Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
Immunity ; 57(1): 68-85.e11, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38141610

ABSTRACT

Tissue factor (TF), which is a member of the cytokine receptor family, promotes coagulation and coagulation-dependent inflammation. TF also exerts protective effects through unknown mechanisms. Here, we showed that TF bound to interferon-α receptor 1 (IFNAR1) and antagonized its signaling, preventing spontaneous sterile inflammation and maintaining immune homeostasis. Structural modeling and direct binding studies revealed binding of the TF C-terminal fibronectin III domain to IFNAR1, which restricted the expression of interferon-stimulated genes (ISGs). Podocyte-specific loss of TF in mice (PodΔF3) resulted in sterile renal inflammation, characterized by JAK/STAT signaling, proinflammatory cytokine expression, disrupted immune homeostasis, and glomerulopathy. Inhibiting IFNAR1 signaling or loss of Ifnar1 expression in podocytes attenuated these effects in PodΔF3 mice. As a heteromer, TF and IFNAR1 were both inactive, while dissociation of the TF-IFNAR1 heteromer promoted TF activity and IFNAR1 signaling. These data suggest that the TF-IFNAR1 heteromer is a molecular switch that controls thrombo-inflammation.


Subject(s)
Signal Transduction , Thromboplastin , Animals , Mice , Inflammation , Interferon-alpha , Receptor, Interferon alpha-beta/genetics , Receptor, Interferon alpha-beta/metabolism , Thromboplastin/genetics
2.
Kidney Int ; 105(1): 65-83, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37774921

ABSTRACT

Glomerular-tubular crosstalk within the kidney has been proposed, but the paracrine signals enabling this remain largely unknown. The cold-shock protein Y-box binding protein 1 (YBX1) is known to regulate inflammation and kidney diseases but its role in podocytes remains undetermined. Therefore, we analyzed mice with podocyte specific Ybx1 deletion (Ybx1ΔPod). Albuminuria was increased in unchallenged Ybx1ΔPod mice, which surprisingly was associated with reduced glomerular, but enhanced tubular damage. Tubular toll-like receptor 4 (TLR4) expression, node-like receptor protein 3 (NLRP3) inflammasome activation and kidney inflammatory cell infiltrates were all increased in Ybx1ΔPod mice. In vitro, extracellular YBX1 inhibited NLRP3 inflammasome activation in tubular cells. Co-immunoprecipitation, immunohistochemical analyses, microscale cell-free thermophoresis assays, and blunting of the YBX1-mediated TLR4-inhibition by a unique YBX1-derived decapeptide suggests a direct interaction of YBX1 and TLR4. Since YBX1 can be secreted upon post-translational acetylation, we hypothesized that YBX1 secreted from podocytes can inhibit TLR4 signaling in tubular cells. Indeed, mice expressing a non-secreted YBX1 variant specifically in podocytes (Ybx1PodK2A mice) phenocopied Ybx1ΔPod mice, demonstrating a tubular-protective effect of YBX1 secreted from podocytes. Lipopolysaccharide-induced tubular injury was aggravated in Ybx1ΔPod and Ybx1PodK2A mice, indicating a pathophysiological relevance of this glomerular-tubular crosstalk. Thus, our data show that YBX1 is physiologically secreted from podocytes, thereby negatively modulating sterile inflammation in the tubular compartment, apparently by binding to and inhibiting tubular TLR4 signaling. Hence, we have uncovered an YBX1-dependent molecular mechanism of glomerular-tubular crosstalk.


Subject(s)
Kidney Diseases , Podocytes , Mice , Animals , Inflammasomes/metabolism , Toll-Like Receptor 4/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Cold-Shock Response , Kidney/metabolism , Podocytes/metabolism , Kidney Diseases/metabolism , Inflammation/metabolism
3.
Kidney Int ; 103(2): 304-319, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36309126

ABSTRACT

Dysfunction of mesangial cells plays a major role in the pathogenesis of diabetic kidney disease (DKD), the leading cause of kidney failure. However, the underlying molecular mechanisms are incompletely understood. By unbiased gene expression analysis of glucose-exposed mesangial cells, we identified the transmembrane receptor CD248 as the most upregulated gene, and the maladaptive unfolded protein response (UPR) as one of the most stimulated pathways. Upregulation of CD248 was further confirmed in glucose-stressed mesangial cells in vitro, in kidney glomeruli isolated from diabetic mice (streptozotocin; STZ and db/db models, representing type 1 and type 2 diabetes mellitus, respectively) in vivo, and in glomerular kidney sections from patients with DKD. Time course analysis revealed that glomerular CD248 induction precedes the onset of albuminuria, mesangial matrix expansion and maladaptive UPR activation (hallmarked by transcription factor C/EBP homologous protein (CHOP) induction) but is paralleled by loss of the adaptive UPR regulator spliced X box binding protein (XBP1). Mechanistically, CD248 promoted maladaptive UPR signaling via inhibition of the inositol requiring enzyme 1α (IRE1α)-mediated transcription factor XBP1 splicing in vivo and in vitro. CD248 induced a multiprotein complex comprising heat shock protein 90, BH3 interacting domain death agonist (BID) and IRE1α, in which BID impedes IRE1α-mediated XBP1 splicing and induced CHOP mediated maladaptive UPR signaling. While CD248 knockout ameliorated DKD-associated glomerular dysfunction and reverses maladaptive unfolded protein response signaling, concomitant XBP1 deficiency abolished the protective effect in diabetic CD248 knockout mice, supporting a functional interaction of CD248 and XBP1 in vivo. Hence, CD248 is a novel mesangial cell receptor inducing maladaptive UPR signaling in DKD.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Diabetic Nephropathies , Animals , Mice , Antigens, CD/metabolism , Antigens, Neoplasm , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/genetics , Diabetic Nephropathies/genetics , Endoribonucleases/genetics , Endoribonucleases/metabolism , Protein Serine-Threonine Kinases/genetics , Transcription Factors/metabolism , Unfolded Protein Response , Humans
4.
Blood ; 137(7): 977-982, 2021 02 18.
Article in English | MEDLINE | ID: mdl-32870264

ABSTRACT

Excess platelet activation by extracellular vesicles (EVs) results in trophoblast inflammasome activation, interleukin 1ß (IL-1ß) activation, preeclampsia (PE), and partial embryonic lethality. Embryonic thrombomodulin (TM) deficiency, which causes embryonic lethality hallmarked by impaired trophoblast proliferation, has been linked with maternal platelet activation. We hypothesized that placental TM loss, platelet activation, and embryonic lethality are mechanistically linked to trophoblast inflammasome activation. Here, we uncover unidirectional interaction of placental inflammasome activation and reduced placental TM expression: although inflammasome inhibition did not rescue TM-null embryos from lethality, the inflammasome-dependent cytokine IL-1ß reduced trophoblast TM expression and impaired pregnancy outcome. EVs, known to induce placental inflammasome activation, reduced trophoblast TM expression and proliferation. Trophoblast TM expression correlated negatively with IL-1ß expression and positively with platelet numbers and trophoblast proliferation in human PE placentae, implying translational relevance. Soluble TM treatment or placental TM restoration ameliorated the EV-induced PE-like phenotype in mice, preventing placental thromboinflammation and embryonic death. The lethality of TM-null embryos is not a consequence of placental NLRP3 inflammasome activation. Conversely, EV-induced placental inflammasome activation reduces placental TM expression, promoting placental and embryonic demise. These data identify a new function of placental TM in PE and suggest that soluble TM limits thromboinflammatory pregnancy complications.


Subject(s)
Fetal Death/etiology , Inflammasomes/metabolism , Placenta/metabolism , Pre-Eclampsia/metabolism , Thrombomodulin/deficiency , Animals , Cell Division , Down-Regulation , Extracellular Vesicles , Female , Genes, Lethal , Humans , Interleukin 1 Receptor Antagonist Protein/pharmacology , Interleukin-1beta/biosynthesis , Interleukin-1beta/genetics , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein/physiology , Placenta/blood supply , Platelet Activation , Platelet-Rich Plasma , Pregnancy , Pregnancy Outcome , Receptors, Thrombin , Recombinant Proteins/pharmacology , Thrombomodulin/antagonists & inhibitors , Thrombomodulin/biosynthesis , Thrombomodulin/genetics , Trophoblasts/metabolism
5.
Circ Res ; 128(4): 513-529, 2021 02 19.
Article in English | MEDLINE | ID: mdl-33353373

ABSTRACT

RATIONALE: While thrombin is the key protease in thrombus formation, other coagulation proteases, such as fXa (factor Xa) or aPC (activated protein C), independently modulate intracellular signaling via partially distinct receptors. OBJECTIVES: To study the differential effects of fXa or fIIa (factor IIa) inhibition on gene expression and inflammation in myocardial ischemia-reperfusion injury. METHODS AND RESULTS: Mice were treated with a direct fIIa inhibitor (fIIai) or direct fXa inhibitor (fXai) at doses that induced comparable anticoagulant effects ex vivo and in vivo (tail-bleeding assay and FeCl3-induced thrombosis). Myocardial ischemia-reperfusion injury was induced via left anterior descending ligation. We determined infarct size and in vivo aPC generation, analyzed gene expression by RNA sequencing, and performed immunoblotting and ELISA. The signaling-only 3K3A-aPC variant and inhibitory antibodies that blocked all or only the anticoagulant function of aPC were used to determine the role of aPC. Doses of fIIai and fXai that induced comparable anticoagulant effects resulted in a comparable reduction in infarct size. However, unbiased gene expression analyses revealed marked differences, including pathways related to sterile inflammation and inflammasome regulation. fXai but not fIIai inhibited sterile inflammation by reducing the expression of proinflammatory cytokines (IL [interleukin]-1ß, IL-6, and TNFα [tumor necrosis factor alpha]), as well as NF-κB (nuclear factor kappa B) and inflammasome activation. This anti-inflammatory effect was associated with reduced myocardial fibrosis 28 days post-myocardial ischemia-reperfusion injury. Mechanistically, in vivo aPC generation was higher with fXai than with fIIai. Inhibition of the anticoagulant and signaling properties of aPC abolished the anti-inflammatory effect associated with fXai, while inhibiting only the anticoagulant function of aPC had no effect. Combining 3K3A-aPC with fIIai reduced the inflammatory response, mimicking the fXai-associated effect. CONCLUSIONS: We showed that specific inhibition of coagulation via direct oral anticoagulants had differential effects on gene expression and inflammation, despite comparable anticoagulant effects and infarct sizes. Targeting individual coagulation proteases induces specific cellular responses unrelated to their anticoagulant effect.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Factor Xa Inhibitors/therapeutic use , Myocardial Reperfusion Injury/drug therapy , Protein C/therapeutic use , Animals , Anti-Inflammatory Agents/pharmacology , Factor Xa Inhibitors/pharmacology , Inflammasomes/metabolism , Male , Mice , Mice, Inbred C57BL , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , NF-kappa B/metabolism , Protein C/pharmacology
6.
J Am Soc Nephrol ; 31(8): 1762-1780, 2020 08.
Article in English | MEDLINE | ID: mdl-32709711

ABSTRACT

BACKGROUND: Diabetic nephropathy (dNP), now the leading cause of ESKD, lacks efficient therapies. Coagulation protease-dependent signaling modulates dNP, in part via the G protein-coupled, protease-activated receptors (PARs). Specifically, the cytoprotective protease-activated protein C (aPC) protects from dNP, but the mechanisms are not clear. METHODS: A combination of in vitro approaches and mouse models evaluated the role of aPC-integrin interaction and related signaling in dNP. RESULTS: The zymogen protein C and aPC bind to podocyte integrin-ß3, a subunit of integrin-αvß3. Deficiency of this integrin impairs thrombin-mediated generation of aPC on podocytes. The interaction of aPC with integrin-αvß3 induces transient binding of integrin-ß3 with G α13 and controls PAR-dependent RhoA signaling in podocytes. Binding of aPC to integrin-ß3via its RGD sequence is required for the temporal restriction of RhoA signaling in podocytes. In podocytes lacking integrin-ß3, aPC induces sustained RhoA activation, mimicking the effect of thrombin. In vivo, overexpression of wild-type aPC suppresses pathologic renal RhoA activation and protects against dNP. Disrupting the aPC-integrin-ß3 interaction by specifically deleting podocyte integrin-ß3 or by abolishing aPC's integrin-binding RGD sequence enhances RhoA signaling in mice with high aPC levels and abolishes aPC's nephroprotective effect. Pharmacologic inhibition of PAR1, the pivotal thrombin receptor, restricts RhoA activation and nephroprotects RGE-aPChigh and wild-type mice.Conclusions aPC-integrin-αvß3 acts as a rheostat, controlling PAR1-dependent RhoA activation in podocytes in diabetic nephropathy. These results identify integrin-αvß3 as an essential coreceptor for aPC that is required for nephroprotective aPC-PAR signaling in dNP.


Subject(s)
Diabetic Nephropathies/prevention & control , Integrin beta3/physiology , Podocytes/physiology , Protein C/physiology , rhoA GTP-Binding Protein/physiology , Animals , Cytoprotection , Endothelial Protein C Receptor/physiology , GTP-Binding Protein alpha Subunits, G12-G13/physiology , HEK293 Cells , Humans , Mice , Mice, Inbred C57BL , Receptor, PAR-1/physiology
7.
Int J Mol Sci ; 22(18)2021 Sep 13.
Article in English | MEDLINE | ID: mdl-34576036

ABSTRACT

Procoagulant extracellular vesicles (EV) and platelet activation have been associated with gestational vascular complications. EV-induced platelet-mediated placental inflammasome activation has been shown to cause preeclampsia-like symptoms in mice. However, the effect of EV-mediated placental thrombo-inflammation on trophoblast differentiation remains unknown. Here, we identify that the EV-induced thrombo-inflammatory pathway modulates trophoblast morphology and differentiation. EVs and platelets reduce syncytiotrophoblast differentiation while increasing giant trophoblast and spongiotrophoblast including the glycogen-rich cells. These effects are platelet-dependent and mediated by the NLRP3 inflammasome. In humans, inflammasome activation was negatively correlated with trophoblast differentiation marker GCM1 and positively correlated with blood pressure. These data identify a crucial role of EV-induced placental thrombo-inflammation on altering trophoblast differentiation and suggest platelet activation or inflammasome activation as a therapeutic target in order to achieve successful placentation.


Subject(s)
Extracellular Vesicles/genetics , Inflammation/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Pregnancy Complications, Cardiovascular/genetics , Animals , Blood Platelets/metabolism , Blood Platelets/pathology , Cell Differentiation/genetics , DNA-Binding Proteins/genetics , Disease Models, Animal , Extracellular Vesicles/metabolism , Female , Humans , Inflammasomes/genetics , Inflammation/metabolism , Inflammation/pathology , Mice , Platelet Activation/genetics , Pregnancy , Pregnancy Complications, Cardiovascular/pathology , Transcription Factors/genetics , Trophoblasts/metabolism , Trophoblasts/pathology
8.
Curr Opin Hematol ; 26(1): 41-50, 2019 01.
Article in English | MEDLINE | ID: mdl-30451721

ABSTRACT

PURPOSE OF REVIEW: The serine protease activated protein C (aPC) was initially characterized as an endogenous anticoagulant, but in addition conveys anti-inflammatory, barrier-protective, and pro cell-survival functions. Its endogenous anticoagulant function hampered the successful and continuous implantation of aPC as a therapeutic agent in septic patients. However, it became increasingly apparent that aPC controls cellular function largely independent of its anticoagulant effects through cell-specific and context-specific receptor complexes and intracellular signaling pathways. The purpose of this review is to outline the mechanisms of aPC-dependent cell signaling and its intracellular molecular targets. RECENT FINDINGS: With the advent of new therapeutic agents either modulating directly and specifically the activity of coagulation proteases or interfering with protease-activated receptor signaling a better understanding not only of the receptor mechanisms but also of the intracellular signaling mechanisms controlled by aPC in a disease-specific and context-specific fashion, is required to tailor new therapeutic approaches based on aPC's anti-inflammatory, barrier-protective, and pro cell-survival functions. SUMMARY: This review summarizes recent insights into the intracellular signaling pathways controlled by aPC in a cell-specific and context-specific fashion. We focus on aPC-mediated barrier protection, inhibition of inflammation, and cytoprotecting within this review.


Subject(s)
Anticoagulants , Protein C , Sepsis , Signal Transduction/drug effects , Animals , Anticoagulants/metabolism , Anticoagulants/therapeutic use , Humans , Protein C/metabolism , Protein C/therapeutic use , Sepsis/drug therapy , Sepsis/metabolism , Sepsis/pathology
9.
Blood ; 130(24): 2664-2677, 2017 12 14.
Article in English | MEDLINE | ID: mdl-28882883

ABSTRACT

Cytoprotection by activated protein C (aPC) after ischemia-reperfusion injury (IRI) is associated with apoptosis inhibition. However, IRI is hallmarked by inflammation, and hence, cell-death forms disjunct from immunologically silent apoptosis are, in theory, more likely to be relevant. Because pyroptosis (ie, cell death resulting from inflammasome activation) is typically observed in IRI, we speculated that aPC ameliorates IRI by inhibiting inflammasome activation. Here we analyzed the impact of aPC on inflammasome activity in myocardial and renal IRIs. aPC treatment before or after myocardial IRI reduced infarct size and Nlrp3 inflammasome activation in mice. Kinetic in vivo analyses revealed that Nlrp3 inflammasome activation preceded myocardial injury and apoptosis, corroborating a pathogenic role of the Nlrp3 inflammasome. The constitutively active Nlrp3A350V mutation abolished the protective effect of aPC, demonstrating that Nlrp3 suppression is required for aPC-mediated protection from IRI. In vitro aPC inhibited inflammasome activation in macrophages, cardiomyocytes, and cardiac fibroblasts via proteinase-activated receptor 1 (PAR-1) and mammalian target of rapamycin complex 1 (mTORC1) signaling. Accordingly, inhibiting PAR-1 signaling, but not the anticoagulant properties of aPC, abolished the ability of aPC to restrict Nlrp3 inflammasome activity and tissue damage in myocardial IRI. Targeting biased PAR-1 signaling via parmodulin-2 restricted mTORC1 and Nlrp3 inflammasome activation and limited myocardial IRI as efficiently as aPC. The relevance of aPC-mediated Nlrp3 inflammasome suppression after IRI was corroborated in renal IRI, where the tissue protective effect of aPC was likewise dependent on Nlrp3 inflammasome suppression. These studies reveal that aPC protects from IRI by restricting mTORC1-dependent inflammasome activation and that mimicking biased aPC PAR-1 signaling using parmodulins may be a feasible therapeutic approach to combat IRI.


Subject(s)
Inflammasomes/drug effects , Mechanistic Target of Rapamycin Complex 1/antagonists & inhibitors , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Protein C/pharmacology , Reperfusion Injury/prevention & control , Animals , Animals, Newborn , Anticoagulants/pharmacology , Apoptosis/drug effects , Cells, Cultured , Cytoprotection/drug effects , Cytoprotection/genetics , Immunoblotting , Inflammasomes/metabolism , Kidney/blood supply , Kidney/drug effects , Kidney/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice, Inbred C57BL , Mice, Knockout , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/prevention & control , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Protective Agents/pharmacology , Receptor, PAR-1/genetics , Receptor, PAR-1/metabolism , Reperfusion Injury/metabolism
10.
Blood ; 130(12): 1445-1455, 2017 09 21.
Article in English | MEDLINE | ID: mdl-28687614

ABSTRACT

Coagulation proteases have increasingly recognized functions beyond hemostasis and thrombosis. Disruption of activated protein C (aPC) or insulin signaling impair function of podocytes and ultimately cause dysfunction of the glomerular filtration barrier and diabetic kidney disease (DKD). We here show that insulin and aPC converge on a common spliced-X-box binding protein-1 (sXBP1) signaling pathway to maintain endoplasmic reticulum (ER) homeostasis. Analogous to insulin, physiological levels of aPC maintain ER proteostasis in DKD. Accordingly, genetically impaired protein C activation exacerbates maladaptive ER response, whereas genetic or pharmacological restoration of aPC maintains ER proteostasis in DKD models. Importantly, in mice with podocyte-specific deficiency of insulin receptor (INSR), aPC selectively restores the activity of the cytoprotective ER-transcription factor sXBP1 by temporally targeting INSR downstream signaling intermediates, the regulatory subunits of PI3Kinase, p85α and p85ß. Genome-wide mapping of condition-specific XBP1-transcriptional regulatory patterns confirmed that concordant unfolded protein response target genes are involved in maintenance of ER proteostasis by both insulin and aPC. Thus, aPC efficiently employs disengaged insulin signaling components to reconfigure ER signaling and restore proteostasis. These results identify ER reprogramming as a novel hormonelike function of coagulation proteases and demonstrate that targeting insulin signaling intermediates may be a feasible therapeutic approach ameliorating defective insulin signaling.


Subject(s)
Blood Coagulation , Class Ia Phosphatidylinositol 3-Kinase/metabolism , Insulin/metabolism , Peptide Hydrolases/metabolism , Protein C/metabolism , Signal Transduction , X-Box Binding Protein 1/metabolism , Animals , Diabetic Nephropathies/metabolism , Endoplasmic Reticulum/metabolism , Gene Expression Regulation , Homeostasis , Humans , Mice, Inbred C57BL , Models, Biological , Thrombomodulin/metabolism , Unfolded Protein Response/genetics
11.
Blood ; 128(17): 2153-2164, 2016 10 27.
Article in English | MEDLINE | ID: mdl-27589872

ABSTRACT

Preeclampsia (PE) is a placenta-induced inflammatory disease associated with maternal and fetal morbidity and mortality. The mechanisms underlying PE remain enigmatic and delivery of the placenta is the only known remedy. PE is associated with coagulation and platelet activation and increased extracellular vesicle (EV) formation. However, thrombotic occlusion of the placental vascular bed is rarely observed and the mechanistic relevance of EV and platelet activation remains unknown. Here we show that EVs induce a thromboinflammatory response specifically in the placenta. Following EV injection, activated platelets accumulate particularly within the placental vascular bed. EVs cause adenosine triphosphate (ATP) release from platelets and inflammasome activation within trophoblast cells through purinergic signaling. Inflammasome activation in trophoblast cells triggers a PE-like phenotype, characterized by pregnancy failure, elevated blood pressure, increased plasma soluble fms-like tyrosine kinase 1, and renal dysfunction. Intriguingly, genetic inhibition of inflammasome activation specifically in the placenta, pharmacological inhibition of inflammasome or purinergic signaling, or genetic inhibition of maternal platelet activation abolishes the PE-like phenotype. Inflammasome activation in trophoblast cells of women with preeclampsia corroborates the translational relevance of these findings. These results strongly suggest that EVs cause placental sterile inflammation and PE through activation of maternal platelets and purinergic inflammasome activation in trophoblast cells, uncovering a novel thromboinflammatory mechanism at the maternal-embryonic interface.


Subject(s)
Extracellular Vesicles/pathology , Inflammasomes/immunology , Platelet Activation/physiology , Pre-Eclampsia/physiopathology , Trophoblasts/pathology , Animals , Blood Platelets/immunology , Cells, Cultured , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Extracellular Vesicles/immunology , Female , Humans , Immunoblotting , Immunohistochemistry , Mice , Mice, Inbred C57BL , Microscopy, Electron, Transmission , Pre-Eclampsia/immunology , Pre-Eclampsia/pathology , Pregnancy , Trophoblasts/immunology
12.
J Am Soc Nephrol ; 28(11): 3182-3189, 2017 11.
Article in English | MEDLINE | ID: mdl-28696246

ABSTRACT

Established therapies for diabetic nephropathy (dNP) delay but do not prevent its progression. The shortage of established therapies may reflect the inability to target the tubular compartment. The chemical chaperone tauroursodeoxycholic acid (TUDCA) ameliorates maladaptive endoplasmic reticulum (ER) stress signaling and experimental dNP. Additionally, TUDCA activates the farnesoid X receptor (FXR), which is highly expressed in tubular cells. We hypothesized that TUDCA ameliorates maladaptive ER signaling via FXR agonism specifically in tubular cells. Indeed, TUDCA induced expression of FXR-dependent genes (SOCS3 and DDAH1) in tubular cells but not in other renal cells. In vivo, TUDCA reduced glomerular and tubular injury in db/db and diabetic endothelial nitric oxide synthase-deficient mice. FXR inhibition with Z-guggulsterone or vivo-morpholino targeting of FXR diminished the ER-stabilizing and renoprotective effects of TUDCA. Notably, these in vivo approaches abolished tubular but not glomerular protection by TUDCA. Combined intervention with TUDCA and the angiotensin-converting enzyme inhibitor enalapril in 16-week-old db/db mice reduced albuminuria more efficiently than did either treatment alone. Although both therapies reduced glomerular damage, only TUDCA ameliorated tubular damage. Thus, interventions that specifically protect the tubular compartment in dNP, such as FXR agonism, may provide renoprotective effects on top of those achieved by inhibiting angiotensin-converting enzyme.


Subject(s)
Diabetic Nephropathies/prevention & control , Kidney Tubules , Receptors, Cytoplasmic and Nuclear/agonists , Taurochenodeoxycholic Acid/therapeutic use , Animals , Humans , Male , Mice , Mice, Inbred C57BL
13.
J Am Soc Nephrol ; 27(8): 2270-5, 2016 08.
Article in English | MEDLINE | ID: mdl-26832955

ABSTRACT

Glomerular apoptosis may contribute to diabetic nephropathy (dNP), but the pathophysiologic relevance of this process remains obscure. Here, we administered two partially disjunct polycaspase inhibitors in 8-week-old diabetic (db/db) mice: M-920 (inhibiting caspase-1, -3, -4, -5, -6, -7, and -8) and CIX (inhibiting caspase-3, -6, -7, -8, and -10). Notably, despite reduction in glomerular cell death and caspase-3 activity by both inhibitors, only M-920 ameliorated dNP. Nephroprotection by M-920 was associated with reduced renal caspase-1 and inflammasome activity. Accordingly, analysis of gene expression data in the Nephromine database revealed persistently elevated glomerular expression of inflammasome markers (NLRP3, CASP1, PYCARD, IL-18, IL-1ß), but not of apoptosis markers (CASP3, CASP7, PARP1), in patients with and murine models of dNP. In vitro, increased levels of markers of inflammasome activation (Nlrp3, caspase-1 cleavage) preceded those of markers of apoptosis activation (caspase-3 and -7, PARP1 cleavage) in glucose-stressed podocytes. Finally, caspase-3 deficiency did not protect mice from dNP, whereas both homozygous and hemizygous caspase-1 deficiency did. Hence, these results suggest caspase-3-dependent cell death has a negligible effect, whereas caspase-1-dependent inflammasome activation has a crucial function in the establishment of dNP. Furthermore, small molecules targeting caspase-1 or inflammasome activation may be a feasible therapeutic approach in dNP.


Subject(s)
Caspase 1/physiology , Caspase 3/physiology , Diabetic Nephropathies/enzymology , Diabetic Nephropathies/etiology , Animals , Inflammasomes , Mice
14.
J Am Soc Nephrol ; 26(11): 2789-99, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26015455

ABSTRACT

Ischemia-reperfusion injury (IRI) is the leading cause of ARF. A pathophysiologic role of the coagulation system in renal IRI has been established, but the functional relevance of thrombomodulin (TM)-dependent activated protein C (aPC) generation and the intracellular targets of aPC remain undefined. Here, we investigated the role of TM-dependent aPC generation and therapeutic aPC application in a murine renal IRI model and in an in vitro hypoxia and reoxygenation (HR) model using proximal tubular cells. In renal IRI, endogenous aPC levels were reduced. Genetic or therapeutic reconstitution of aPC efficiently ameliorated renal IRI independently of its anticoagulant properties. In tubular cells, cytoprotective aPC signaling was mediated through protease activated receptor-1- and endothelial protein C receptor-dependent regulation of the cold-shock protein Y-box binding protein-1 (YB-1). The mature 50 kD form of YB-1 was required for the nephro- and cytoprotective effects of aPC in vivo and in vitro, respectively. Reduction of mature YB-1 and K48-linked ubiquitination of YB-1 was prevented by aPC after renal IRI or tubular HR injury. aPC preserved the interaction of YB-1 with the deubiquitinating enzyme otubain-1 and maintained expression of otubain-1, which was required to reduce K48-linked YB-1 ubiquitination and to stabilize the 50 kD form of YB-1 after renal IRI and tubular HR injury. These data link the cyto- and nephroprotective effects of aPC with the ubiquitin-proteasome system and identify YB-1 as a novel intracellular target of aPC. These insights may provide new impetus for translational efforts aiming to restrict renal IRI.


Subject(s)
Kidney/pathology , Protein C/metabolism , Reperfusion Injury/pathology , Transcription Factors/metabolism , Ubiquitination , Alleles , Animals , Anticoagulants/chemistry , Crosses, Genetic , Cysteine Endopeptidases/genetics , Disease Models, Animal , Exons , Hypoxia/pathology , Kidney Tubules/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Oxygen/chemistry , Signal Transduction , Thrombosis/metabolism
15.
Kidney Int ; 87(1): 74-84, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25075770

ABSTRACT

Diabetic nephropathy is a growing health concern with characteristic sterile inflammation. As the underlying mechanisms of this inflammation remain poorly defined, specific therapies targeting sterile inflammation in diabetic nephropathy are lacking. Intriguingly, an association of diabetic nephropathy with inflammasome activation has recently been shown, but the pathophysiological relevance of this finding remains unknown. Within glomeruli, inflammasome activation was detected in endothelial cells and podocytes in diabetic humans and mice and in glucose-stressed glomerular endothelial cells and podocytes in vitro. Abolishing Nlrp3 or caspase-1 expression in bone marrow-derived cells fails to protect mice against diabetic nephropathy. Conversely, Nlrp3-deficient mice are protected against diabetic nephropathy despite transplantation of wild-type bone marrow. Pharmacological IL-1R antagonism prevented or even reversed diabetic nephropathy in mice. Mitochondrial reactive oxygen species (ROS) activate the Nlrp3 inflammasome in glucose or advanced glycation end product stressed podocytes. Inhibition of mitochondrial ROS prevents glomerular inflammasome activation and nephropathy in diabetic mice. Thus, mitochondrial ROS and Nlrp3-inflammasome activation in non-myeloid-derived cells aggravate diabetic nephropathy. Targeting the inflammasome may be a potential therapeutic approach to diabetic nephropathy.


Subject(s)
Carrier Proteins/immunology , Diabetic Nephropathies/immunology , Inflammasomes/immunology , Kidney Glomerulus/cytology , Animals , Endothelial Cells/immunology , Humans , Mice , NLR Family, Pyrin Domain-Containing 3 Protein , Podocytes/immunology , Severity of Illness Index
16.
Blood Adv ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38941535

ABSTRACT

Low molecular weight heparins (LMWH) are used to prevent or treat thromboembolic events during pregnancy. While studies suggest an overall protective effect of LMWH in preeclampsia (PE), their use in preeclampsia remains controversial. LMWH may convey beneficial effects in preeclampsia independent of their anti-coagulant activity, possibly by inhibiting inflammation. Here we evaluated whether LMWH inhibit placental thrombo-inflammation and trophoblast NLRP3 inflammasome activation. Using an established procoagulant extracellular vesicle (EV)-induced and platelet-dependent preeclampsia-like mouse model, we show that LMWH reduces pregnancy loss and trophoblast inflammasome activation, restores altered trophoblast differentiation and improves trophoblast proliferation in-vivo and in-vitro. Moreover, LMWH inhibits platelet independent trophoblast NLRP3 inflammasome activation. Mechanistically, LWMH activates via Heparin binding epidermal growth factor (HBEGF) signaling the PI3-Kinase-AKT pathway in trophoblasts thus preventing inflammasome activation. In human preeclampsia placental explants, inflammasome activation and PI3-Kinase-AKT signaling events were reduced with LMWH treatment compared to those without LMWH treatment. Thus, LMWH inhibits sterile inflammation via the HBEGF signaling pathway in trophoblasts and ameliorates preeclampsia-associated complications. These findings suggest that drugs targeting the inflammasome may be evaluated in preeclampsia and identify a signaling mechanism through which LMWH ameliorates preeclampsia, thus providing a rationale for the use of LMWH in preeclampsia.

18.
Blood Adv ; 7(17): 5055-5068, 2023 09 12.
Article in English | MEDLINE | ID: mdl-37315174

ABSTRACT

A direct regulation of adaptive immunity by the coagulation protease activated protein C (aPC) has recently been established. Preincubation of T cells with aPC for 1 hour before transplantation increases FOXP3+ regulatory T cells (Tregs) and reduces acute graft-versus-host disease (aGVHD) in mice, but the underlying mechanism remains unknown. Because cellular metabolism modulates epigenetic gene regulation and plasticity in T cells, we hypothesized that aPC promotes FOXP3+ expression by altering T-cell metabolism. To this end, T-cell differentiation was assessed in vitro using mixed lymphocyte reaction or plate-bound α-CD3/CD28 stimulation, and ex vivo using T cells isolated from mice with aGVHD without and with aPC preincubation, or analyses of mice with high plasma aPC levels. In stimulated CD4+CD25- cells, aPC induces FOXP3 expression while reducing expression of T helper type 1 cell markers. Increased FOXP3 expression is associated with altered epigenetic markers (reduced 5-methylcytosine and H3K27me3) and reduced Foxp3 promoter methylation and activity. These changes are linked to metabolic quiescence, decreased glucose and glutamine uptake, decreased mitochondrial metabolism (reduced tricarboxylic acid metabolites and mitochondrial membrane potential), and decreased intracellular glutamine and α-ketoglutarate levels. In mice with high aPC plasma levels, T-cell subpopulations in the thymus are not altered, reflecting normal T-cell development, whereas FOXP3 expression in splenic T cells is reduced. Glutamine and α-ketoglutarate substitution reverse aPC-mediated FOXP3+ induction and abolish aPC-mediated suppression of allogeneic T-cell stimulation. These findings show that aPC modulates cellular metabolism in T cells, reducing glutamine and α-ketoglutarate levels, which results in altered epigenetic markers, Foxp3 promoter demethylation and induction of FOXP3 expression, thus favoring a Treg-like phenotype.


Subject(s)
Ketoglutaric Acids , Protein C , Mice , Animals , Ketoglutaric Acids/metabolism , Protein C/metabolism , Glutamine/genetics , Glutamine/metabolism , T-Lymphocytes, Regulatory , Epigenesis, Genetic , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism
19.
Res Pract Thromb Haemost ; 7(4): 100193, 2023 May.
Article in English | MEDLINE | ID: mdl-37538494

ABSTRACT

This year's Congress of the International Society of Thrombosis and Haemostasis (ISTH) took place in person in Montréal, Canada, from June 24-28, 2023. The conference, held annually, highlighted cutting-edge advances in basic, translational, population and clinical sciences relevant to the Society. As for all ISTH congresses, we offered a special, congress-specific scientific theme; this year, the special theme was immunothrombosis. Certainly, over the last few years, COVID-19 infection and its related thrombotic and other complications have renewed interest in the concepts of thromboinflammation and immunothrombosis; namely, the relationship between inflammation, infection and clotting. Other main scientific themes of the Congress included Arterial Thromboembolism, Coagulation and Natural Anticoagulants, Diagnostics and Omics, Fibrinolysis and Proteolysis, Hemophilia and Rare Bleeding Disorders, Hemostatic System in Cancer, Inflammation and Immunity, Pediatrics, Platelet Disorders, von Willebrand Disease and Thrombotic Microangiopathies, Platelets and Megakaryocytes, Vascular Biology, Venous Thromboembolism and Women's Health. Among other sessions, the program included 28 State-of-the-Art (SOA) sessions with a total of 84 talks given by internationally recognized leaders in the field. SOA speakers were invited to prepare brief illustrated reviews of their talks that were peer reviewed and are included in this article. These illustrated capsules highlight the major scientific advances with potential to impact clinical practice. Readers are invited to take advantage of the excellent educational resource provided by these illustrated capsules. They are also encouraged to use the image in social media to draw attention to the high quality and impact of the science presented at the Congress.

20.
Front Cardiovasc Med ; 9: 866751, 2022.
Article in English | MEDLINE | ID: mdl-35433860

ABSTRACT

Hemostasis, thrombosis, and inflammation are tightly interconnected processes which may give rise to thrombo-inflammation, involved in infectious and non-infectious acute and chronic diseases, including cardiovascular diseases (CVD). Traditionally, due to its hemostatic role, blood coagulation is isolated from the inflammation, and its critical contribution in the progressing CVD is underrated, until the full occlusion of a critical vessel occurs. Underlying vascular injury exposes extracellular matrix to deposit platelets and inflammatory cells. Platelets being key effector cells, bridge all the three key processes (hemostasis, thrombosis, and inflammation) associated with thrombo-inflammation. Under physiological conditions, platelets remain in an inert state despite the proximity to the endothelium and other cells which are decorated with glycosaminoglycan (GAG)-rich glycocalyx (GAGs). A pathological insult to the endothelium results in an imbalanced blood coagulation system hallmarked by increased thrombin generation due to losses of anticoagulant and cytoprotective mechanisms, i.e., the endothelial GAGs enhancing antithrombin, tissue factor pathway-inhibitor (TFPI) and thrombomodulin-protein C system. Moreover, the loss of GAGs promotes the release of mediators, such as von Willebrand factor (VWF), platelet factor 4 (PF4), and P-selectin, both locally on vascular surfaces and to circulation, further enhancing the adhesion of platelets to the affected sites. Platelet-neutrophil interaction and formation of neutrophil extracellular traps foster thrombo-inflammatory mechanisms exacerbating the cardiovascular disease course. Therefore, therapies which not only target the clotting mechanisms but simultaneously or independently convey potent cytoprotective effects hemming the inflammatory mechanisms are expected to provide clinical benefits. In this regard, we review the cytoprotective protease activated protein C (aPC) and its strong anti-inflammatory effects thereby preventing the ensuing thrombotic complications in CVD. Furthermore, restoring GAG-like vasculo-protection, such as providing heparin-proteoglycan mimetics to improve regulation of platelet and coagulation activity and to suppress of endothelial perturbance and leukocyte-derived pro-inflammatory cytokines, may provide a path to alleviate thrombo-inflammatory disorders in the future. The vascular tissue-modeled heparin proteoglycan mimic, antiplatelet and anticoagulant compound (APAC), dual antiplatelet and anticoagulant, is an injury-targeting and locally acting arterial antithrombotic which downplays collagen- and thrombin-induced and complement-induced activation and protects from organ injury.

SELECTION OF CITATIONS
SEARCH DETAIL