Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
BMC Cancer ; 23(1): 310, 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-37020198

ABSTRACT

BACKGROUND: Pediatric cancer is the leading cause of disease-related death in children and the need for better therapeutic options remains urgent. Due to the limited number of patients, target and drug development for pediatrics is often supplemented by data from studies focused on adult cancers. Recent evidence shows that pediatric cancers possess different vulnerabilities that should be explored independently from adult cancers. METHODS: Using the publicly available Genomics of Drug Sensitivity in Cancer database, we explore therapeutic targets and biomarkers specific to the pediatric solid malignancies Ewing sarcoma, medulloblastoma, neuroblastoma, osteosarcoma, and rhabdomyosarcoma. Results are validated using cell viability assays and high-throughput drug screens are used to identify synergistic combinations. RESULTS: Using published drug screening data, PARP is identified as a drug target of interest across multiple different pediatric malignancies. We validate these findings, and we show that efficacy can be improved when combined with conventional chemotherapeutics, namely topoisomerase inhibitors. Additionally, using gene set enrichment analysis, we identify ribosome biogenesis as a potential biomarker for PARP inhibition in pediatric cancer cell lines. CONCLUSION: Collectively, our results provide evidence to support the further development of PARP inhibition and the combination with TOP1 inhibition as a therapeutic approach in solid pediatric malignancies. Additionally, we propose ribosome biogenesis as a component to PARP inhibitor sensitivity that should be further investigated to help maximize the potential utility of PARP inhibition and combinations across pediatric solid malignancies.


Subject(s)
Antineoplastic Agents , Cerebellar Neoplasms , Neuroblastoma , Sarcoma, Ewing , Humans , Child , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Antineoplastic Agents/therapeutic use , Sarcoma, Ewing/drug therapy , Neuroblastoma/pathology , Cerebellar Neoplasms/drug therapy , Cell Line, Tumor
2.
J Clin Invest ; 132(13)2022 07 01.
Article in English | MEDLINE | ID: mdl-35552271

ABSTRACT

The inability of CD8+ effector T cells (Teffs) to reach tumor cells is an important aspect of tumor resistance to cancer immunotherapy. The recruitment of these cells to the tumor microenvironment (TME) is regulated by integrins, a family of adhesion molecules that are expressed on T cells. Here, we show that 7HP349, a small-molecule activator of lymphocyte function-associated antigen-1 (LFA-1) and very late activation antigen-4 (VLA-4) integrin cell-adhesion receptors, facilitated the preferential localization of tumor-specific T cells to the tumor and improved antitumor response. 7HP349 monotherapy had modest effects on anti-programmed death 1-resistant (anti-PD-1-resistant) tumors, whereas combinatorial treatment with anti-cytotoxic T lymphocyte-associated protein 4 (anti-CTLA-4) increased CD8+ Teff intratumoral sequestration and synergized in cooperation with neutrophils in inducing cancer regression. 7HP349 intratumoral CD8+ Teff enrichment activity depended on CXCL12. We analyzed gene expression profiles using RNA from baseline and on treatment tumor samples of 14 melanoma patients. We identified baseline CXCL12 gene expression as possibly improving the likelihood or response to anti-CTLA-4 therapies. Our results provide a proof-of-principle demonstration that LFA-1 activation could convert a T cell-exclusionary TME to a T cell-enriched TME through mechanisms involving cooperation with innate immune cells.


Subject(s)
Lymphocyte Function-Associated Antigen-1 , Melanoma , CD8-Positive T-Lymphocytes , CTLA-4 Antigen , Humans , Immunotherapy/methods , Lymphocyte Function-Associated Antigen-1/genetics , Lymphocyte Function-Associated Antigen-1/metabolism , Lymphocytes, Tumor-Infiltrating , Melanoma/drug therapy , Melanoma/genetics , Programmed Cell Death 1 Receptor , T-Lymphocytes/metabolism , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL