Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Ann Neurol ; 2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37638552

ABSTRACT

OBJECTIVE: This study was undertaken to test the hypothesis that early vigabatrin treatment in tuberous sclerosis complex (TSC) infants improves neurocognitive outcome at 24 months of age. METHODS: A phase IIb multicenter randomized double-blind placebo-controlled trial was conducted of vigabatrin at first epileptiform electroencephalogram (EEG) versus vigabatrin at seizure onset in infants with TSC. Primary outcome was Bayley Scales of Infant and Toddler Development, Third Edition (Bayley-III) cognitive assessment score at 24 months. Secondary outcomes were prevalence of drug-resistant epilepsy, additional developmental outcomes, and safety of vigabatrin. RESULTS: Of 84 infants enrolled, 12 were screen failures, 4 went straight to open label vigabatrin, and 12 were not randomized (normal EEG throughout). Fifty-six were randomized to early vigabatrin (n = 29) or placebo (n = 27). Nineteen of 27 in the placebo arm transitioned to open label vigabatrin, with a median delay of 44 days after randomization. Bayley-III cognitive composite scores at 24 months were similar for participants randomized to vigabatrin or placebo. Additionally, no significant differences were found between groups in overall epilepsy incidence and drug-resistant epilepsy at 24 months, time to first seizure after randomization, and secondary developmental outcomes. Incidence of infantile spasms was lower and time to spasms after randomization was later in the vigabatrin group. Adverse events were similar across groups. INTERPRETATION: Preventative treatment with vigabatrin based on EEG epileptiform activity prior to seizure onset does not improve neurocognitive outcome at 24 months in TSC children, nor does it delay onset or lower the incidence of focal seizures and drug-resistant epilepsy at 24 months. Preventative vigabatrin was associated with later time to onset and lower incidence of infantile spasms. ANN NEUROL 2023.

2.
Am J Hum Genet ; 107(2): 352-363, 2020 08 06.
Article in English | MEDLINE | ID: mdl-32693025

ABSTRACT

MORC2 encodes an ATPase that plays a role in chromatin remodeling, DNA repair, and transcriptional regulation. Heterozygous variants in MORC2 have been reported in individuals with autosomal-dominant Charcot-Marie-Tooth disease type 2Z and spinal muscular atrophy, and the onset of symptoms ranges from infancy to the second decade of life. Here, we present a cohort of 20 individuals referred for exome sequencing who harbor pathogenic variants in the ATPase module of MORC2. Individuals presented with a similar phenotype consisting of developmental delay, intellectual disability, growth retardation, microcephaly, and variable craniofacial dysmorphism. Weakness, hyporeflexia, and electrophysiologic abnormalities suggestive of neuropathy were frequently observed but were not the predominant feature. Five of 18 individuals for whom brain imaging was available had lesions reminiscent of those observed in Leigh syndrome, and five of six individuals who had dilated eye exams had retinal pigmentary abnormalities. Functional assays revealed that these MORC2 variants result in hyperactivation of epigenetic silencing by the HUSH complex, supporting their pathogenicity. The described set of morphological, growth, developmental, and neurological findings and medical concerns expands the spectrum of genetic disorders resulting from pathogenic variants in MORC2.


Subject(s)
Adenosine Triphosphatases/genetics , Craniofacial Abnormalities/genetics , Growth Disorders/genetics , Mutation/genetics , Neurodevelopmental Disorders/genetics , Transcription Factors/genetics , Adolescent , Adult , Child , Child, Preschool , Female , Genetic Diseases, Inborn/genetics , Heterozygote , Humans , Infant , Intellectual Disability/genetics , Male , Microcephaly/genetics , Middle Aged , Phenotype , Young Adult
3.
Brain ; 145(8): 2687-2703, 2022 08 27.
Article in English | MEDLINE | ID: mdl-35675510

ABSTRACT

Vacuolar-type H+-ATPase (V-ATPase) is a multimeric complex present in a variety of cellular membranes that acts as an ATP-dependent proton pump and plays a key role in pH homeostasis and intracellular signalling pathways. In humans, 22 autosomal genes encode for a redundant set of subunits allowing the composition of diverse V-ATPase complexes with specific properties and expression. Sixteen subunits have been linked to human disease. Here we describe 26 patients harbouring 20 distinct pathogenic de novo missense ATP6V1A variants, mainly clustering within the ATP synthase α/ß family-nucleotide-binding domain. At a mean age of 7 years (extremes: 6 weeks, youngest deceased patient to 22 years, oldest patient) clinical pictures included early lethal encephalopathies with rapidly progressive massive brain atrophy, severe developmental epileptic encephalopathies and static intellectual disability with epilepsy. The first clinical manifestation was early hypotonia, in 70%; 81% developed epilepsy, manifested as developmental epileptic encephalopathies in 58% of the cohort and with infantile spasms in 62%; 63% of developmental epileptic encephalopathies failed to achieve any developmental, communicative or motor skills. Less severe outcomes were observed in 23% of patients who, at a mean age of 10 years and 6 months, exhibited moderate intellectual disability, with independent walking and variable epilepsy. None of the patients developed communicative language. Microcephaly (38%) and amelogenesis imperfecta/enamel dysplasia (42%) were additional clinical features. Brain MRI demonstrated hypomyelination and generalized atrophy in 68%. Atrophy was progressive in all eight individuals undergoing repeated MRIs. Fibroblasts of two patients with developmental epileptic encephalopathies showed decreased LAMP1 expression, Lysotracker staining and increased organelle pH, consistent with lysosomal impairment and loss of V-ATPase function. Fibroblasts of two patients with milder disease, exhibited a different phenotype with increased Lysotracker staining, decreased organelle pH and no significant modification in LAMP1 expression. Quantification of substrates for lysosomal enzymes in cellular extracts from four patients revealed discrete accumulation. Transmission electron microscopy of fibroblasts of four patients with variable severity and of induced pluripotent stem cell-derived neurons from two patients with developmental epileptic encephalopathies showed electron-dense inclusions, lipid droplets, osmiophilic material and lamellated membrane structures resembling phospholipids. Quantitative assessment in induced pluripotent stem cell-derived neurons identified significantly smaller lysosomes. ATP6V1A-related encephalopathy represents a new paradigm among lysosomal disorders. It results from a dysfunctional endo-lysosomal membrane protein causing altered pH homeostasis. Its pathophysiology implies intracellular accumulation of substrates whose composition remains unclear, and a combination of developmental brain abnormalities and neurodegenerative changes established during prenatal and early postanal development, whose severity is variably determined by specific pathogenic variants.


Subject(s)
Brain Diseases , Epilepsy , Intellectual Disability , Spasms, Infantile , Vacuolar Proton-Translocating ATPases , Adenosine Triphosphate , Atrophy , Child , Homeostasis , Humans , Infant , Lysosomes , Phenotype
4.
J Med Genet ; 59(6): 528-535, 2022 06.
Article in English | MEDLINE | ID: mdl-33811133

ABSTRACT

BACKGROUND: Pathogenic KCNQ2 variants are a frequent cause of developmental and epileptic encephalopathy. METHODS: We recruited 13 adults (between 18 years and 45 years of age) with KCNQ2 encephalopathy and reviewed their clinical, EEG, neuroimaging and treatment history. RESULTS: While most patients had daily seizures at seizure onset, seizure frequency declined or remitted during childhood and adulthood. The most common seizure type was tonic seizures (early) infancy, and tonic-clonic and focal impaired awareness seizures later in life. Ten individuals (77%) were seizure-free at last follow-up. In 38% of the individuals, earlier periods of seizure freedom lasting a minimum of 2 years followed by seizure recurrence had occurred. Of the 10 seizure-free patients, 4 were receiving a single antiseizure medication (ASM, carbamazepine, lamotrigine or levetiracetam), and 2 had stopped taking ASM. Intellectual disability (ID) ranged from mild to profound, with the majority (54%) of individuals in the severe category. At last contact, six individuals (46%) remained unable to walk independently, six (46%) had limb spasticity and four (31%) tetraparesis/tetraplegia. Six (46%) remained non-verbal, 10 (77%) had autistic features/autism, 4 (31%) exhibited aggressive behaviour and 4 (31%) destructive behaviour with self-injury. Four patients had visual problems, thought to be related to prematurity in one. Sleep problems were seen in six (46%) individuals. CONCLUSION: Seizure frequency declines over the years and most patients are seizure-free in adulthood. Longer seizure-free periods followed by seizure recurrence are common during childhood and adolescence. Most adult patients have severe ID. Motor, language and behavioural problems are an issue of continuous concern.


Subject(s)
Brain Diseases , Epilepsies, Partial , Intellectual Disability , Adult , Anticonvulsants/therapeutic use , Brain Diseases/drug therapy , Brain Diseases/genetics , Electroencephalography , Humans , Intellectual Disability/genetics , KCNQ2 Potassium Channel/genetics , Phenotype , Seizures/drug therapy , Seizures/genetics
5.
J Med Genet ; 58(5): 314-325, 2021 05.
Article in English | MEDLINE | ID: mdl-32518176

ABSTRACT

BACKGROUND: The nucleotide binding protein-like (NUBPL) gene was first reported as a cause of mitochondrial complex I deficiency (MIM 613621, 618242) in 2010. To date, only eight patients have been reported with this mitochondrial disorder. Five other patients were recently reported to have NUBPL disease but their clinical picture was different from the first eight patients. Here, we report clinical and genetic findings in five additional patients (four families). METHODS: Whole exome sequencing was used to identify patients with compound heterozygous NUBPL variants. Functional studies included RNA-Seq transcript analyses, missense variant biochemical analyses in a yeast model (Yarrowia lipolytica) and mitochondrial respiration experiments on patient fibroblasts. RESULTS: The previously reported c.815-27T>C branch-site mutation was found in all four families. In prior patients, c.166G>A [p.G56R] was always found in cis with c.815-27T>C, but only two of four families had both variants. The second variant found in trans with c.815-27T>C in each family was: c.311T>C [p.L104P] in three patients, c.693+1G>A in one patient and c.545T>C [p.V182A] in one patient. Complex I function in the yeast model was impacted by p.L104P but not p.V182A. Clinical features include onset of neurological symptoms at 3-18 months, global developmental delay, cerebellar dysfunction (including ataxia, dysarthria, nystagmus and tremor) and spasticity. Brain MRI showed cerebellar atrophy. Mitochondrial function studies on patient fibroblasts showed significantly reduced spare respiratory capacity. CONCLUSION: We report on five new patients with NUBPL disease, adding to the number and phenotypic variability of patients diagnosed worldwide, and review prior reported patients with pathogenic NUBPL variants.


Subject(s)
Mitochondrial Diseases/genetics , Mitochondrial Proteins/genetics , Adolescent , Brain/diagnostic imaging , Child , DNA Mutational Analysis , Female , Humans , Magnetic Resonance Imaging , Male , Mitochondrial Diseases/diagnostic imaging , Mitochondrial Diseases/physiopathology , Pedigree , RNA-Seq , Exome Sequencing , Young Adult
6.
Am J Hum Genet ; 103(2): 245-260, 2018 08 02.
Article in English | MEDLINE | ID: mdl-30057031

ABSTRACT

Interferon regulatory factor 2 binding protein-like (IRF2BPL) encodes a member of the IRF2BP family of transcriptional regulators. Currently the biological function of this gene is obscure, and the gene has not been associated with a Mendelian disease. Here we describe seven individuals who carry damaging heterozygous variants in IRF2BPL and are affected with neurological symptoms. Five individuals who carry IRF2BPL nonsense variants resulting in a premature stop codon display severe neurodevelopmental regression, hypotonia, progressive ataxia, seizures, and a lack of coordination. Two additional individuals, both with missense variants, display global developmental delay and seizures and a relatively milder phenotype than those with nonsense alleles. The IRF2BPL bioinformatics signature based on population genomics is consistent with a gene that is intolerant to variation. We show that the fruit-fly IRF2BPL ortholog, called pits (protein interacting with Ttk69 and Sin3A), is broadly detected, including in the nervous system. Complete loss of pits is lethal early in development, whereas partial knockdown with RNA interference in neurons leads to neurodegeneration, revealing a requirement for this gene in proper neuronal function and maintenance. The identified IRF2BPL nonsense variants behave as severe loss-of-function alleles in this model organism, and ectopic expression of the missense variants leads to a range of phenotypes. Taken together, our results show that IRF2BPL and pits are required in the nervous system in humans and flies, and their loss leads to a range of neurological phenotypes in both species.

7.
J Med Genet ; 56(3): 123-130, 2019 03.
Article in English | MEDLINE | ID: mdl-30683676

ABSTRACT

Primary genetic mitochondrial diseases are often difficult to diagnose, and the term 'possible' mitochondrial disease is used frequently by clinicians when such a diagnosis is suspected. There are now many known phenocopies of mitochondrial disease. Advances in genomic testing have shown that some patients with a clinical phenotype and biochemical abnormalities suggesting mitochondrial disease may have other genetic disorders. In instances when a genetic diagnosis cannot be confirmed, a diagnosis of 'possible' mitochondrial disease may result in harm to patients and their families, creating anxiety, delaying appropriate diagnosis and leading to inappropriate management or care. A categorisation of 'diagnosis uncertain', together with a specific description of the metabolic or genetic abnormalities identified, is preferred when a mitochondrial disease cannot be genetically confirmed.


Subject(s)
Genetic Association Studies , Genetic Predisposition to Disease , Mitochondrial Diseases/diagnosis , Mitochondrial Diseases/genetics , Biomarkers , Genetic Testing , Humans , Phenotype
8.
Am J Hum Genet ; 98(2): 347-57, 2016 Feb 04.
Article in English | MEDLINE | ID: mdl-26805781

ABSTRACT

The underlying genetic etiology of rhabdomyolysis remains elusive in a significant fraction of individuals presenting with recurrent metabolic crises and muscle weakness. Using exome sequencing, we identified bi-allelic mutations in TANGO2 encoding transport and Golgi organization 2 homolog (Drosophila) in 12 subjects with episodic rhabdomyolysis, hypoglycemia, hyperammonemia, and susceptibility to life-threatening cardiac tachyarrhythmias. A recurrent homozygous c.460G>A (p.Gly154Arg) mutation was found in four unrelated individuals of Hispanic/Latino origin, and a homozygous ∼34 kb deletion affecting exons 3-9 was observed in two families of European ancestry. One individual of mixed Hispanic/European descent was found to be compound heterozygous for c.460G>A (p.Gly154Arg) and the deletion of exons 3-9. Additionally, a homozygous exons 4-6 deletion was identified in a consanguineous Middle Eastern Arab family. No homozygotes have been reported for these changes in control databases. Fibroblasts derived from a subject with the recurrent c.460G>A (p.Gly154Arg) mutation showed evidence of increased endoplasmic reticulum stress and a reduction in Golgi volume density in comparison to control. Our results show that the c.460G>A (p.Gly154Arg) mutation and the exons 3-9 heterozygous deletion in TANGO2 are recurrent pathogenic alleles present in the Latino/Hispanic and European populations, respectively, causing considerable morbidity in the homozygotes in these populations.


Subject(s)
Arrhythmias, Cardiac/genetics , Muscle Weakness/genetics , Rhabdomyolysis/genetics , Alleles , Arabs/genetics , Arrhythmias, Cardiac/diagnosis , Base Sequence , Child , Child, Preschool , Endoplasmic Reticulum Stress/genetics , Exome , Exons , Female , Gene Deletion , Golgi Apparatus/genetics , Golgi Apparatus/metabolism , Hispanic or Latino/genetics , Homozygote , Humans , Infant , Male , Molecular Sequence Data , Muscle Weakness/diagnosis , Pedigree , Rhabdomyolysis/diagnosis , White People/genetics
9.
Genet Med ; 21(5): 1058-1064, 2019 05.
Article in English | MEDLINE | ID: mdl-30245510

ABSTRACT

PURPOSE: Contiguous gene deletions are known to cause several neurodevelopmental syndromes, many of which are caused by recurrent events on chromosome 16. However, chromosomal microarray studies (CMA) still yield copy-number variants (CNVs) of unknown clinical significance. We sought to characterize eight individuals with overlapping 205-kb to 504-kb 16p13.3 microdeletions that are distinct from previously published deletion syndromes. METHODS: Clinical information on the patients and bioinformatic scores for the deleted genes were analyzed. RESULTS: All individuals in our cohort displayed developmental delay, intellectual disability, and various forms of seizures. Six individuals were microcephalic and two had strabismus. The deletion was absent in all 13 parents who were available for testing. The area of overlap encompasses seven genes including TBC1D24, ATP6V0C, and PDPK1 (also known as PDK1). Bi-allelic TBC1D24 pathogenic variants are known to cause nonsyndromic deafness, epileptic disorders, or DOORS syndrome (deafness, onychodystrophy, osteodystrophy, mental retardation, seizures). Sanger sequencing of the nondeleted TBC1D24 allele did not yield any additional pathogenic variants. CONCLUSIONS: We propose that 16p13.3 microdeletions resulting in simultaneous haploinsufficiencies of TBC1D24, ATP6V0C, and PDPK1 cause a novel rare contiguous gene deletion syndrome of microcephaly, developmental delay, intellectual disability, and epilepsy.


Subject(s)
3-Phosphoinositide-Dependent Protein Kinases/genetics , Chromosome Deletion , Developmental Disabilities/genetics , Epilepsy/genetics , Membrane Proteins/genetics , Microcephaly/genetics , Nerve Tissue Proteins/genetics , Vacuolar Proton-Translocating ATPases/genetics , Adolescent , Adult , Child , Child, Preschool , Chromosomes, Human, Pair 16 , Cohort Studies , Female , GTPase-Activating Proteins , Humans , Infant , Intellectual Disability/genetics , Male , Syndrome , Young Adult
10.
11.
J Genet Couns ; 27(1): 169-176, 2018 02.
Article in English | MEDLINE | ID: mdl-28803392

ABSTRACT

Type 1 Gaucher disease (GD) is the most common lysosomal storage disorder. Previously, treatment for GD was limited to intravenous enzyme replacement therapies (ERTs). More recently, oral substrate reduction therapies (SRTs) were approved for treatment of GD. Although both therapies alleviate disease symptoms, attitudes toward SRTs and patient perceptions of health while using SRT have not been well established. Electronic surveys were administered to adults with GD and asked about treatment history, attitudes toward SRTs, and perception of health while using SRTs as compared to ERTs, if applicable to the participant. ERT users that were offered treatment with SRTs cited potential side effects, wanting more research on SRTs, and satisfaction with their current treatment regimen as reasons for declining SRTs. SRT users expressed convenience and less invasiveness as reasons for choosing SRTs. Additionally, those using SRTs most often perceived their health to be similar to when they previously used ERT. Participant responses illustrate that attitudes toward SRTs can be variable and that one particular treatment may not be ideal for all patients with GD depending on individual perceptions of factors such as convenience, invasiveness, or side effects. Thus, individuals with GD should be counseled adequately by healthcare providers about both ERTs and SRTs for treatment of GD now that SRTs are clinically available.


Subject(s)
Attitude to Health , Enzyme Replacement Therapy/methods , Enzyme Replacement Therapy/psychology , Gaucher Disease/drug therapy , Gaucher Disease/psychology , Adult , Glucosylceramidase , Humans
12.
Genet Med ; 19(12)2017 12.
Article in English | MEDLINE | ID: mdl-28749475

ABSTRACT

The purpose of this statement is to provide consensus-based recommendations for optimal management and care for patients with primary mitochondrial disease. This statement is intended for physicians who are engaged in the diagnosis and management of these patients. Working group members were appointed by the Mitochondrial Medicine Society. The panel included members with several different areas of expertise. The panel members utilized surveys and the Delphi method to reach consensus. We anticipate that this statement will need to be updated as the field continues to evolve. Consensus-based recommendations are provided for the routine care and management of patients with primary genetic mitochondrial disease.


Subject(s)
Mitochondrial Diseases/diagnosis , Mitochondrial Diseases/therapy , Standard of Care , Disease Management , Humans
15.
Pediatr Radiol ; 46(4): 443-51, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26739140

ABSTRACT

Leigh syndrome by definition is (1) a neurodegenerative disease with variable symptoms, (2) caused by mitochondrial dysfunction from a hereditary genetic defect and (3) accompanied by bilateral central nervous system lesions. A genetic etiology is confirmed in approximately 50% of patients, with more than 60 identified mutations in the nuclear and mitochondrial genomes. Here we review the clinical features and imaging studies of Leigh syndrome and describe the neuroimaging findings in a cohort of 17 children with genetically confirmed Leigh syndrome. MR findings include lesions in the brainstem in 9 children (53%), basal ganglia in 13 (76%), thalami in 4 (24%) and dentate nuclei in 2 (12%), and global atrophy in 2 (12%). The brainstem lesions were most frequent in the midbrain and medulla oblongata. With follow-up an increased number of lesions from baseline was observed in 7 of 13 children, evolution of the initial lesion was seen in 6, and complete regression of the lesions was seen in 3. No cerebral white matter lesions were found in any of the 17 children. In concordance with the literature, we found that Leigh syndrome follows a similar pattern of bilateral, symmetrical basal ganglia or brainstem changes. Lesions in Leigh syndrome evolve over time and a lack of visible lesions does not exclude the diagnosis. Reversibility of lesions is seen in some patients, making the continued search for treatment and prevention a priority for clinicians and researchers.


Subject(s)
Brain/diagnostic imaging , Brain/pathology , Leigh Disease/diagnostic imaging , Leigh Disease/pathology , Magnetic Resonance Imaging/methods , Neuroimaging/methods , Child, Preschool , Diagnosis, Differential , Evidence-Based Medicine , Humans , Image Enhancement/methods , Infant , Infant, Newborn
16.
Genet Med ; 17(9): 689-701, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25503498

ABSTRACT

PURPOSE: The purpose of this statement is to review the literature regarding mitochondrial disease and to provide recommendations for optimal diagnosis and treatment. This statement is intended for physicians who are engaged in diagnosing and treating these patients. METHODS: The Writing Group members were appointed by the Mitochondrial Medicine Society. The panel included members with expertise in several different areas. The panel members utilized a comprehensive review of the literature, surveys, and the Delphi method to reach consensus. We anticipate that this statement will need to be updated as the field continues to evolve. RESULTS: Consensus-based recommendations are provided for the diagnosis and treatment of mitochondrial disease. CONCLUSION: The Delphi process enabled the formation of consensus-based recommendations. We hope that these recommendations will help standardize the evaluation, diagnosis, and care of patients with suspected or demonstrated mitochondrial disease.


Subject(s)
Mitochondrial Diseases/diagnosis , Mitochondrial Diseases/therapy , Consensus , Delphi Technique , Evidence-Based Medicine , Humans , Treatment Outcome
17.
Epilepsia ; 55(5): 707-712, 2014 May.
Article in English | MEDLINE | ID: mdl-24605851

ABSTRACT

OBJECTIVE: Seizures constitute a frequent yet under-described manifestation of mitochondrial disorders (MDs). The aim of this study was to describe electroencephalography (EEG) findings and clinical seizure types in a population of children and adults with mitochondrial disease. METHODS: Retrospective chart review of 165 records of children and adults with mitochondrial disease seen in the University of Texas Houston Mitochondrial Center between 2007 and 2012 was performed; all subjects were diagnosed with confirmed mitochondrial disease. EEG findings and clinical data, including seizure semiology and response to antiepileptic drugs (AEDs), were analyzed and categorized. RESULTS: Sixty-six percent (109/165) of subjects had a routine EEG performed. Sixty-one percent (67/109) of EEG studies were abnormal and 85% (56/67) had epileptiform discharges. The most common EEG finding was generalized slowing (40/67, 60%). The most frequent category of epileptiform activity seen was multifocal discharges (41%), followed by focal (39%) and generalized (39%) discharges. Clinical seizures were seen in 55% of subjects and the most common types of seizures observed were complex partial (37%) and generalized tonic-clonic (GTC; 37%). The most common seizure type in patients with mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) was GTC (33%), with generalized or focal discharges seen on EEG. In Leigh syndrome GTC (11%) and complex partial (11%) seizures were the most frequent types. Of 60 subjects with clinical seizures, 28% were intractable to medical treatment. SIGNIFICANCE: Mitochondrial disorder should be included in the list of differential diagnosis in any child that presents with encephalopathy, seizures, and a fluctuating clinical course. Given the relatively high prevalence of EEG abnormalities in patients with MD, EEG should be performed during initial evaluation in all patients with MD, not only upon clinical suspicion of epilepsy.


Subject(s)
Electroencephalography , Epilepsy/diagnosis , Mitochondrial Diseases/diagnosis , Adolescent , Adult , Aged , Anticonvulsants/therapeutic use , Child , Child, Preschool , Comorbidity , Cross-Sectional Studies , DNA Mutational Analysis , DNA, Mitochondrial/genetics , Epilepsy/drug therapy , Epilepsy/epidemiology , Epilepsy/physiopathology , Female , Humans , Infant , Magnetoencephalography , Male , Middle Aged , Mitochondrial Diseases/drug therapy , Mitochondrial Diseases/epidemiology , Mitochondrial Diseases/genetics , Mitochondrial Diseases/physiopathology , Neurons/physiology , Prognosis , Retrospective Studies , Signal Processing, Computer-Assisted , Synaptic Transmission/physiology , Syndrome , Young Adult
18.
Clin Case Rep ; 12(7): e9116, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38919884

ABSTRACT

This case report presents a progressively declining 17-year-old patient with membrane protein-associated neurodegeneration who demonstrated symptomatic improvements in her dysarthria, dysphagia, and gait, and objective improvements in her 6-minute walk test and 5 times sit-to-stand test during elamipretide treatment.

19.
Genet Med ; 15(12): 966-71, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23660529

ABSTRACT

PURPOSE: Little is known about sex-specific manifestations of tuberous sclerosis complex. Inactivating mutations in the TSC1 and TSC2 genes cause tuberous sclerosis complex, and recent evidence points to a crucial role for these genes in maintaining appropriate ovarian function. The main objective of this study was to estimate reproductive dysfunction in a sample of women with tuberous sclerosis complex. METHODS: We designed a three-part questionnaire that included demographic information, reproductive history, and tuberous sclerosis complex history, and developed strict criteria to assess patterns in menstrual cyclicity; we analyzed 182 responses from female adult members of the Tuberous Sclerosis Alliance. RESULTS: More than one-third of women in our sample displayed some degree of menstrual irregularity, and their reported miscarriage rate was 41%. More than 4% of women had reproductive histories suggestive of premature ovarian insufficiency, higher than the general population estimate of 1%. CONCLUSION: Our data reveal an underappreciated aspect of tuberous sclerosis complex in affected women, suggesting that a further exploration of the role the tuberous sclerosis complex genes play in reproductive function is warranted.


Subject(s)
Abortion, Spontaneous/epidemiology , Menstruation Disturbances/epidemiology , Primary Ovarian Insufficiency/epidemiology , Reproductive Health , Self Report , Tuberous Sclerosis/physiopathology , Adolescent , Adult , Aged , Cross-Sectional Studies , Female , Humans , Middle Aged , Mutation , Prevalence , Tuberous Sclerosis/complications , Tuberous Sclerosis/genetics , Tuberous Sclerosis Complex 1 Protein , Tuberous Sclerosis Complex 2 Protein , Tumor Suppressor Proteins/genetics , Young Adult
20.
Mol Genet Metab Rep ; 34: 100958, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36873250

ABSTRACT

[This corrects the article DOI: 10.1016/j.ymgmr.2022.100890.].

SELECTION OF CITATIONS
SEARCH DETAIL