Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
J Biol Chem ; 293(41): 15947-15961, 2018 10 12.
Article in English | MEDLINE | ID: mdl-30158244

ABSTRACT

Increased glucose consumption distinguishes cancer cells from normal cells and is known as the "Warburg effect" because of increased glycolysis. Lactate dehydrogenase A (LDHA) is a key glycolytic enzyme, a hallmark of aggressive cancers, and believed to be the major enzyme responsible for pyruvate-to-lactate conversion. To elucidate its role in tumor growth, we disrupted both the LDHA and LDHB genes in two cancer cell lines (human colon adenocarcinoma and murine melanoma cells). Surprisingly, neither LDHA nor LDHB knockout strongly reduced lactate secretion. In contrast, double knockout (LDHA/B-DKO) fully suppressed LDH activity and lactate secretion. Furthermore, under normoxia, LDHA/B-DKO cells survived the genetic block by shifting their metabolism to oxidative phosphorylation (OXPHOS), entailing a 2-fold reduction in proliferation rates in vitro and in vivo compared with their WT counterparts. Under hypoxia (1% oxygen), however, LDHA/B suppression completely abolished in vitro growth, consistent with the reliance on OXPHOS. Interestingly, activation of the respiratory capacity operated by the LDHA/B-DKO genetic block as well as the resilient growth were not consequences of long-term adaptation. They could be reproduced pharmacologically by treating WT cells with an LDHA/B-specific inhibitor (GNE-140). These findings demonstrate that the Warburg effect is not only based on high LDHA expression, as both LDHA and LDHB need to be deleted to suppress fermentative glycolysis. Finally, we demonstrate that the Warburg effect is dispensable even in aggressive tumors and that the metabolic shift to OXPHOS caused by LDHA/B genetic disruptions is responsible for the tumors' escape and growth.


Subject(s)
L-Lactate Dehydrogenase/genetics , Adenocarcinoma , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Gene Knockout Techniques , Glycolysis , Humans , Isoenzymes/antagonists & inhibitors , Isoenzymes/genetics , Isoenzymes/metabolism , L-Lactate Dehydrogenase/antagonists & inhibitors , L-Lactate Dehydrogenase/metabolism , Lactate Dehydrogenase 5 , Melanoma , Mice , Oxidative Phosphorylation , Pyridones/pharmacology , Thiophenes/pharmacology
2.
J Hepatol ; 64(1): 128-34, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26341825

ABSTRACT

BACKGROUND & AIMS: NKp46(+) cells are major effector cells in the pathogenesis of hepatic ischemia reperfusion injury (IRI). Nevertheless, the precise role of unconventional subsets like the IL-22-producing NKp46(+) cells (NK22) remains unknown. The purpose of this study was to examine the role of NK22 cells in IRI in transplantation, particularly with respect to regulation by the transcription factor ROR-gamma-t (RORγt). METHODS: To explore the role of NK22 cells in IRI in the absence of adaptive immunity, B6.RORγt-(gfp/wt)-reporter and B6.RORγt-(gfp/gfp)-knockout (KO) mice on a Rag KO background underwent 90min partial warm ischemia, followed by 24h of reperfusion. RESULTS: Rag KO mice that possess fully functional NKp46(+) cells, and Rag-common-γ-chain-double-KO (Rag-γc-DKO) mice that lack T, B and NKp46(+) cells, were used as controls. We found that Rag-γc-DKO mice lacking NK22 cells show more severe levels of hepatocellular damage (GPT, histological injury) when compared to both Rag-RORγt-reporter and Rag KO mice that possess NK22 cells. Importantly, Rag-RORγt-reporter and Rag KO mice undergoing IRI expressed high protein levels of both IL-22 and GFP (RORγt), suggesting a protective role for RORγt(+) NK22 cells in IRI. Therefore, we tested the hypothesis that RORγt critically protects from IRI through the induction of hepatic NK22 cells by studying Rag-Rorγt-DKO mice under IRI conditions. We found that the lack of RORγt(+) NK22 cells in Rag-Rorγt-DKO mice significantly enhanced IR-induced hepatocellular injury, a phenotype that could be reversed upon adoptive transfer of Rag-Rorγt-reporter NK22 cells into DKO mice. CONCLUSIONS: RORγt(+) NK22 cells play an important protective role in IRI in mice.


Subject(s)
Antigens, Ly/physiology , Interleukins/biosynthesis , Liver/blood supply , Natural Cytotoxicity Triggering Receptor 1/physiology , Nuclear Receptor Subfamily 1, Group F, Member 3/physiology , Reperfusion Injury/prevention & control , Animals , Antigens, Ly/analysis , Homeodomain Proteins/physiology , Interferon-gamma/biosynthesis , Killer Cells, Natural/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Natural Cytotoxicity Triggering Receptor 1/analysis , Nuclear Receptor Subfamily 1, Group F, Member 3/analysis , Reperfusion Injury/immunology , Interleukin-22
3.
J Immunol ; 192(4): 1954-61, 2014 Feb 15.
Article in English | MEDLINE | ID: mdl-24415778

ABSTRACT

We studied the developmental and functional mechanisms behind NK cell-mediated antitumor responses against metastatic colorectal carcinoma (CRC) in mice. In particular, we focused on investigating the significance of T-box transcription factors and the immunotherapeutic relevance of IL-15 in the development and function of tumor-reactive NK cells. Pulmonary CRC metastases were experimentally seeded via an adoptive i.v. transfer of luciferase-expressing CT26 CRC cells that form viewable masses via an in vivo imaging device; genetically deficient mice were used to dissect the antitumor effects of developmentally different NK cell subsets. IL-15 precomplexed to IL-15 receptor-α was used in immunotherapy experiments. We found that mice deficient for the T-box transcription factor T-bet lack terminally differentiated antitumor CD27(low)KLRG1(+) NK cells, leading to a terminal course of rapid-onset pulmonary CRC metastases. The importance of this NK cell subset for effective antitumor immunity was shown by adoptively transferring purified CD27(low)KLRG1(+) NK cells into T-bet-deficient mice and, thereby, restoring immunity against lung metastasis formation. Importantly, immunity to metastasis formation could also be restored in T-bet-deficient recipients by treating mice with IL-15 precomplexed to IL-15 receptor-α, which induced the development of eomesodermin(+)KLRG1(+) NK cells from existing NK cell populations. Thus, contingent upon their T-bet-dependent development and activation status, NK cells can control metastatic CRC in mice, which is highly relevant for the development of immunotherapeutic approaches in the clinic.


Subject(s)
Colorectal Neoplasms/pathology , Killer Cells, Natural/immunology , Lung Neoplasms/secondary , Receptors, Immunologic/metabolism , T-Box Domain Proteins/genetics , Adoptive Transfer , Animals , Cell Differentiation/immunology , Cells, Cultured , Colorectal Neoplasms/immunology , Colorectal Neoplasms/therapy , Homeodomain Proteins/genetics , Immunotherapy , Interferon-gamma/genetics , Interleukin-15/metabolism , Killer Cells, Natural/cytology , Lectins, C-Type , Lung Neoplasms/prevention & control , Lung Neoplasms/therapy , Mice , Mice, Inbred BALB C , Mice, Knockout , Perforin , Pore Forming Cytotoxic Proteins/genetics , Receptors, Interleukin-15/metabolism , Recombinant Fusion Proteins/therapeutic use , T-Box Domain Proteins/deficiency , T-Box Domain Proteins/metabolism , Tumor Necrosis Factor Receptor Superfamily, Member 7/metabolism
4.
J Immunol ; 193(5): 2600-8, 2014 Sep 01.
Article in English | MEDLINE | ID: mdl-25057005

ABSTRACT

Administering immunoregulatory cells to patients as medicinal agents is a potentially revolutionary approach to the treatment of immunologically mediated diseases. Presently, there are no satisfactory, clinically applicable methods of tracking human cells in patients with adequate spatial resolution and target cell specificity over a sufficient period of time. Laser ablation-inductively coupled plasma mass spectrometry (LA-ICP-MS) represents a potential solution to the problem of detecting very rare cells in tissues. In this article, this exquisitely sensitive technique is applied to the tracking of gold-labeled human regulatory macrophages (Mregs) in immunodeficient mice. Optimal conditions for labeling Mregs with 50-nm gold particles were investigated by exposing Mregs in culture to variable concentrations of label: Mregs incubated with 3.5 × 10(9) particles/ml for 1 h incorporated an average of 3.39 × 10(8) Au atoms/cell without loss of cell viability. Analysis of single, gold-labeled Mregs by LA-ICP-MS registered an average of 1.9 × 10(5) counts/cell. Under these conditions, 100% labeling efficiency was achieved, and label was retained by Mregs for ≥36 h. Gold-labeled Mregs adhered to glass surfaces; after 24 h of culture, it was possible to colabel these cells with human-specific (154)Sm-tagged anti-HLA-DR or (174)Yb-tagged anti-CD45 mAbs. Following injection into immunodeficient mice, signals from gold-labeled human Mregs could be detected in mouse lung, liver, and spleen for at least 7 d by solution-based inductively coupled plasma mass spectrometry and LA-ICP-MS. These promising results indicate that LA-ICP-MS tissue imaging has great potential as an analytical technique in immunology.


Subject(s)
Gold/pharmacology , Lasers , Leukocyte Common Antigens/immunology , Lung , Mass Spectrometry/instrumentation , Monocytes , Animals , Antibodies, Monoclonal, Murine-Derived , Heterografts , Humans , Leukocyte Common Antigens/chemistry , Lung/cytology , Lung/immunology , Mice , Mice, Inbred NOD , Monocytes/cytology , Monocytes/immunology , Monocytes/transplantation
5.
J Immunol ; 191(8): 4440-6, 2013 Oct 15.
Article in English | MEDLINE | ID: mdl-24058178

ABSTRACT

Although Th1, Th2, and Th17 cells are thought to be major effector cells in adaptive alloimmune responses, their respective contribution to allograft rejection remains unclear. To precisely address this, we used mice genetically modified for the Th1 and Th17 hallmark transcription factors T-bet and RORγt, respectively, which allowed us to study the alloreactive role of each subset in an experimental transplant setting. We found that in a fully mismatched heterotopic mouse heart transplantation model, T cells deficient for T-bet (prone to Th17 differentiation) versus RORγt (prone to Th1 differentiation) rejected allografts at a more accelerated rate, indicating a predominance of Th17- over Th1-driven alloimmunity. Importantly, T cells doubly deficient for both T-bet and RORγt differentiated into alloreactive GATA-3-expressing Th2 cells, which promptly induced allograft rejection characterized by a Th2-type intragraft expression profile and eosinophilic infiltration. Mechanistically, Th2-mediated allograft rejection was contingent on IL-4, as its neutralization significantly prolonged allograft survival by reducing intragraft expression of Th2 effector molecules and eosinophilic allograft infiltration. Moreover, under IL-4 neutralizing conditions, alloreactive double-deficient T cells upregulated Eomesodermin (Eomes) and IFN-γ, but not GATA-3. Thus, in the absence of T-bet and RORγt, Eomes may salvage Th1-mediated alloimmunity that underlies IL-4 neutralization-resistant allograft rejection. We summarize that, whereas Th17 cells predictably promote allograft rejection, IL-4-producing GATA-3(+) Th2 cells, which are generally thought to protect allogeneic transplants, may actually be potent facilitators of organ transplant rejection in the absence of T-bet and RORγt. Moreover, Eomes may rescue Th1-mediated allograft rejection in the absence of IL-4, T-bet, and RORγt.


Subject(s)
Allografts/immunology , Graft Rejection/immunology , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , T-Box Domain Proteins/metabolism , Th2 Cells/immunology , Adoptive Transfer , Animals , Cell Differentiation , Eosinophils/immunology , GATA3 Transcription Factor/biosynthesis , Heart Transplantation/adverse effects , Interferon-gamma/biosynthesis , Interleukin-4/metabolism , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Nuclear Receptor Subfamily 1, Group F, Member 3/deficiency , Nuclear Receptor Subfamily 1, Group F, Member 3/genetics , T-Box Domain Proteins/biosynthesis , T-Box Domain Proteins/deficiency , T-Box Domain Proteins/genetics
6.
J Immunol ; 191(1): 480-7, 2013 Jul 01.
Article in English | MEDLINE | ID: mdl-23740948

ABSTRACT

An emerging body of evidence suggests a pivotal role of CD3(+) T cells in mediating early ischemia reperfusion injury (IRI). However, the precise phenotype of T cells involved and the mechanisms underlying such T cell-mediated immune responses in IRI, as well as their clinical relevance, are poorly understood. In this study, we investigated early immunological events in a model of partial warm hepatic IRI in genetically targeted mice to study the precise pathomechanistic role of RORγt(+) T cells. We found that unconventional CD27(-)γδTCR(+) and CD4(-)CD8(-) double-negative T cells are the major RORγt-expressing effector cells in hepatic IRI that play a mechanistic role by being the main source of IRI-mediating IL-17A. We further show that unconventional IRI-mediating T cells are contingent on RORγt, as highlighted by the fact that a genetic deficiency for RORγt, or its therapeutic antagonization via digoxin, is protective against hepatic IRI. Therefore, identification of CD27(-)γδTCR(+) and CD4(-)CD8(-) double-negative T cells as the major source of IL-17A via RORγt in hepatic IRI opens new therapeutic options to improve liver transplantation outcomes.


Subject(s)
Hepatitis, Animal/immunology , Hepatitis, Animal/pathology , Nuclear Receptor Subfamily 1, Group F, Member 3/physiology , Reperfusion Injury/immunology , Reperfusion Injury/pathology , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/pathology , Animals , Disease Models, Animal , Genes, Reporter , Hepatitis, Animal/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Nuclear Receptor Subfamily 1, Group F, Member 3/biosynthesis , Reperfusion Injury/metabolism , T-Lymphocyte Subsets/metabolism , Time Factors
7.
Artif Organs ; 39(9): 782-7, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25845704

ABSTRACT

Thrombosis inside the membrane oxygenator (MO) is a critical complication during venovenous extracorporeal membrane oxygenation (ECMO). The aim of this study was to prove if thrombotic clots manifest within the MO when D-dimer levels are elevated over a long-term period. Heparin-coated polymethylpentene MOs (n = 13) were exchanged due to high plasma D-dimer levels. Clot volume was calculated using multidetector computed tomography (MDCT). Coagulation parameters and MO function were analyzed before and after MO exchange. Before MO exchange, D-dimer levels increased significantly in each patient (11.5 [6.5-15.5] mg/L to 35.0 [34-35] mg/L, P ≤ 0.001). High levels of D-dimers were tolerated for 1 to 6 days. Additionally, fibrinogen concentration (n = 8) and platelet count decreased (n = 8). Within 48 h after exchange, D-dimer levels decreased significantly (n = 11, 12 [8-16] mg/L, P = 0.004). Fibrinogen concentration and platelet counts increased. Clots were found in all MOs in the inlet part of the device. Clot volume (16-106 cm(3) ) did not correlate with MO support time but increased significantly when high D-dimer levels were accepted for >2 days. An increase or high levels of D-dimers in absence of other explaining pathology during ECMO therapy reflected coagulation activity within the MO. Evidence of clots within the MO at high D-dimer levels and decrease after exchange underline the relevance of D-dimer testing during ECMO treatment. Besides, surveillance of MOs during ongoing ECMO therapy will help to predict clot formation, and to avoid system-induced coagulation disorders as well as critical situations.


Subject(s)
Blood Coagulation , Extracorporeal Membrane Oxygenation/adverse effects , Fibrin Fibrinogen Degradation Products/analysis , Oxygenators, Membrane/adverse effects , Thrombosis/diagnosis , Thrombosis/etiology , Equipment Design , Extracorporeal Membrane Oxygenation/instrumentation , Female , Humans , Male , Middle Aged , Thrombosis/pathology
8.
J Immunol ; 188(10): 4931-9, 2012 May 15.
Article in English | MEDLINE | ID: mdl-22504651

ABSTRACT

ß-Defensins are known for their antimicrobial activity and belong to the molecular barrier of the innate immune system against invading pathogens. In addition, it has been shown that some members of the ß-defensin superfamily have the capacity to promote local innate inflammatory and systemic adaptive immune responses, mediated in part by the interaction with CCR6. We found that mouse ß-defensin 14 (mBD14, Defb14), a newly identified member of the mouse ß-defensin superfamily, is expressed in mouse fibrosarcoma tumor tissue. Tumor cells overexpressing mBD14 demonstrated enhanced solid tumor growth in syngeneic C57BL/6 mice concomitant with increased vascularization of these tumors. Furthermore, mBD14-overexpressing tumors demonstrated increased expression of proangiogenic MIP-2 (CXCL2) ex vivo. In contrast, vascular endothelial growth factor expression was not affected. Cellular analysis of tumor-infiltrating leukocytes revealed a significant increase of CCR6(+) B220(+) lymphocytes in solid tumors derived from mBD14-overexpressing tumor cells. Enhanced tumor growth of mBD14-overexpressing fibrosarcomas was abolished in CCR6-deficient mice, which was paralleled by decreased infiltration of CCR6(+) B220(+) lymphocytes, indicating the requirement of CCR6 expression on host cells. Previously, the interaction of activated, LTαß(+), lymphocytes with lymphotoxin ß-receptor-expressing fibrosarcoma tumor cells has been identified as a new CXCL2-dependent proangiogenic pathway. Coexpression of a soluble lymphotoxin ß-receptor:Ig fusion protein, an inhibitor of CXCL2-dependent angiogenesis, in mBD14-overexpressing fibrosarcoma tumor cells abolished enhanced solid tumor growth. Thus, we conclude that mBD14 expression by tumor-infiltrating host cells results in the chemoattraction of CCR6(+) B220(+) lymphocytes, which in turn initiates a proangiogenic pathway leading to enhanced angiogenesis and organized tumor tissue development.


Subject(s)
Fibrosarcoma/immunology , Fibrosarcoma/pathology , Neovascularization, Pathologic/immunology , Neovascularization, Pathologic/pathology , Receptors, CCR6/physiology , beta-Defensins/physiology , Animals , Female , Fibrosarcoma/metabolism , Leukocyte Common Antigens/biosynthesis , Leukocyte Common Antigens/physiology , Mice , Mice, Inbred C57BL , Mice, Knockout , Neovascularization, Pathologic/metabolism , Receptors, CCR6/biosynthesis , Tumor Cells, Cultured , beta-Defensins/biosynthesis
9.
J Am Soc Nephrol ; 23(5): 842-53, 2012 May.
Article in English | MEDLINE | ID: mdl-22343118

ABSTRACT

Inhibition of the mammalian target of rapamycin (mTOR) shows beneficial effects in animal models of polycystic kidney disease (PKD); however, two clinical trials in patients with autosomal dominant PKD failed to demonstrate a short-term benefit in either the early or progressive stages of disease. The stage of disease during treatment and the dose of mTOR inhibitors may account for these differing results. Here, we studied the effects of a conventional low dose and a higher dose of sirolimus (blood levels of 3 ng/ml and 30-60 ng/ml, respectively) on mTOR activity and renal cystic disease in two Pkd1-mutant mouse models at different stages of the disease. When initiated at early but not late stages of disease, high-dose treatment strongly reduced mTOR signaling in renal tissues, inhibited cystogenesis, accelerated cyst regression, and abrogated fibrosis and the infiltration of immune cells. In contrast, low-dose treatment did not significantly reduce renal cystic disease. Levels of p-S6Rp(Ser240/244), which marks mTOR activity, varied between kidneys; severity of the renal cystic phenotype correlated with the level of mTOR activity. Taken together, these data suggest that long-term treatment with conventional doses of sirolimus is insufficient to inhibit mTOR activity in renal cystic tissue. Mechanisms to increase bioavailability or to target mTOR inhibitors more specifically to kidneys, alone or in combination with other compounds, may improve the potential for these therapies in PKD.


Subject(s)
Immunosuppressive Agents/pharmacology , Polycystic Kidney Diseases/drug therapy , Signal Transduction/drug effects , Sirolimus/pharmacology , TOR Serine-Threonine Kinases/antagonists & inhibitors , Animals , Dose-Response Relationship, Drug , Female , Male , Mice , Mice, Inbred C57BL , Polycystic Kidney Diseases/pathology , TOR Serine-Threonine Kinases/physiology
10.
J Immunother Cancer ; 11(10)2023 10.
Article in English | MEDLINE | ID: mdl-37880183

ABSTRACT

BACKGROUND & AIMS: Intratumoral lactate accumulation and acidosis impair T-cell function and antitumor immunity. Interestingly, expression of the lactate transporter monocarboxylate transporter (MCT) 4, but not MCT1, turned out to be prognostic for the survival of patients with rectal cancer, indicating that single MCT4 blockade might be a promising strategy to overcome glycolysis-related therapy resistance. METHODS: To determine whether blockade of MCT4 alone is sufficient to improve the efficacy of immune checkpoint blockade (ICB) therapy, we examined the effects of the selective MCT1 inhibitor AZD3965 and a novel MCT4 inhibitor in a colorectal carcinoma (CRC) tumor spheroid model co-cultured with blood leukocytes in vitro and the MC38 murine CRC model in vivo in combination with an antibody against programmed cell death ligand-1(PD-L1). RESULTS: Inhibition of MCT4 was sufficient to reduce lactate efflux in three-dimensional (3D) CRC spheroids but not in two-dimensional cell-cultures. Co-administration of the MCT4 inhibitor and ICB augmented immune cell infiltration, T-cell function and decreased CRC spheroid viability in a 3D co-culture model of human CRC spheroids with blood leukocytes. Accordingly, combination of MCT4 and ICB increased intratumoral pH, improved leukocyte infiltration and T-cell activation, delayed tumor growth, and prolonged survival in vivo. MCT1 inhibition exerted no further beneficial impact. CONCLUSIONS: These findings demonstrate that single MCT4 inhibition represents a novel therapeutic approach to reverse lactic-acid driven immunosuppression and might be suitable to improve ICB efficacy.


Subject(s)
Colorectal Neoplasms , Immune Checkpoint Inhibitors , Animals , Humans , Mice , Cell Line, Tumor , Colorectal Neoplasms/drug therapy , Glycolysis , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Lactic Acid/metabolism , Monocarboxylic Acid Transporters/antagonists & inhibitors
11.
Biochim Biophys Acta ; 1803(4): 435-42, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20116405

ABSTRACT

Inhibition of mTORC1 with the mTOR inhibitor rapamycin may lead to an induction of Akt phosphorylation in cancer cells via mTORC2 activation. Using gastric and pancreatic cancer cells, we further investigated this paradoxical signaling response and found that rapamycin additionally up-regulates both IGF-IR and Her2 expression. Using RNAi for down-regulating RICTOR, this induction of receptor kinase expression was identified to be mediated via an mTORC2-induced Akt activation. Moreover, mTORC2 inhibition reduced the phosphorylation of GSK-3 and NF-kappaB, and significantly impaired cancer cell motility. In conclusion, inhibition of mTORC2 may abrogate unfavorable signaling effects of mTOR inhibitors, hence providing a novel rationale for therapy.


Subject(s)
Carrier Proteins/metabolism , Pancreatic Neoplasms/metabolism , Receptor, ErbB-2/metabolism , Receptor, IGF Type 1/metabolism , Stomach Neoplasms/metabolism , Transcription Factors/physiology , Blotting, Western , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Glycogen Synthase Kinase 3/metabolism , Humans , NF-kappa B/metabolism , Pancreatic Neoplasms/pathology , Phosphorylation , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Small Interfering/pharmacology , Rapamycin-Insensitive Companion of mTOR Protein , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction , Sirolimus/pharmacology , Stomach Neoplasms/pathology
12.
Nat Med ; 8(2): 128-35, 2002 Feb.
Article in English | MEDLINE | ID: mdl-11821896

ABSTRACT

Conventional immunosuppressive drugs have been used effectively to prevent immunologic rejection in organ transplantation. Individuals taking these drugs are at risk, however, for the development and recurrence of cancer. In the present study we show that the new immunosuppressive drug rapamycin (RAPA) may reduce the risk of cancer development while simultaneously providing effective immunosuppression. Experimentally, RAPA inhibited metastatic tumor growth and angiogenesis in in vivo mouse models. In addition, normal immunosuppressive doses of RAPA effectively controlled the growth of established tumors. In contrast, the most widely recognized immunosuppressive drug, cyclosporine, promoted tumor growth. From a mechanistic perspective, RAPA showed antiangiogenic activities linked to a decrease in production of vascular endothelial growth factor (VEGF) and to a markedly inhibited response of vascular endothelial cells to stimulation by VEGF. Thus, the use of RAPA, instead of cyclosporine, may reduce the chance of recurrent or de novo cancer in high-risk transplant patients.


Subject(s)
Adenocarcinoma/drug therapy , Angiogenesis Inhibitors/therapeutic use , Antibiotics, Antineoplastic/therapeutic use , Endothelial Growth Factors/physiology , Lymphokines/physiology , Neoplasm Metastasis/prevention & control , Neovascularization, Pathologic/prevention & control , Sirolimus/therapeutic use , Adenocarcinoma/blood supply , Animals , Mice , Mice, Inbred BALB C , Vascular Endothelial Growth Factor A , Vascular Endothelial Growth Factors
13.
J Exp Med ; 217(1)2020 01 06.
Article in English | MEDLINE | ID: mdl-31658985

ABSTRACT

Cancer fatalities result from metastatic dissemination and therapy resistance, both processes that depend on signals from the tumor microenvironment. To identify how invasion and resistance programs cooperate, we used intravital microscopy of orthotopic sarcoma and melanoma xenografts. We demonstrate that these tumors invade collectively and that, specifically, cells within the invasion zone acquire increased resistance to radiotherapy, rapidly normalize DNA damage, and preferentially survive. Using a candidate-based approach to identify effectors of invasion-associated resistance, we targeted ß1 and αVß3/ß5 integrins, essential extracellular matrix receptors in mesenchymal tumors, which mediate cancer progression and resistance. Combining radiotherapy with ß1 or αV integrin monotargeting in invading tumors led to relapse and metastasis in 40-60% of the cohort, in line with recently failed clinical trials individually targeting integrins. However, when combined, anti-ß1/αV integrin dual targeting achieved relapse-free radiosensitization and prevented metastatic escape. Collectively, invading cancer cells thus withstand radiotherapy and DNA damage by ß1/αVß3/ß5 integrin cross-talk, but efficient radiosensitization can be achieved by multiple integrin targeting.


Subject(s)
Cell Adhesion/physiology , Integrins/metabolism , Neoplasm Invasiveness/pathology , Neoplasms/metabolism , Neoplasms/pathology , Animals , Cell Line, Tumor , Cell Movement/physiology , DNA Damage/physiology , Extracellular Matrix/metabolism , Extracellular Matrix/pathology , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Neoplasm Metastasis/pathology , Tumor Microenvironment/physiology
14.
Cell Rep ; 29(1): 135-150.e9, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31577944

ABSTRACT

Tumor-derived lactic acid inhibits T and natural killer (NK) cell function and, thereby, tumor immunosurveillance. Here, we report that melanoma patients with high expression of glycolysis-related genes show a worse progression free survival upon anti-PD1 treatment. The non-steroidal anti-inflammatory drug (NSAID) diclofenac lowers lactate secretion of tumor cells and improves anti-PD1-induced T cell killing in vitro. Surprisingly, diclofenac, but not other NSAIDs, turns out to be a potent inhibitor of the lactate transporters monocarboxylate transporter 1 and 4 and diminishes lactate efflux. Notably, T cell activation, viability, and effector functions are preserved under diclofenac treatment and in a low glucose environment in vitro. Diclofenac, but not aspirin, delays tumor growth and improves the efficacy of checkpoint therapy in vivo. Moreover, genetic suppression of glycolysis in tumor cells strongly improves checkpoint therapy. These findings support the rationale for targeting glycolysis in patients with high glycolytic tumors together with checkpoint inhibitors in clinical trials.


Subject(s)
Glycolysis/physiology , T-Lymphocytes/physiology , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Proliferation/physiology , Glucose/metabolism , Glycolysis/drug effects , Humans , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , T-Lymphocytes/drug effects , T-Lymphocytes/metabolism , Xenopus laevis
15.
Mol Cancer Ther ; 6(11): 2868-78, 2007 Nov.
Article in English | MEDLINE | ID: mdl-18025273

ABSTRACT

We recently showed that inhibition of heat shock protein 90 (Hsp90) decreases tumor growth and angiogenesis in gastric cancer through interference with oncogenic signaling pathways. However, controversy still exists about the antimetastatic potential of Hsp90 inhibitors. Moreover, in vitro studies suggested that blocking Hsp90 could overcome p53-mediated resistance of cancer cells to oxaliplatin. We therefore hypothesized that blocking oncogenic signaling with a Hsp90 inhibitor would impair metastatic behavior of colon cancer cells and also improve the efficacy of oxaliplatin in vivo. Human colon cancer cells (HCT116, HT29, and SW620) and the Hsp90 inhibitor 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin (17-DMAG) were used for experiments. In vitro, 17-DMAG substantially inhibited phosphorylation of epidermal growth factor receptor, c-Met, and focal adhesion kinase, overall resulting in a significant decrease in cancer cell invasiveness. Importantly, 17-DMAG led to an up-regulation of the transcription factor activating transcription factor-3, a tumor suppressor and antimetastatic factor, on mRNA and protein levels. In a cell death ELISA, 17-DMAG markedly induced apoptosis in both p53-wt and p53-deficient cells. In vivo, 17-DMAG significantly reduced tumor growth and vascularization. Furthermore, blocking Hsp90 reduced hepatic tumor burden and metastatic nodules in an experimental model of hepatic colon cancer growth. Importantly, combining oxaliplatin with 17-DMAG in vivo significantly improved growth inhibitory and proapoptotic effects on p53-deficient cells, compared with either substance alone. In conclusion, inhibition of Hsp90 abrogates the invasive properties of colon cancer cells and modulates the expression of the antimetastatic factor activating transcription factor-3. Hence, targeting Hsp90 could prove valuable for treatment of advanced colorectal cancer by effectively inhibiting colon cancer growth and hepatic metastasis and improving the efficacy of oxaliplatin.


Subject(s)
Colonic Neoplasms/pathology , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Liver Neoplasms/secondary , Organoplatinum Compounds/pharmacology , Tumor Suppressor Protein p53/deficiency , Animals , Apoptosis/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Colonic Neoplasms/drug therapy , ErbB Receptors/metabolism , HSP90 Heat-Shock Proteins/metabolism , Humans , Liver Neoplasms/pathology , Male , Mice , Mice, Nude , Neoplasm Invasiveness/prevention & control , Organoplatinum Compounds/therapeutic use , Oxaliplatin , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Treatment Outcome , Xenograft Model Antitumor Assays
16.
Cancer Res ; 78(10): 2513-2523, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29510993

ABSTRACT

Glycolysis and fatty acid synthesis are highly active in cancer cells through cytosolic citrate metabolism, with intracellular citrate primarily derived from either glucose or glutamine via the tricarboxylic acid cycle. We show here that extracellular citrate is supplied to cancer cells through a plasma membrane-specific variant of the mitochondrial citrate transporter (pmCiC). Metabolomic analysis revealed that citrate uptake broadly affected cancer cell metabolism through citrate-dependent metabolic pathways. Treatment with gluconate specifically blocked pmCiC and decreased tumor growth in murine xenografts of human pancreatic cancer. This treatment altered metabolism within tumors, including fatty acid metabolism. High expression of pmCiC was associated with invasion and advanced tumor stage across many human cancers. These findings support the exploration of extracellular citrate transport as a novel potential target for cancer therapy.Significance: Uptake of extracellular citrate through pmCiC can be blocked with gluconate to reduce tumor growth and to alter metabolic characteristics of tumor tissue. Cancer Res; 78(10); 2513-23. ©2018 AACR.


Subject(s)
Anion Transport Proteins/antagonists & inhibitors , Anion Transport Proteins/metabolism , Cell Proliferation/drug effects , Citric Acid/metabolism , Gluconates/pharmacology , Mitochondrial Proteins/antagonists & inhibitors , Mitochondrial Proteins/metabolism , Pancreatic Neoplasms/pathology , Prostatic Neoplasms/pathology , Animals , Cell Line, Tumor , Epithelial Cells/metabolism , Fatty Acids/biosynthesis , Glycolysis/physiology , Humans , Male , Mice , Organic Anion Transporters , Prostate/cytology , Prostate/metabolism , RNA Interference , RNA, Small Interfering/genetics
17.
Transplantation ; 83(5): 607-14, 2007 Mar 15.
Article in English | MEDLINE | ID: mdl-17353782

ABSTRACT

BACKGROUND: Identifying immunosuppressive agents with antitumor effects could help address the problem of posttransplant malignancy. Here we tested for potential inhibitory effects of mycophenolate mofetil (MMF) on tumors in vitro and in vivo. METHODS: Mouse CT26 colon adenocarcinoma, B16 melanoma, and human TMK1 gastric adenocarcinoma cells were tested for in vitro growth in the presence of MMF. In vitro angiogenesis was tested with a rat aortic-ring assay. Tumor cells were implanted into dorsal skinfold chambers (DSFC) to assess in vivo angiogenesis. Subcutaneous tumor growth was determined in mice receiving MMF. RESULTS: MMF caused a dose-dependent reduction in tumor cell numbers in vitro, starting between 0.1 to 1 microM. Vessel sprouting from aortic rings was markedly blocked by similar concentrations of MMF. In vivo, however, DSFC results showed a marginal reduction in CT26 tumor angiogenesis with MMF doses of 40 or 80 mg/kg/day, although MMF did inhibit TMK1 vascularity. Moreover, 80 mg/kg/day MMF did not reduce subcutaneous CT26 tumor volumes, but did slightly inhibit B16 and TMK1 expansion. Interestingly, the mycophenolic acid (MPA) blood level 2 hr after 80 mg/kg/day MMF bolus dosing was near 14 mg/L, but decreased dramatically thereafter, suggesting a drug availability issue. Indeed, intermittent 2-hr MMF pulses in tumor-cell cultures substantially reduced the antiproliferative effect of MPA. CONCLUSION: MMF strongly inhibits tumor cell growth and angiogenesis in vitro, but only marginally inhibits tumors in vivo. These contrasting results may relate to drug availability, where intermittent exposure of tumor cells to immunosuppressive doses of MMF substantially reduce its potential antitumor effects.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Antineoplastic Agents/pharmacology , Mycophenolic Acid/analogs & derivatives , Neovascularization, Pathologic/prevention & control , Adenocarcinoma , Angiogenesis Inhibitors/pharmacokinetics , Animals , Antineoplastic Agents/pharmacokinetics , Aorta , Biological Availability , Cell Line, Tumor , Colonic Neoplasms , Endothelium, Vascular/drug effects , Endothelium, Vascular/physiology , Humans , Melanoma, Experimental , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/physiology , Mycophenolic Acid/pharmacokinetics , Mycophenolic Acid/pharmacology , Stomach Neoplasms , Umbilical Veins
18.
Front Immunol ; 8: 248, 2017.
Article in English | MEDLINE | ID: mdl-28337200

ABSTRACT

Cytotoxic T lymphocytes and NK cells play an important role in eliminating malignant tumor cells and the number and activity of tumor-infiltrating T cells represent a good marker for tumor prognosis. Based on these findings, immunotherapy, e.g., checkpoint blockade, has received considerable attention during the last couple of years. However, for the majority of patients, immune control of their tumors is gray theory as malignant cells use effective mechanisms to outsmart the immune system. Increasing evidence suggests that changes in tumor metabolism not only ensure an effective energy supply and generation of building blocks for tumor growth but also contribute to inhibition of the antitumor response. Immunosuppression in the tumor microenvironment is often based on the mutual metabolic requirements of immune cells and tumor cells. Cytotoxic T and NK cell activation leads to an increased demand for glucose and amino acids, a well-known feature shown by tumor cells. These close metabolic interdependencies result in metabolic competition, limiting the proliferation, and effector functions of tumor-specific immune cells. Moreover, not only nutrient restriction but also tumor-driven shifts in metabolite abundance and accumulation of metabolic waste products (e.g., lactate) lead to local immunosuppression, thereby facilitating tumor progression and metastasis. In this review, we describe the metabolic interplay between immune cells and tumor cells and discuss tumor cell metabolism as a target structure for cancer therapy. Metabolic (re)education of tumor cells is not only an approach to kill tumor cells directly but could overcome metabolic immunosuppression in the tumor microenvironment and thereby facilitate immunotherapy.

19.
Clin Hemorheol Microcirc ; 67(2): 125-140, 2017.
Article in English | MEDLINE | ID: mdl-28598834

ABSTRACT

BACKGROUND: Meniscus regeneration is observed within the peripheral, vascularized zone but decreases in the inner two thirds alongside the vascularization. Within this avascular area, cell-based tissue-engineering-approaches appear to be a promising strategy for the treatment of meniscal defects. OBJECTIVE: Evaluation of the angiogenic potential of cell-based tissue-engineering-products for meniscus healing. METHODS: Evaluation of angiogenesis induced by rabbit meniscus-pellets, meniscus-cells (MC) or mesenchymal stem-cells (MSC) in cell-based tissue-engineering-products within a rabbit meniscus-ring was performed using a transparent dorsal skin fold chamber in nude mice. Observations were undertaken during a 14 days period. Cell preconditioning differed between experimental groups. Immunohistochemical analysis of the regenerated tissue in the meniscus-ring induced by cell loaded composite scaffolds for differentiation and anti-angiogenic factors were performed. RESULTS: Meniscus-pellets and MSC-/MC-based tissue-engineering-products induced angiogenesis. An accelerated vascularization was detected in the group of meniscus-pellets derived from the vascularized zone compared to avascular meniscus-pellets. In terms of cell-based tissue-engineering-products, chondrogenic preconditioning resulted in significantly increased vessel growth. MSC-constructs showed an accelerated angiogenesis. Immunohistochemical evaluation showed a progressive differentiation and lower content for anti-angiogenic endostatin in the precultured group. CONCLUSIONS: Preconditioning of MC-/MSC-based tissue-engineering-products is a promising tool to influence the angiogenic potential of tissue-engineering-products and to adapt these properties according to the aimed tissue qualities.


Subject(s)
Meniscus/pathology , Neovascularization, Pathologic/pathology , Tissue Engineering/methods , Animals , Mice , Mice, Nude , Rabbits , Regeneration
20.
Transplantation ; 82(6): 741-8, 2006 Sep 27.
Article in English | MEDLINE | ID: mdl-17006319

ABSTRACT

BACKGROUND: Development of cancer in transplant recipients may be influenced by different immunosuppressive agents. Recent publications suggest that rapamycin (RAPA), or possibly mycophenolate mofetil (MMF), may reduce established tumor growth; however, experimental data is lacking for de novo cancer prevention. METHODS: We tested the effects of long-term immunosuppression on spontaneous tumor formation in p53 knock-out mice. Mice received no treatment, or were given RAPA, MMF, or cyclosporine (CsA) starting on week nine after birth, with the experimental endpoint being week 29. RESULTS: All (9/9) untreated mice developed clinically evident tumors before week 26, as confirmed by histology (6 lymphomas, 2 sarcomas, 1 lymphoma+sarcoma). All CsA-treated mice (9/9) also developed clinical tumors before the endpoint (7 lymphomas, 1 sarcoma, 1 lymphoma+sarcoma). With MMF, 7/10 mice showed clinical evidence of tumor before the experimental endpoint (4 lymphomas, 2 sarcomas, 1 lymphoma+sarcoma), however, histologic tissue analysis revealed that the remaining three mice had subclinical cancer (3 lymphomas). In contrast, RAPA treatment resulted in only three mice with clinical tumors (all lymphomas), with histology revealing subclinical lymphomas in three additional mice, but no evidence of cancer in four animals. Statistically, cancer development was decreased with RAPA treatment (P=0.002), but was not affected with either MMF or CsA (P>0.10). CONCLUSION: These experiments are the first to show immunosuppression under RAPA can reduce spontaneous de novo cancer associated with p53 mutations. Although neither CsA nor MMF treatment affects p53-associated tumor incidence, MMF may have some tendency to reduce clinical tumor appearance.


Subject(s)
Genes, p53 , Immunosuppressive Agents/pharmacology , Neoplasms, Experimental/genetics , Animals , Anticarcinogenic Agents/pharmacology , Cyclosporine/pharmacology , Disease-Free Survival , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mycophenolic Acid/analogs & derivatives , Mycophenolic Acid/pharmacology , Neoplasms, Experimental/immunology , Neoplasms, Experimental/prevention & control , Sirolimus/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL