Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 151
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nature ; 584(7819): 109-114, 2020 08.
Article in English | MEDLINE | ID: mdl-32669710

ABSTRACT

The size of plants is largely determined by growth of the stem. Stem elongation is stimulated by gibberellic acid1-3. Here we show that internode stem elongation in rice is regulated antagonistically by an 'accelerator' and a 'decelerator' in concert with gibberellic acid. Expression of a gene we name ACCELERATOR OF INTERNODE ELONGATION 1 (ACE1), which encodes a protein of unknown function, confers cells of the intercalary meristematic region with the competence for cell division, leading to internode elongation in the presence of gibberellic acid. By contrast, upregulation of DECELERATOR OF INTERNODE ELONGATION 1 (DEC1), which encodes a zinc-finger transcription factor, suppresses internode elongation, whereas downregulation of DEC1 allows internode elongation. We also show that the mechanism of internode elongation that is mediated by ACE1 and DEC1 is conserved in the Gramineae family. Furthermore, an analysis of genetic diversity suggests that mutations in ACE1 and DEC1 have historically contributed to the selection of shorter plants in domesticated populations of rice to increase their resistance to lodging, and of taller plants in wild species of rice for adaptation to growth in deep water. Our identification of these antagonistic regulatory factors enhances our understanding of the gibberellic acid response as an additional mechanism that regulates internode elongation and environmental fitness, beyond biosynthesis and gibberellic acid signal transduction.


Subject(s)
Gibberellins/metabolism , Oryza/growth & development , Oryza/metabolism , Plant Stems/growth & development , Plant Stems/metabolism , Acclimatization , Mutation , Oryza/genetics , Plant Growth Regulators/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Stems/genetics , Quantitative Trait Loci , Signal Transduction
2.
Proc Natl Acad Sci U S A ; 120(36): e2217708120, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37639600

ABSTRACT

In the final step of cytokinin biosynthesis, the main pathway is the elimination of a ribose-phosphate moiety from the cytokinin nucleotide precursor by phosphoribohydrolase, an enzyme encoded by a gene named LONELY GUY (LOG). This reaction accounts for most of the cytokinin supply needed for regulating plant growth and development. In contrast, the LOG-independent pathway, in which dephosphorylation and deribosylation sequentially occur, is also thought to play a role in cytokinin biosynthesis, but the gene entity and physiological contribution have been elusive. In this study, we profiled the phytohormone content of chromosome segment substitution lines of Oryza sativa and searched for genes affecting the endogenous levels of cytokinin ribosides by quantitative trait loci analysis. Our approach identified a gene encoding an enzyme that catalyzes the deribosylation of cytokinin nucleoside precursors and other purine nucleosides. The cytokinin/purine riboside nucleosidase 1 (CPN1) we identified is a cell wall-localized protein. Loss-of-function mutations (cpn1) were created by inserting a Tos17-retrotransposon that altered the cytokinin composition in seedling shoots and leaf apoplastic fluid. The cpn1 mutation also abolished cytokinin riboside nucleosidase activity in leaf extracts and attenuated the trans-zeatin riboside-responsive expression of cytokinin marker genes. Grain yield of the mutants declined due to altered panicle morphology under field-grown conditions. These results suggest that the cell wall-localized LOG-independent cytokinin activating pathway catalyzed by CPN1 plays a role in cytokinin control of rice growth. Our finding broadens our spatial perspective of the cytokinin metabolic system.


Subject(s)
Oryza , Oryza/genetics , Cytokinins/genetics , Purine Nucleosides , N-Glycosyl Hydrolases/genetics , Nucleosides , Cell Wall/genetics
3.
Plant Physiol ; 192(3): 2457-2474, 2023 07 03.
Article in English | MEDLINE | ID: mdl-36994817

ABSTRACT

Cytokinins (CKs), a class of phytohormones with vital roles in growth and development, occur naturally with various side-chain structures, including N6-(Δ2-isopentenyl)adenine-, cis-zeatin- and trans-zeatin (tZ)-types. Recent studies in the model dicot plant Arabidopsis (Arabidopsis thaliana) have demonstrated that tZ-type CKs are biosynthesized via cytochrome P450 monooxygenase (P450) CYP735A and have a specific function in shoot growth promotion. Although the function of some of these CKs has been demonstrated in a few dicotyledonous plant species, the importance of these variations and their biosynthetic mechanism and function in monocots and in plants with distinctive side-chain profiles other than Arabidopsis, such as rice (Oryza sativa), remain elusive. In this study, we characterized CYP735A3 and CYP735A4 to investigate the role of tZ-type CKs in rice. Complementation test of the Arabidopsis CYP735A-deficient mutant and CK profiling of loss-of-function rice mutant cyp735a3 cyp735a4 demonstrated that CYP735A3 and CYP735A4 encode P450s required for tZ-type side-chain modification in rice. CYP735As are expressed in both roots and shoots. The cyp735a3 cyp735a4 mutants exhibited growth retardation concomitant with reduction in CK activity in both roots and shoots, indicating that tZ-type CKs function in growth promotion of both organs. Expression analysis revealed that tZ-type CK biosynthesis is negatively regulated by auxin, abscisic acid, and CK and positively by dual nitrogen nutrient signals, namely glutamine-related and nitrate-specific signals. These results suggest that tZ-type CKs control the growth of both roots and shoots in response to internal and environmental cues in rice.


Subject(s)
Arabidopsis , Oryza , Cytokinins/metabolism , Zeatin/metabolism , Oryza/genetics , Oryza/metabolism , Arabidopsis/metabolism , Plant Growth Regulators/metabolism
4.
Plant Cell Environ ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847336

ABSTRACT

Plants share their habitats with a multitude of different microbes. This close vicinity promoted the evolution of interorganismic interactions between plants and many different microorganisms that provide mutual growth benefits both to the plant and the microbial partner. The symbiosis of Arabidopsis thaliana with the beneficial root colonizing endophyte Serendipita indica represents a well-studied system. Colonization of Arabidopsis roots with S. indica promotes plant growth and stress tolerance of the host plant. However, until now, the molecular mechanism by which S. indica reprograms plant growth remains largely unknown. This study used comprehensive transcriptomics, metabolomics, reverse genetics, and life cell imaging to reveal the intricacies of auxin-related processes that affect root growth in the symbiosis between A. thaliana and S. indica. Our experiments revealed the sustained stimulation of auxin signalling in fungus infected Arabidopsis roots and disclosed the essential role of tightly controlled auxin conjugation in the plant-fungus interaction. It particularly highlighted the importance of two GRETCHEN HAGEN 3 (GH3) genes, GH3.5 and GH3.17, for the fungus infection-triggered stimulation of biomass production, thus broadening our knowledge about the function of GH3s in plants. Furthermore, we provide evidence for the transcriptional alteration of the PIN2 auxin transporter gene in roots of Arabidopsis seedlings infected with S. indica and demonstrate that this transcriptional adjustment affects auxin signalling in roots, which results in increased plant growth.

5.
Plant Cell ; 33(10): 3272-3292, 2021 10 11.
Article in English | MEDLINE | ID: mdl-34312675

ABSTRACT

Heterophylly is the development of different leaf forms in a single plant depending on the environmental conditions. It is often observed in amphibious aquatic plants that can grow under both aerial and submerged conditions. Although heterophylly is well recognized in aquatic plants, the associated developmental mechanisms and the molecular basis remain unclear. To clarify these underlying developmental and molecular mechanisms, we analyzed heterophyllous leaf formation in an aquatic plant, Callitriche palustris. Morphological analyses revealed extensive cell elongation and the rearrangement of cortical microtubules in the elongated submerged leaves of C. palustris. Our observations also suggested that gibberellin, ethylene, and abscisic acid all regulate the formation of submerged leaves. However, the perturbation of one or more of the hormones was insufficient to induce the formation of submerged leaves under aerial conditions. Finally, we analyzed gene expression changes during aerial and submerged leaf development and narrowed down the candidate genes controlling heterophylly via transcriptomic comparisons, including a comparison with a closely related terrestrial species. We discovered that the molecular mechanism regulating heterophylly in C. palustris is associated with hormonal changes and diverse transcription factor gene expression profiles, suggesting differences from the corresponding mechanisms in previously investigated amphibious plants.


Subject(s)
Abscisic Acid/metabolism , Ethylenes/metabolism , Gibberellins/metabolism , Plant Growth Regulators/metabolism , Plant Leaves/growth & development , Plantaginaceae/growth & development , Gene Expression , Plantaginaceae/genetics , Plantaginaceae/metabolism
6.
Plant Physiol ; 188(4): 2364-2376, 2022 03 28.
Article in English | MEDLINE | ID: mdl-35134987

ABSTRACT

Oryza longistaminata, a wild rice, vegetatively reproduces and forms a networked clonal colony consisting of ramets connected by rhizomes. Although water, nutrients, and other molecules can be transferred between ramets via the rhizomes, inter-ramet communication in response to spatially heterogeneous nitrogen availability is not well understood. We studied the response of ramet pairs to heterogeneous nitrogen availability using a split hydroponic system that allowed each ramet root to be exposed to different conditions. Ammonium uptake was compensatively enhanced in the sufficient-side root when roots of the ramet pairs were exposed to ammonium-sufficient and ammonium-deficient conditions. Comparative transcriptome analysis revealed that a gene regulatory network for effective ammonium assimilation and amino acid biosynthesis was activated in the sufficient-side roots. Allocation of absorbed nitrogen from the nitrogen-sufficient to the nitrogen-deficient ramets was rather limited. Nitrogen was preferentially used for newly growing axillary buds on the sufficient-side ramets. Biosynthesis of trans-zeatin (tZ), a cytokinin, was upregulated in response to the nitrogen supply, but tZ appeared not to target the compensatory regulation. Our results also implied that the O. longistaminata putative ortholog of rice (Oryza sativa) C-terminally encoded peptide1 plays a role as a nitrogen-deficient signal in inter-ramet communication, providing compensatory upregulation of nitrogen assimilatory genes. These results provide insights into the molecular basis for efficient growth strategies of asexually proliferating plants growing in areas where the distribution of ammonium ions is spatially heterogeneous.


Subject(s)
Ammonium Compounds , Oryza , Ammonium Compounds/metabolism , Cytokinins/metabolism , Gene Expression Profiling , Nitrogen/metabolism , Oryza/genetics , Oryza/metabolism , Plant Roots/metabolism
7.
Proc Natl Acad Sci U S A ; 117(38): 23970-23981, 2020 09 22.
Article in English | MEDLINE | ID: mdl-32883877

ABSTRACT

Fruit set is the process whereby ovaries develop into fruits after pollination and fertilization. The process is induced by the phytohormone gibberellin (GA) in tomatoes, as determined by the constitutive GA response mutant procera However, the role of GA on the metabolic behavior in fruit-setting ovaries remains largely unknown. This study explored the biochemical mechanisms of fruit set using a network analysis of integrated transcriptome, proteome, metabolome, and enzyme activity data. Our results revealed that fruit set involves the activation of central carbon metabolism, with increased hexoses, hexose phosphates, and downstream metabolites, including intermediates and derivatives of glycolysis, the tricarboxylic acid cycle, and associated organic and amino acids. The network analysis also identified the transcriptional hub gene SlHB15A, that coordinated metabolic activation. Furthermore, a kinetic model of sucrose metabolism predicted that the sucrose cycle had high activity levels in unpollinated ovaries, whereas it was shut down when sugars rapidly accumulated in vacuoles in fruit-setting ovaries, in a time-dependent manner via tonoplastic sugar carriers. Moreover, fruit set at least partly required the activity of fructokinase, which may pull fructose out of the vacuole, and this could feed the downstream pathways. Collectively, our results indicate that GA cascades enhance sink capacities, by up-regulating central metabolic enzyme capacities at both transcriptional and posttranscriptional levels. This leads to increased sucrose uptake and carbon fluxes for the production of the constituents of biomass and energy that are essential for rapid ovary growth during the initiation of fruit set.


Subject(s)
Fruit , Gibberellins/metabolism , Plant Growth Regulators/metabolism , Carbon/metabolism , Fruit/genetics , Fruit/growth & development , Fruit/metabolism , Solanum lycopersicum/genetics , Solanum lycopersicum/growth & development , Solanum lycopersicum/metabolism , Metabolic Networks and Pathways/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/growth & development , Plants, Genetically Modified/metabolism , Sucrose/metabolism , Transcriptome/genetics
8.
Plant J ; 105(6): 1507-1520, 2021 03.
Article in English | MEDLINE | ID: mdl-33300204

ABSTRACT

Legumes and nitrogen-fixing rhizobial bacteria establish root nodule symbiosis, which is orchestrated by several plant hormones. Exogenous addition of biologically active gibberellic acid (GA) is known to inhibit root nodule symbiosis. However, the precise role of GA has not been elucidated because of the trace amounts of these hormones in plants and the multiple functions of GAs. Here, we found that GA signaling acts as a key regulator in a long-distance negative-feedback system of root nodule symbiosis called autoregulation of nodulation (AON). GA biosynthesis is activated during nodule formation in and around the nodule vascular bundles, and bioactive GAs accumulate in the nodule. In addition, GA signaling induces expression of the symbiotic transcription factor NODULE INCEPTION (NIN) via a cis-acting region on the NIN promoter. Mutants with deletions of this cis-acting region have increased susceptibility to rhizobial infection and reduced GA-induced CLE-RS1 and CLE-RS2 expression, suggesting that the inhibitory effect of GAs occurs through AON. This is supported by the GA-insensitive phenotypes of an AON-defective mutant of HYPERNODULATION ABERRANT ROOT FORMATION1 (HAR1) and a reciprocal grafting experiment. Thus, endogenous GAs induce NIN expression via its GA-responsive cis-acting region, and subsequently the GA-induced NIN activates the AON system to regulate nodule formation.


Subject(s)
Gibberellins/pharmacology , Lotus/drug effects , Plant Proteins/metabolism , Root Nodules, Plant/drug effects , Symbiosis/drug effects , Transcription Factors/metabolism , Gene Expression Regulation, Plant/drug effects , Lotus/metabolism , Lotus/physiology , Plant Proteins/physiology , Plant Root Nodulation/drug effects , Promoter Regions, Genetic/drug effects , Root Nodules, Plant/metabolism , Root Nodules, Plant/physiology , Transcription Factors/physiology
9.
Plant Mol Biol ; 109(3): 249-269, 2022 Jun.
Article in English | MEDLINE | ID: mdl-32757126

ABSTRACT

KEY MESSAGE: Integrative omics approaches revealed a crosstalk among phytohormones during tuberous root development in cassava. Tuberous root formation is a complex process consisting of phase changes as well as cell division and elongation for radial growth. We performed an integrated analysis to clarify the relationships among metabolites, phytohormones, and gene transcription during tuberous root formation in cassava (Manihot esculenta Crantz). We also confirmed the effects of the auxin (AUX), cytokinin (CK), abscisic acid (ABA), jasmonic acid (JA), gibberellin (GA), brassinosteroid (BR), salicylic acid, and indole-3-acetic acid conjugated with aspartic acid on tuberous root development. An integrated analysis of metabolites and gene expression indicated the expression levels of several genes encoding enzymes involved in starch biosynthesis and sucrose metabolism are up-regulated during tuberous root development, which is consistent with the accumulation of starch, sugar phosphates, and nucleotides. An integrated analysis of phytohormones and gene transcripts revealed a relationship among AUX signaling, CK signaling, and BR signaling, with AUX, CK, and BR inducing tuberous root development. In contrast, ABA and JA inhibited tuberous root development. These phenomena might represent the differences between stem tubers (e.g., potato) and root tubers (e.g., cassava). On the basis of these results, a phytohormonal regulatory model for tuberous root development was constructed. This model may be useful for future phytohormonal studies involving cassava.


Subject(s)
Manihot , Abscisic Acid/metabolism , Gene Expression Regulation, Plant , Manihot/metabolism , Plant Growth Regulators/metabolism , Plant Proteins/genetics , Starch/metabolism
10.
Plant Cell Physiol ; 63(4): 484-493, 2022 Apr 19.
Article in English | MEDLINE | ID: mdl-35134216

ABSTRACT

Previous studies suggest that root-derived cytokinins (CKs) contribute to shoot growth via long-distance transport; therefore, we hypothesized that an increase in root-derived CKs enhances shoot growth. To verify this, we grafted Arabidopsis Col-0 (wild type, WT) scion onto rootstock originated from WT or a double-knockout mutant of CK receptors Arabidopsis histidine kinase 2 (AHK2) and AHK3 (ahk2-5 ahk3-7; ahk23) because this mutant overaccumulates CKs in the body probably due to feedback homeostasis regulation. The grafted plants (scion/rootstock: WT/WT and WT/ahk23) were grown in vermiculite pots or solid media for vegetative growth and biochemical analysis. The root-specific deficiency of AHK2 and AHK3 increased root concentrations of trans-zeatin (tZ)-type and N6-(Δ2-isopentenyl) adenine (iP)-type CKs, induced CK biosynthesis genes and repressed CK degradation genes in the root. The WT/ahk23 plants had significantly larger shoot weight, rosette diameter and leaves area than did the WT/WT plants. Shoot concentrations of tZ-type CKs showed increasing trends in the WT/ahk23 plants. Moreover, the root-specific deficiency of AHK2 and AHK3 enhanced shoot growth in the WT scion more strongly than in the ahk23 scion, suggesting that shoot growth enhancement could occur through increased shoot perception of CKs. In the WT/ahk23 shoots compared with the WT/WT shoots, however, induction of most of CK-inducible response regulator genes was not statistically significant. Thus we suggest that the root-specific reduction of CK perception enhances shoot growth only partly by increasing the amount of root-derived tZ-type CKs and their perception by shoots. The unknown mechanism(s) distinct from CK signaling would also be involved in the shoot growth enhancement.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cytokinins/metabolism , Perception , Plant Leaves/metabolism , Plant Roots/metabolism
11.
Plant Cell Physiol ; 63(3): 384-400, 2022 Mar 11.
Article in English | MEDLINE | ID: mdl-35001102

ABSTRACT

Regeneration in land plants is accompanied by the establishment of new stem cells, which often involves reactivation of the cell division potential in differentiated cells. The phytohormone auxin plays pivotal roles in this process. In bryophytes, regeneration is enhanced by the removal of the apex and repressed by exogenously applied auxin, which has long been proposed as a form of apical dominance. However, the molecular basis behind these observations remains unexplored. Here, we demonstrate that in the liverwort Marchantia polymorpha, the level of endogenous auxin is transiently decreased in the cut surface of decapitated explants, and identify by transcriptome analysis a key transcription factor gene, LOW-AUXIN RESPONSIVE (MpLAXR), which is induced upon auxin reduction. Loss of MpLAXR function resulted in delayed cell cycle reactivation, and transient expression of MpLAXR was sufficient to overcome the inhibition of regeneration by exogenously applied auxin. Furthermore, ectopic expression of MpLAXR caused cell proliferation in normally quiescent tissues. Together, these data indicate that decapitation causes a reduction of auxin level at the cut surface, where, in response, MpLAXR is up-regulated to trigger cellular reprogramming. MpLAXR is an ortholog of Arabidopsis ENHANCER OF SHOOT REGENERATION 1/DORNRÖSCHEN, which has dual functions as a shoot regeneration factor and a regulator of axillary meristem initiation, the latter of which requires a low auxin level. Thus, our findings provide insights into stem cell regulation as well as apical dominance establishment in land plants.


Subject(s)
Arabidopsis , Marchantia , Arabidopsis/genetics , Cellular Reprogramming/genetics , Gene Expression Regulation, Plant , Indoleacetic Acids/metabolism , Marchantia/genetics , Marchantia/metabolism
12.
EMBO J ; 37(11)2018 06 01.
Article in English | MEDLINE | ID: mdl-29764982

ABSTRACT

Proper floral patterning, including the number and position of floral organs in most plant species, is tightly controlled by the precise regulation of the persistence and size of floral meristems (FMs). In Arabidopsis, two known feedback pathways, one composed of WUSCHEL (WUS) and CLAVATA3 (CLV3) and the other composed of AGAMOUS (AG) and WUS, spatially and temporally control floral stem cells, respectively. However, mounting evidence suggests that other factors, including phytohormones, are also involved in floral meristem regulation. Here, we show that the boundary gene SUPERMAN (SUP) bridges floral organogenesis and floral meristem determinacy in another pathway that involves auxin signaling. SUP interacts with components of polycomb repressive complex 2 (PRC2) and fine-tunes local auxin signaling by negatively regulating the expression of the auxin biosynthesis genes YUCCA1/4 (YUC1/4). In sup mutants, derepressed local YUC1/4 activity elevates auxin levels at the boundary between whorls 3 and 4, which leads to an increase in the number and the prolonged maintenance of floral stem cells, and consequently an increase in the number of reproductive organs. Our work presents a new floral meristem regulatory mechanism, in which SUP, a boundary gene, coordinates floral organogenesis and floral meristem size through fine-tuning auxin biosynthesis.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Indoleacetic Acids/metabolism , Organogenesis, Plant/genetics , Transcription Factors/genetics , Arabidopsis/growth & development , Arabidopsis/metabolism , Flowers/genetics , Flowers/growth & development , Gene Expression Regulation, Plant , Meristem/genetics , Mixed Function Oxygenases/genetics , Mutation , Phenotype , Polycomb Repressive Complex 2/genetics , Stem Cells/metabolism
13.
Plant J ; 103(1): 197-211, 2020 07.
Article in English | MEDLINE | ID: mdl-32072682

ABSTRACT

Metabolites, phytohormones, and genes involved in dehydration responses/tolerance have been predicted in several plants. However, metabolite/phytohormone-gene regulatory networks in soybean organs under dehydration conditions remain unclear. Here, we analyzed the organ specificity of metabolites, phytohormones, and gene transcripts and revealed the characteristics of their regulatory networks in dehydration-treated soybeans. Our metabolite/phytohormone analysis revealed the accumulation of raffinose, trehalose, and cis-zeatin (cZ) specifically in dehydration-treated roots. In dehydration-treated soybeans, raffinose, and trehalose might have additional roles not directly involved in protecting the photosynthetic apparatus; cZ might contribute to root elongation for water uptake from the moisture region in soil. Our integration analysis of metabolites-genes indicated that galactinol, raffinose, and trehalose levels were correlated with transcript levels for key enzymes (galactinol synthase, raffinose synthase, trehalose 6-phosphate synthase, trehalose 6-phosphate phosphatase) at the level of individual plants but not at the organ level under dehydration. Genes encoding these key enzymes were expressed in mainly the aerial parts of dehydration-treated soybeans. These results suggested that raffinose and trehalose are transported from aerial plant parts to the roots in dehydration-treated soybeans. Our integration analysis of phytohormones-genes indicated that cZ and abscisic acid (ABA) levels were correlated with transcript levels for key enzymes (cytokinin nucleoside 5'-monophosphate phosphoribohydrolase, cytokinin oxidases/dehydrogenases, 9-cis-epoxycarotenoid dioxygenase) at the level of individual plants but not at the organ level under dehydration conditions. Therefore, processes such as ABA and cZ transport, among others, are important for the organ specificity of ABA and cZ production under dehydration conditions.


Subject(s)
Gene Regulatory Networks , Glycine max/genetics , Plant Growth Regulators/physiology , Abscisic Acid/metabolism , Dehydration , Gene Expression Regulation, Plant , Metabolomics , Plant Growth Regulators/metabolism , Plant Roots/metabolism , Plant Roots/physiology , Raffinose/metabolism , Glycine max/metabolism , Glycine max/physiology , Transcriptome , Trehalose/metabolism , Zeatin/metabolism
14.
Plant J ; 97(2): 240-256, 2019 01.
Article in English | MEDLINE | ID: mdl-30285298

ABSTRACT

The molecular breeding of drought stress-tolerant crops is imperative for stable food and biomass production. However, a trade-off exists between plant growth and drought stress tolerance. Many drought stress-tolerant plants overexpressing stress-inducible genes, such as DEHYDRATION-RESPONSIVE ELEMENT-BINDING PROTEIN 1A (DREB1A), show severe growth retardation. Here, we demonstrate that the growth of DREB1A-overexpressing Arabidopsis plants could be improved by co-expressing growth-enhancing genes whose expression is repressed under drought stress conditions. We used Arabidopsis GA REQUIRING 5 (GA5), which encodes a rate-limiting gibberellin biosynthetic enzyme, and PHYTOCHROME-INTERACTING FACTOR 4 (PIF4), which encodes a transcription factor regulating cell growth in response to light and temperature, for growth improvement. We observed an enhanced biomass and floral induction in the GA5 DREB1A and PIF4 DREB1A double overexpressors compared with those in the DREB1A overexpressors. Although the GA5 DREB1A double overexpressors continued to show high levels of drought stress tolerance, the PIF4 DREB1A double overexpressors showed lower levels of stress tolerance than the DREB1A overexpressors due to repressed expression of DREB1A. A multiomics analysis of the GA5 DREB1A double overexpressors showed that the co-expression of GA5 and DREB1A additively affected primary metabolism, gene expression and plant hormone profiles in the plants. These multidirectional analyses indicate that the inherent trade-off between growth and drought stress tolerance in plants can be overcome by appropriate gene-stacking approaches. Our study provides a basis for using genetic modification to improve the growth of drought stress-tolerant plants for the stable production of food and biomass.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Gene Expression Regulation, Plant , Mixed Function Oxygenases/metabolism , Transcription Factors/metabolism , Arabidopsis/growth & development , Arabidopsis/physiology , Arabidopsis Proteins/genetics , Basic Helix-Loop-Helix Transcription Factors/genetics , Biomass , Cold Temperature , Droughts , Flowers/genetics , Flowers/growth & development , Flowers/physiology , Mixed Function Oxygenases/genetics , Stress, Physiological
15.
Plant Cell Physiol ; 61(2): 353-369, 2020 Feb 01.
Article in English | MEDLINE | ID: mdl-31651939

ABSTRACT

Some plant species have a striking capacity for regeneration in nature, including regeneration of the entire individual from explants. However, due to the lack of suitable experimental models, the regulatory mechanisms of spontaneous whole plant regeneration are mostly unknown. In this study, we established a novel model system to study these mechanisms using an amphibious plant within Brassicaceae, Rorippa aquatica, which naturally undergoes vegetative propagation via regeneration from leaf fragments. Morphological and anatomical observation showed that both de novo root and shoot organogenesis occurred from the proximal side of the cut edge transversely with leaf vascular tissue. Time-series RNA-seq analysis revealed that auxin and cytokinin responses were activated after leaf amputation and that regeneration-related genes were upregulated mainly on the proximal side of the leaf explants. Accordingly, we found that both auxin and cytokinin accumulated on the proximal side. Application of a polar auxin transport inhibitor retarded root and shoot regeneration, suggesting that the enhancement of auxin responses caused by polar auxin transport enhanced de novo organogenesis at the proximal wound site. Exogenous phytohormone and inhibitor applications further demonstrated that, in R. aquatica, both auxin and gibberellin are required for root regeneration, whereas cytokinin is important for shoot regeneration. Our results provide a molecular basis for vegetative propagation via de novo organogenesis.


Subject(s)
Plant Development/genetics , Plant Development/physiology , Regeneration/genetics , Regeneration/physiology , Rorippa/growth & development , Rorippa/genetics , Rorippa/metabolism , Cell Division , Cell Proliferation , Cytokinins , Gene Expression Regulation, Plant , Gibberellins , Indoleacetic Acids/metabolism , Plant Growth Regulators , Plant Leaves/cytology , Plant Leaves/genetics , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Roots/cytology , Plant Roots/growth & development , Plant Roots/metabolism , Plant Shoots/growth & development , Plant Shoots/metabolism , Transcriptome
16.
Ann Bot ; 126(2): 315-322, 2020 07 24.
Article in English | MEDLINE | ID: mdl-32407462

ABSTRACT

BACKGROUND AND AIMS: Dutch tomato cultivars tend to have a greater yield than Japanese cultivars even if they are grown under the same conditions. Factors contributing to the increased yield of the Dutch cultivars were a greater light use efficiency and greater leaf photosynthetic rate. On the other hand, the relationship between tomato yields and anatomical traits is still unclear. The aim of this study is to identify the anatomical traits related to the difference in yield between Dutch and Japanese cultivars. METHODS: Anatomical properties were compared during different growth stages of Dutch and Japanese tomatoes. Hormone profiles and related gene expression in hypocotyls of Dutch and Japanese cultivars were compared in the hypocotyls of 3- and 4-week-old plants. KEY RESULTS: Dutch cultivars have a more developed secondary xylem than Japanese cultivars, which would allow for greater transport of water, mineral nutrients and phytohormones to the shoots. The areas and ratios of the xylem in the hypocotyls of 3- to 6-week-old plants were larger in the Dutch cultivars. In reciprocal grafts of the Japanese and Dutch cultivars, xylem development at the scion and rootstock depended on the scion cultivar, suggesting that some factors in the scion are responsible for the difference in xylem development. The cytokinin content, especially the level of N6-(Δ 2-isopentenyl) adenine (iP)-type cytokinin, was higher in the Dutch cultivars. This result was supported by the greater expression of Sl-IPT3 (a cytokinin biosynthesis gene) and Sl-RR16/17 (a cytokinin-responsive gene) in the Dutch cultivars. CONCLUSIONS: These results suggest that iP-type cytokinins, which are locally synthesized in the hypocotyl, contribute to xylem development. The greater xylem development in Dutch cultivars might contribute to the high yield of the tomato.


Subject(s)
Solanum lycopersicum/genetics , Cytokinins , Hypocotyl/genetics , Japan , Xylem
17.
Dev Biol ; 442(1): 40-52, 2018 10 01.
Article in English | MEDLINE | ID: mdl-30026120

ABSTRACT

Plants often display a high competence for regeneration under stress conditions. Signals produced in response to various types of stress serve as critical triggers for de novo organogenesis, but the identity of these signaling molecules underlying cellular reprogramming are largely unknown. We previously identified an AP2/ERF transcription factor, WOUND INDUCED DEDIFFERENTIATION1 (WIND1), as a key regulator involved in wound-induced cellular reprogramming in Arabidopsis. In this study, we found that activation of Arabidopsis WIND1 (AtWIND1) in hypocotyl explants of Brassica napus (B. napus) enhances callus formation and subsequent organ regeneration. Gene expression analyses revealed that AtWIND1 enhances expression of B. napus homologs of ENHANCER OF SHOOT REGENERATION1/DORNRÖSCHEN (ESR1/DRN), which is a direct target of WIND1 in Arabidopsis. Further, time-course hormonal analyses showed that an altered balance of endogenous auxin/cytokinin exists in AtWIND1-activated B. napus explants. Our mass spectrometry analyses, in addition, uncovered dynamic metabolomic reprogramming in AtWIND1-activated explants, including accumulation of several compounds, e.g. proline, gamma aminobutyric acid (GABA), and putrescine, that have historically been utilized as additives to enhance plant cell reprogramming in tissue culture. Our findings thus provide new insights into how WIND1 functions to promote cell reprogramming.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis Proteins/physiology , Brassica napus/genetics , Transcription Factors/genetics , Transcription Factors/physiology , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Cellular Reprogramming/genetics , Cellular Reprogramming/physiology , Cytokinins/metabolism , Gene Expression Regulation, Plant/drug effects , Gene Expression Regulation, Plant/genetics , Genes, Plant , Indoleacetic Acids/metabolism , Organogenesis, Plant/genetics , Plant Shoots/metabolism , Plants, Genetically Modified , Proline , Putrescine , Regeneration/genetics , Transcription Factors/metabolism , gamma-Aminobutyric Acid
18.
Plant J ; 94(1): 48-59, 2018 04.
Article in English | MEDLINE | ID: mdl-29383774

ABSTRACT

The post-embryonic growth of plants requires the activities of apical meristems and lateral meristems. In the meristems, self-proliferation and differentiation of stem cells is tightly modulated by plant hormone signaling networks and specific transcription factors. Despite extensive studies on stem cell maintenance in plants, the mechanism by which stem cells are initially established is largely unknown. Vascular stem cells consisting of procambial/cambial cells give rise to xylem and phloem cells. In this study, we analyzed the establishment of procambial cells using the in vitro culture system VISUAL, in which mesophyll cells rapidly differentiate into xylem tracheary elements and phloem sieve elements via procambial cells. We found that procambial cell formation in VISUAL is initiated by light, which can be replaced by application of gibberellin (GA). Gibberellin was able to promote procambial cell formation through degradation of DELLA, whereas light did not elevate the endogenous GA content. Indeed, light in combination with bikinin reduced the accumulation of DELLA protein in VISUAL. Consistently, overexpression of a constitutively active DELLA protein repressed vascular cell differentiation even under light. These combined results suggest that DELLA signaling suppresses procambial cell formation during vascular development in VISUAL.


Subject(s)
Arabidopsis Proteins/physiology , Phloem/growth & development , Xylem/growth & development , Arabidopsis/growth & development , Cell Differentiation , Gibberellins/physiology , Light , Phloem/cytology , Plant Growth Regulators/physiology , Signal Transduction , Xylem/cytology
19.
Plant Cell Physiol ; 60(12): 2684-2691, 2019 Dec 01.
Article in English | MEDLINE | ID: mdl-31392340

ABSTRACT

The phytohormone auxin governs various developmental processes in plants including vascular formation. Auxin transport and biosynthesis are important factors in determining auxin distribution in tissues. Although the role of auxin transport in vein pattern formation is widely recognized, that of auxin biosynthesis in vascular development is poorly understood. Heterodimer complexes comprising two basic helix-loop-helix protein families, LONESOME HIGHWAY (LHW) and TARGET OF MONOPTEROS5 (TMO5)/TMO5-LIKE1 (T5L1), are master transcriptional regulators of the initial process of vascular development. The LHW-TMO5/T5L1 dimers regulate vascular initial cell production, vascular cell proliferation and xylem fate determination in the embryo and root apical meristem (RAM). In this study, we investigated the function of local auxin biosynthesis in initial vascular development in RAM. Results showed that LHW-T5L1 upregulated the expression of YUCCA4 (YUC4), a key auxin biosynthesis gene. The expression of YUC4 was essential for promoting xylem differentiation and vascular cell proliferation in RAM. Conversely, auxin biosynthesis was required for maintaining the expression levels of LHW, TMO5/T5L1 and their targets. Our results suggest that local auxin biosynthesis forms a positive feedback loop for fine-tuning the level of LHW-TMO5/T5L1, which is necessary for initiating vascular development.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Indoleacetic Acids/metabolism , Cytochrome P-450 Enzyme System/metabolism , Gene Expression Regulation, Plant , Meristem/metabolism , Plant Roots/metabolism , Xylem/metabolism
20.
Plant Cell Physiol ; 60(1): 38-51, 2019 Jan 01.
Article in English | MEDLINE | ID: mdl-30192961

ABSTRACT

Parthenocarpy, a process in which fruit set occurs without fertilization, leads to the production of seedless fruit. A number of floral homeotic mutants with abnormal stamen development exhibit parthenocarpic fruit set. Flower development is thought to repress ovary growth before anthesis. However, the mechanism of parthenocarpic fruit development caused by aberrant flower formation is poorly understood. To investigate the molecular mechanism of parthenocarpic fruit development in floral homeotic mutants, we performed functional analysis of Tomato APETALA3 (TAP3) by loss-of-function approaches. Organ-specific promoter was used to induce organ-specific loss of function in stamen and ovary/fruit. We observed increased cell expansion in tap3 mutants and TAP3-RNAi lines during parthenocarpic fruit growth. These were predominantly accompanied by the up-regulation of GA biosynthesis genes, including SlGA20ox1, SlGA20ox2, and SlGA20ox3, as well as reduced expression of the GA-inactivating gene SlGA2ox1 and the auxin signaling gene SlARF7 involved in a crosstalk between GA and auxin. These transcriptional profiles are in agreement with the GA levels in these lines. These results suggest that stamen development negatively regulates fruit set by repressing the GA biosynthesis.


Subject(s)
Biosynthetic Pathways/genetics , Flowers/growth & development , Fruit/growth & development , Gibberellins/biosynthesis , Parthenogenesis/genetics , Solanum lycopersicum/growth & development , Solanum lycopersicum/genetics , Up-Regulation/genetics , Base Sequence , Flowers/genetics , Fruit/genetics , Gene Expression Regulation, Plant , Mutagenesis/genetics , Mutation/genetics , Organ Specificity/genetics , Phenotype , Plant Growth Regulators/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , Promoter Regions, Genetic/genetics , RNA Interference , Signal Transduction , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL