorphisms. We discovered 42 novel RA risk loci at a genome-wide level of significance, bringing the total to 101 (refs 2 - 4). We devised an in silico pipeline using established bioinformatics methods based on functional annotation, cis-acting expression quantitative trait loci and pathway analyses--as well as novel methods based on genetic overlap with human primary immunodeficiency, haematological cancer somatic mutations and knockout mouse phenotypes--to identify 98 biological candidate genes at these 101 risk loci. We demonstrate that these genes are the targets of approved therapies for RA, and further suggest that drugs approved for other indications may be repurposed for the treatment of RA. Together, this comprehensive genetic study sheds light on fundamental genes, pathways and cell types that contribute to RA pathogenesis, and provides empirical evidence that the genetics of RA can provide important information for drug discovery.


Subject(s)
Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/genetics , Drug Discovery , Genetic Predisposition to Disease/genetics , Molecular Targeted Therapy , Alleles , Animals , Arthritis, Rheumatoid/metabolism , Arthritis, Rheumatoid/pathology , Asian People/genetics , Case-Control Studies , Computational Biology , Drug Repositioning , Female , Genome-Wide Association Study , Hematologic Neoplasms/genetics , Hematologic Neoplasms/metabolism , Humans , Male , Mice , Mice, Knockout , Polymorphism, Single Nucleotide/genetics , White People/genetics
14.
Hum Mol Genet ; 26(6): 1205-1216, 2017 03 15.
Article in English | MEDLINE | ID: mdl-28108556

ABSTRACT

We recently identified ten novel SLE susceptibility loci in Asians and uncovered several additional suggestive loci requiring further validation. This study aimed to replicate five of these suggestive loci in a Han Chinese cohort from Hong Kong, followed by meta-analysis (11,656 cases and 23,968 controls) on previously reported Asian and European populations, and to perform bioinformatic analyses on all 82 reported SLE loci to identify shared regulatory signatures. We performed a battery of analyses for these five loci, as well as joint analyses on all 82 SLE loci. All five loci passed genome-wide significance: MYNN (rs10936599, Pmeta = 1.92 × 10-13, OR = 1.14), ATG16L2 (rs11235604, Pmeta = 8.87 × 10 -12, OR = 0.78), CCL22 (rs223881, Pmeta = 5.87 × 10-16, OR = 0.87), ANKS1A (rs2762340, Pmeta = 4.93 × 10-15, OR = 0.87) and RNASEH2C (rs1308020, Pmeta = 2.96 × 10-19, OR = 0.84) and co-located with annotated gene regulatory elements. The novel loci share genetic signatures with other reported SLE loci, including effects on gene expression, transcription factor binding, and epigenetic characteristics. Most (56%) of the correlated (r2 > 0.8) SNPs from the 82 SLE loci were implicated in differential expression (9.81 × 10-198 < P < 5 × 10-3) of cis-genes. Transcription factor binding sites for p53, MEF2A and E2F1 were significantly (P < 0.05) over-represented in SLE loci, consistent with apoptosis playing a critical role in SLE. Enrichment analysis revealed common pathways, gene ontology, protein domains, and cell type-specific expression. In summary, we provide evidence of five novel SLE susceptibility loci. Integrated bioinformatics using all 82 loci revealed that SLE susceptibility loci share many gene regulatory features, suggestive of conserved mechanisms of SLE etiopathogenesis.


Subject(s)
Genetic Predisposition to Disease , Genome-Wide Association Study , Lupus Erythematosus, Systemic/genetics , Adaptor Proteins, Signal Transducing/genetics , Asian People , Autophagy-Related Proteins/genetics , Chemokine CCL22/genetics , DNA-Binding Proteins , Gene Expression Regulation/genetics , Genotype , Humans , Kruppel-Like Transcription Factors/genetics , Lupus Erythematosus, Systemic/epidemiology , Lupus Erythematosus, Systemic/pathology , Polymorphism, Single Nucleotide/genetics , Ribonuclease H/genetics , Transcription Factors
15.
Am J Hum Genet ; 99(2): 366-74, 2016 Aug 04.
Article in English | MEDLINE | ID: mdl-27486778

ABSTRACT

Despite the progress in human leukocyte antigen (HLA) causal variant mapping, independent localization of major histocompatibility complex (MHC) risk from classical HLA genes is challenging. Here, we conducted a large-scale MHC fine-mapping analysis of rheumatoid arthritis (RA) in a Japanese population (6,244 RA cases and 23,731 controls) population by using HLA imputation, followed by a multi-ethnic validation study including east Asian and European populations (n = 7,097 and 23,149, respectively). Our study identified an independent risk of a synonymous mutation at HLA-DOA, a non-classical HLA gene, on anti-citrullinated protein autoantibody (ACPA)-positive RA risk (p = 1.4 × 10(-9)), which demonstrated a cis-expression quantitative trait loci (cis-eQTL) effect on HLA-DOA expression. Trans-ethnic comparison revealed different linkage disequilibrium (LD) patterns in HLA-DOA and HLA-DRB1, explaining the observed HLA-DOA variant risk heterogeneity among ethnicities, which was most evident in the Japanese population. Although previous HLA fine-mapping studies have identified amino acid polymorphisms of the classical HLA genes as driving genetic susceptibility to disease, our study additionally identifies the dosage contribution of a non-classical HLA gene to disease etiology. Our study contributes to the understanding of HLA immunology in human diseases and suggests the value of incorporating additional ancestry in MHC fine-mapping.


Subject(s)
Arthritis, Rheumatoid/genetics , Asian People/genetics , Genetic Predisposition to Disease , HLA-D Antigens/genetics , Autoantibodies , Citrulline , Ethnicity/genetics , Europe/ethnology , Genome-Wide Association Study , HLA-DRB1 Chains/genetics , Humans , Japan/ethnology , Linkage Disequilibrium/genetics , Phenotype , Polymorphism, Single Nucleotide/genetics , White People/genetics
16.
Ann Rheum Dis ; 78(8): 1062-1069, 2019 08.
Article in English | MEDLINE | ID: mdl-31118190

ABSTRACT

OBJECTIVE: Although genome-wide association studies (GWAS) have identified approximately 100 loci for rheumatoid arthritis (RA), the disease mechanisms are not completely understood. We evaluated the pathogenesis of RA by focusing on rare coding variants. METHODS: The coding regions of 98 candidate genes identified by GWAS were sequenced in 2294 patients with RA and 4461 controls in Japan. An association analysis was performed using cases and controls for variants, genes and domains of TYK2. Cytokine responses for two associated variants (R231W, rs201917359; and R703W, rs55882956) in TYK2 as well as a previously reported risk variant (P1004A, rs34536443) for multiple autoimmune diseases were evaluated by reporter assays. RESULTS: A variant in TYK2 (R703W) showed a suggestive association (p=5.47×10-8, OR=0.48). We observed more accumulation of rare coding variants in controls in TYK2 (p=3.94×10-12, OR=0.56). The four-point-one, ezrin, radixin, moesin (FERM; 2.14×10-3, OR=0.66) and pseudokinase domains (1.63×10-8, OR=0.52) of TYK2 also showed enrichment of variants in controls. R231W in FERM domain especially reduced interleukin (IL)-6 and interferon (IFN)-γ signalling, whereas P1104A in kinase domain reduced IL-12, IL-23 and IFN-α signalling. R703W in pseudokinase domain reduced cytokine signals similarly to P1104A, but the effects were weaker than those of P1104A. CONCLUSIONS: The FERM and pseudokinase domains in TYK2 were associated with the risk of RA in the Japanese population. Variants in TYK2 had different effects on cytokine signalling, suggesting that the regulation of selective cytokine signalling is a target for RA treatment.


Subject(s)
Arthritis, Rheumatoid/genetics , Cytokines/metabolism , Genetic Association Studies/methods , Genetic Predisposition to Disease/epidemiology , TYK2 Kinase/genetics , Adult , Aged , Arthritis, Rheumatoid/diagnosis , Arthritis, Rheumatoid/ethnology , Case-Control Studies , Ethnicity/genetics , Female , Genetic Variation/genetics , Genome-Wide Association Study , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide , Prognosis , Real-Time Polymerase Chain Reaction/methods , Reference Values , Signal Transduction
17.
Ann Rheum Dis ; 78(4): 446-453, 2019 04.
Article in English | MEDLINE | ID: mdl-30530827

ABSTRACT

Study of the genetics of rheumatoid arthritis (RA) began about four decades ago with the discovery of HLA-DRB1 Since the beginning of this century, a number of non-HLA risk loci have been identified through genome-wide association studies (GWAS). We now know that over 100 loci are associated with RA risk. Because genetic information implies a clear causal relationship to the disease, research into the pathogenesis of RA should be promoted. However, only 20% of GWAS loci contain coding variants, with the remaining variants occurring in non-coding regions, and therefore, the majority of causal genes and causal variants remain to be identified. The use of epigenetic studies, high-resolution mapping of open chromatin, chromosomal conformation technologies and other approaches could identify many of the missing links between genetic risk variants and causal genetic components, thus expanding our understanding of RA genetics.


Subject(s)
Arthritis, Rheumatoid/genetics , Genetic Predisposition to Disease , Genome-Wide Association Study , HLA-DRB1 Chains/genetics , Humans , Major Histocompatibility Complex/genetics , Quantitative Trait Loci
18.
Ann Rheum Dis ; 78(4): 509-518, 2019 04.
Article in English | MEDLINE | ID: mdl-30679154

ABSTRACT

OBJECTIVES: Systemic lupus erythematosus (SLE) is an autoimmune disease that is characterised by autoantibody production and widespread inflammation damaging many organs. Previous genome-wide association studies (GWASs) have revealed over 80 genetic determinants of SLE, but they collectively explain a fraction of the heritability, and only a few were proven in vivo for the involvement in SLE. We conducted a meta-analysis of SLE GWAS in the Japanese population, followed by functional analyses of a susceptibility gene with use of mutant mice. METHODS: We conducted a meta-analysis of two GWASs comprising a total of 1363 cases and 5536 controls using the 1000 Genome Project data as an imputation reference. Enrichment analyses for functional annotations were conducted. We examined Phospholipase D4 (Pld4) mutant mice to assess functional involvement of a genetic determinant. RESULTS: We found a total of 14 significant loci, which included rs2582511 in AHNAK2/PLD4 recently reported in a Chinese study and a novel locus of rs143181706 in MAMLD1 (p=7.9×10-11 and 3.7×10-8, respectively). PLD4 risk allele was associated with anti-dsDNA antibody production. Enrichment analysis of genetic signals revealed involvement of a wide range of immune-related cells and pathways. Pld4 mutant mice revealed remarkably low body weight. The mice demonstrated autoimmune phenotypes compatible with SLE, including splenomegaly and lymphadenopathy, expansion of B cells and hypersecretion of BAFF and production of autoantibodies especially anti-nuclear antibody and anti-dsDNA antibody. CONCLUSIONS: We found a novel susceptibility gene to SLE. Pld4 mutant mice revealed autoimmune phenotypes suggesting functional involvement of PLD4 with the basics of SLE.


Subject(s)
Autoimmune Diseases/genetics , Exonucleases/genetics , Lupus Erythematosus, Systemic/genetics , Animals , Antibodies, Antinuclear/biosynthesis , Autoantibodies/biosynthesis , Autoimmune Diseases/immunology , Case-Control Studies , Female , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Immunophenotyping , Lupus Erythematosus, Systemic/immunology , Male , Mice, Mutant Strains , Polymorphism, Single Nucleotide
20.
Clin Immunol ; 186: 9-13, 2018 01.
Article in English | MEDLINE | ID: mdl-28867252

ABSTRACT

Genome-wide association studies have identified hundreds of risk variants associated with human autoimmune diseases. Recent evidence suggests that a substantial portion of them affect gene expression in specific cell types. To obtain the functional insights of GWAS findings, comprehensive characterization of genetic variants in human genome is a key task. In parallel with GWAS, many researches in functional genomics have been conducted in the past decade, and our understandings of cell type-specific gene regulatory system have been substantially improved. In this review, we will introduce the main research topics in functional genomics, and explain their utility to understand biological mechanisms of autoimmune diseases.


Subject(s)
Autoimmunity/genetics , Autoimmune Diseases/genetics , Genome-Wide Association Study , Genomics , Humans
SELECTION OF CITATIONS
SEARCH DETAIL