Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 182(3): 563-577.e20, 2020 08 06.
Article in English | MEDLINE | ID: mdl-32615086

ABSTRACT

Adipose tissues dynamically remodel their cellular composition in response to external cues by stimulating beige adipocyte biogenesis; however, the developmental origin and pathways regulating this process remain insufficiently understood owing to adipose tissue heterogeneity. Here, we employed single-cell RNA-seq and identified a unique subset of adipocyte progenitor cells (APCs) that possessed the cell-intrinsic plasticity to give rise to beige fat. This beige APC population is proliferative and marked by cell-surface proteins, including PDGFRα, Sca1, and CD81. Notably, CD81 is not only a beige APC marker but also required for de novo beige fat biogenesis following cold exposure. CD81 forms a complex with αV/ß1 and αV/ß5 integrins and mediates the activation of integrin-FAK signaling in response to irisin. Importantly, CD81 loss causes diet-induced obesity, insulin resistance, and adipose tissue inflammation. These results suggest that CD81 functions as a key sensor of external inputs and controls beige APC proliferation and whole-body energy homeostasis.


Subject(s)
Adipogenesis/genetics , Adipose Tissue, Beige/metabolism , Energy Metabolism/genetics , Focal Adhesion Kinase 1/metabolism , Signal Transduction/genetics , Stem Cells/metabolism , Tetraspanin 28/metabolism , Adipocytes/metabolism , Adipose Tissue, Beige/cytology , Adipose Tissue, Beige/growth & development , Adipose Tissue, White/metabolism , Adult , Animals , Ataxin-1/metabolism , Female , Fibronectins/pharmacology , Focal Adhesion Kinase 1/genetics , Humans , Inflammation/genetics , Inflammation/metabolism , Insulin Resistance/genetics , Integrins/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Obesity/genetics , Obesity/metabolism , RNA-Seq , Receptor, Platelet-Derived Growth Factor alpha/metabolism , Signal Transduction/drug effects , Single-Cell Analysis , Stem Cells/cytology , Tetraspanin 28/genetics
2.
J Biol Chem ; 300(2): 105631, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38199575

ABSTRACT

Integrins are cell adhesion receptors that dimerize to mediate cell-cell interactions and regulate processes, including proliferation, inflammation, and tissue repair. The role of integrins in regulating insulin signaling is incompletely understood. We have previously shown that binding of the integrin ligand milk fat globule epidermal growth factor like 8 (MFGE8) to the αvß5 integrin promotes termination of insulin receptor signaling in mice. Upon ligation of MFGE8, integrin ß5 complexes with the insulin receptor beta (IRß) in skeletal muscle, resulting in dephosphorylation of IRß and reduction of insulin-stimulated glucose uptake. Here, we investigate the mechanism by which the interaction between ß5 and IRß impacts IRß phosphorylation status. We show in in vitro and in vivo in skeletal muscle in mice that antibody-mediated blockade of the ß5 integrin inhibits and recombinant MFGE8 promotes PTP1B binding to and dephosphorylation of IRß resulting in increased or reduced insulin-stimulated glucose uptake, respectively. The ß5-PTP1B complex is recruited by MFGE8 to IRß leading to termination of canonical insulin signaling. ß5 blockade enhances insulin-stimulated glucose uptake in wildtype but not Ptp1b KO mice indicating that PTP1B functions downstream of MFGE8 in modulating insulin receptor signaling. Furthermore, in a human cohort, we report serum MFGE8 levels correlate with indices of insulin resistance. These data provide mechanistic insights into the role of MFGE8 and ß5 in regulating insulin signaling.


Subject(s)
Insulin , Receptor, Insulin , Animals , Humans , Mice , Antigens, Surface/metabolism , Glucose/metabolism , Insulin/metabolism , Integrin beta Chains , Milk Proteins/metabolism , Receptor, Insulin/genetics , Mice, Inbred C57BL , Male , Cell Line
3.
Proc Natl Acad Sci U S A ; 118(18)2021 05 04.
Article in English | MEDLINE | ID: mdl-33903257

ABSTRACT

The role of integrins, in particular αv integrins, in regulating insulin resistance is incompletely understood. We have previously shown that the αvß5 integrin ligand milk fat globule epidermal growth factor like 8 (MFGE8) regulates cellular uptake of fatty acids. In this work, we evaluated the impact of MFGE8 on glucose homeostasis. We show that acute blockade of the MFGE8/ß5 pathway enhances while acute augmentation dampens insulin-stimulated glucose uptake. Moreover, we find that insulin itself induces cell-surface enrichment of MFGE8 in skeletal muscle, which then promotes interaction between the αvß5 integrin and the insulin receptor leading to dampening of skeletal-muscle insulin receptor signaling. Blockade of the MFGE8/ß5 pathway also enhances hepatic insulin sensitivity. Our work identifies an autoregulatory mechanism by which insulin-stimulated signaling through its cognate receptor is terminated through up-regulation of MFGE8 and its consequent interaction with the αvß5 integrin, thereby establishing a pathway that can potentially be targeted to improve insulin sensitivity.


Subject(s)
Antigens, Surface/genetics , Insulin Resistance/genetics , Insulin/genetics , Milk Proteins/genetics , Receptors, Vitronectin/genetics , Animals , Antigens, CD/genetics , Fatty Acids/genetics , Fatty Acids/metabolism , Glucose/metabolism , Glycolipids/genetics , Glycoproteins/genetics , Homeostasis/genetics , Humans , Integrin alphaVbeta3/genetics , Lipid Droplets , Mice , Muscle, Skeletal/metabolism , Receptor, Insulin/genetics , Signal Transduction/genetics
4.
Am J Respir Crit Care Med ; 206(9): 1096-1106, 2022 11 01.
Article in English | MEDLINE | ID: mdl-35687105

ABSTRACT

Rationale: The role of obesity-associated insulin resistance (IR) in airflow limitation in asthma is uncertain. Objectives: Using data in the Severe Asthma Research Program 3 (SARP-3), we evaluated relationships between homeostatic measure of IR (HOMA-IR), lung function (cross-sectional and longitudinal analyses), and treatment responses to bronchodilators and corticosteroids. Methods: HOMA-IR values were categorized as without (<3.0), moderate (3.0-5.0), or severe (>5.0). Lung function included FEV1 and FVC measured before and after treatment with inhaled albuterol and intramuscular triamcinolone acetonide and yearly for 5 years. Measurements and Main Results: Among 307 participants in SARP-3, 170 (55%) were obese and 140 (46%) had IR. Compared with patients without IR, those with IR had significantly lower values for FEV1 and FVC, and these lower values were not attributable to obesity effects. Compared with patients without IR, those with IR had lower FEV1 responses to ß-adrenergic agonists and systemic corticosteroids. The annualized decline in FEV1 was significantly greater in patients with moderate IR (-41 ml/year) and severe IR (-32 ml/year,) than in patients without IR (-13 ml/year, P < 0.001 for both comparisons). Conclusions: IR is common in asthma and is associated with lower lung function, accelerated loss of lung function, and suboptimal lung function responses to bronchodilator and corticosteroid treatments. Clinical trials in patients with asthma and IR are needed to determine if improving IR might also improve lung function.


Subject(s)
Asthma , Insulin Resistance , Humans , Cross-Sectional Studies , Bronchodilator Agents/therapeutic use , Lung , Adrenal Cortex Hormones/therapeutic use , Obesity/complications , Forced Expiratory Volume
5.
Small ; 18(3): e2103157, 2022 01.
Article in English | MEDLINE | ID: mdl-34761526

ABSTRACT

Impaired white adipose tissue (WAT) function has been recognized as a critical early event in obesity-driven disorders, but high buoyancy, fragility, and heterogeneity of primary adipocytes have largely prevented their use in drug discovery efforts highlighting the need for human stem cell-based approaches. Here, human stem cells are utilized to derive metabolically functional 3D adipose tissue (iADIPO) in a microphysiological system (MPS). Surprisingly, previously reported WAT differentiation approaches create insulin resistant WAT ill-suited for type-2 diabetes mellitus drug discovery. Using three independent insulin sensitivity assays, i.e., glucose and fatty acid uptake and suppression of lipolysis, as the functional readouts new differentiation conditions yielding hormonally responsive iADIPO are derived. Through concomitant optimization of an iADIPO-MPS, it is abled to obtain WAT with more unilocular and significantly larger (≈40%) lipid droplets compared to iADIPO in 2D culture, increased insulin responsiveness of glucose uptake (≈2-3 fold), fatty acid uptake (≈3-6 fold), and ≈40% suppressing of stimulated lipolysis giving a dynamic range that is competent to current in vivo and ex vivo models, allowing to identify both insulin sensitizers and desensitizers.


Subject(s)
Insulin Resistance , Adipocytes , Adipose Tissue , Adipose Tissue, White , Humans , Insulin , Stem Cells
6.
Am J Physiol Endocrinol Metab ; 318(5): E655-E666, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32045262

ABSTRACT

Excessive alcohol consumption, including binge drinking, is a common cause of fatty liver disease. Binge drinking rapidly induces hepatic steatosis, an early step in the pathogenesis of chronic liver injury. Despite its prevalence, the process by which excessive alcohol consumption promotes hepatic lipid accumulation remains unclear. Alcohol exerts potent effects on the brain, including hypothalamic neurons crucial for metabolic regulation. However, whether or not the brain plays a role in alcohol-induced hepatic steatosis is unknown. In the brain, alcohol increases extracellular levels of adenosine, a potent neuromodulator, and previous work implicates adenosine signaling as being important for the development of alcoholic fatty liver disease. Acute alcohol exposure also increases both the activity of agouti-related protein (AgRP)-expressing neurons and AgRP immunoreactivity. Here, we show that adenosine receptor A2B signaling in the brain modulates the extent of alcohol-induced fatty liver in mice and that both the AgRP neuropeptide and the sympathetic nervous system are indispensable for hepatic steatosis induced by bingelike alcohol consumption. Together, these results indicate that the brain plays an integral role in alcohol-induced hepatic lipid accumulation and that central adenosine signaling, hypothalamic AgRP, and the sympathetic nervous system are crucial mediators of this process.


Subject(s)
Binge Drinking/metabolism , Fatty Liver, Alcoholic/metabolism , Hypothalamus/metabolism , Lipid Metabolism/physiology , Liver/metabolism , Neurons/metabolism , Agouti-Related Protein/metabolism , Animals , Male , Mice
7.
Br J Anaesth ; 125(3): 298-307, 2020 09.
Article in English | MEDLINE | ID: mdl-32624183

ABSTRACT

BACKGROUND: Postoperative cognitive decline (PCD) requires microglial activation. Voltage-gated Kv1.3 potassium channels are involved in microglial activation. We determined the role of Kv1.3 in PCD and the efficacy and safety of inhibiting Kv1.3 with phenoxyalkoxypsoralen-1 (PAP-1) in preventing PCD in a mouse model. METHODS: After institutional approval, we assessed whether Kv1.3-deficient mice (Kv1.3-/-) exhibited PCD, evidenced by tibial-fracture surgery-induced decline in aversive freezing behaviour, and whether PAP-1 could prevent PCD and postoperative neuroinflammation in PCD-vulnerable diet-induced obese (DIO) mice. We also evaluated whether PAP-1 altered either postoperative peripheral inflammation or tibial-fracture healing. RESULTS: Freezing behaviour was unaltered in postoperative Kv1.3-/- mice. In DIO mice, PAP-1 prevented postoperative (i) attenuation of freezing behaviour (54 [17.3]% vs 33.4 [12.7]%; P=0.03), (ii) hippocampal microglial activation by size (130 [31] pixels vs 249 [49]; P<0.001) and fluorescence intensity (12 000 [2260] vs 20 800 [5080] absorbance units; P<0.001), and (iii) hippocampal upregulation of interleukin-6 (IL-6) (14.9 [5.7] vs 25.6 [10.4] pg mg-1; P=0.011). Phenoxyalkoxypsoralen-1 neither affected surgery-induced upregulation of plasma IL-6 nor cartilage and bone components of the surgical fracture callus. CONCLUSIONS: Microglial-mediated PCD requires Kv1.3 activity, determined by genetic and pharmacological targeting approaches. Phenoxyalkoxypsoralen-1 blockade of Kv1.3 prevented surgery-induced hippocampal microglial activation and neuroinflammation in mice known to be vulnerable to PCD. Regarding perioperative safety, these beneficial effects of PAP-1 treatment occurred without impacting fracture healing. Kv1.3 blockers, currently undergoing clinical trials for other conditions, may represent an effective and safe intervention to prevent PCD.


Subject(s)
Cognitive Dysfunction/prevention & control , Encephalitis/prevention & control , Kv1.3 Potassium Channel/antagonists & inhibitors , Postoperative Complications/prevention & control , Wound Healing/physiology , Animals , Disease Models, Animal , Mice
8.
J Infect Dis ; 220(3): 420-431, 2019 07 02.
Article in English | MEDLINE | ID: mdl-30893434

ABSTRACT

Metabolic complications relating to complex effects of viral and immune-mediated mechanisms are now a focus of clinical care among persons living with human immunodeficiency virus (PLHIV), and obesity is emerging as a critical problem. To address knowledge gaps, the US National Institutes of Health sponsored a symposium in May 2018 entitled "Obesity and Fat Metabolism in HIV-infected Individuals." Mechanisms relating to adipose dysfunction and fibrosis, immune function, inflammation, and gastrointestinal integrity were highlighted as contributors to obesity among PLHIV. Fibrotic subcutaneous adipose tissue is metabolically dysfunctional and loses its capacity to expand, leading to fat redistribution, including visceral obesity and ectopic fat accumulation, promoting insulin resistance. Viral proteins, including viral protein R and negative regulatory factor, have effects on adipogenic pathways and cellular metabolism in resident macrophages and T cells. HIV also affects immune cell trafficking into the adipose compartments, with effects on adipogenesis, lipolysis, and ectopic fat accumulation. Key cellular metabolic functions are likely to be affected in PLHIV by gut-derived cytokines and altered microbiota. There are limited strategies to reduce obesity specifically in PLHIV. Enhancing our understanding of critical pathogenic mechanisms will enable the development of novel therapeutics that may normalize adipose tissue function and distribution, reduce inflammation, and improve insulin sensitivity in PLHIV.


Subject(s)
Fats/metabolism , HIV Infections/metabolism , HIV Infections/pathology , Lipid Metabolism/physiology , Obesity/pathology , Obesity/virology , Adipocytes/metabolism , Adipocytes/pathology , Adipocytes/virology , Adipogenesis/physiology , Adipose Tissue/metabolism , Adipose Tissue/pathology , Adipose Tissue/virology , Adolescent , Adult , Cytokines/metabolism , Female , HIV/pathogenicity , HIV Infections/virology , Humans , Inflammation/metabolism , Inflammation/pathology , Inflammation/virology , Insulin Resistance/physiology , Male , Middle Aged , Obesity/metabolism , Viral Proteins/metabolism , Young Adult
9.
Annu Rev Physiol ; 77: 131-60, 2015.
Article in English | MEDLINE | ID: mdl-25668019

ABSTRACT

Diet-induced obesity leads to devastating and common chronic diseases, fueling ongoing interest in determining new mechanisms underlying both obesity and its consequences. It is now well known that chronic overnutrition produces a unique form of inflammation in peripheral insulin target tissues, and efforts to limit this inflammation have met with some success in preserving insulin sensitivity in obese individuals. Recently, the activation of inflammatory pathways by dietary excess has also been observed among cells located in the mediobasal hypothalamus, a brain area that exerts central control over peripheral glucose, fat, and energy metabolism. Here we review progress in the field of diet-induced hypothalamic inflammation, drawing key distinctions between metabolic inflammation in the hypothalamus and that occurring in peripheral tissues. We focus on specific stimuli of the inflammatory response, the roles of individual hypothalamic cell types, and the links between hypothalamic inflammation and metabolic function under normal and pathophysiological circumstances. Finally, we explore the concept of controlling hypothalamic inflammation to mitigate metabolic disease.


Subject(s)
Energy Metabolism/physiology , Hypothalamus/physiopathology , Inflammation/physiopathology , Metabolism/physiology , Animals , Diet/adverse effects , Humans , Hypothalamus/pathology , Metabolic Diseases/physiopathology , Microglia/physiology , Obesity/etiology , Obesity/physiopathology
10.
J Biol Chem ; 292(39): 16122-16134, 2017 09 29.
Article in English | MEDLINE | ID: mdl-28842503

ABSTRACT

Angptl4 (Angiopoietin-like 4) is a circulating protein secreted by white and brown adipose tissues and the liver. Structurally, Angptl4 contains an N-terminal coiled-coil domain (CCD) connected to a C-terminal fibrinogen-like domain (FLD) via a cleavable linker, and both full-length Angptl4 and its individual domains circulate in the bloodstream. Angptl4 inhibits extracellular lipoprotein lipase (LPL) activity and stimulates the lipolysis of triacylglycerol stored by adipocytes in the white adipose tissue (WAT). The former activity is furnished by the CCD, but the Angptl4 domain responsible for stimulating adipocyte lipolysis is unknown. We show here that the purified FLD of Angptl4 is sufficient to stimulate lipolysis in mouse primary adipocytes and that increasing circulating FLD levels in mice through adenovirus-mediated overexpression (Ad-FLD) not only induces WAT lipolysis in vivo but also reduces diet-induced obesity without affecting LPL activity. Intriguingly, reduced adiposity in Ad-FLD mice was associated with increased oxygen consumption, fat utilization, and the expression of thermogenic genes (Ucp1 and Ppargc1a) in subcutaneous WAT. Moreover, Ad-FLD mice exhibited increased glucose tolerance. Chronically enhancing WAT lipolysis could produce ectopic steatosis because of an overflow of lipids from the WAT to peripheral tissues; however, this did not occur when Ad-FLD mice were fed a high-fat diet. Rather, these mice had reductions in both circulating triacylglycerol levels and the mRNA levels of lipogenic genes in the liver and skeletal muscle. We conclude that separating the FLD from the CCD-mediated LPL-inhibitory activity of full-length Angptl4 reveals lipolytic and thermogenic properties with therapeutic relevance to obesity and diabetes.


Subject(s)
Abdominal Fat/metabolism , Angiopoietins/metabolism , Energy Metabolism , Lipolysis , Models, Biological , Up-Regulation , Abdominal Fat/cytology , Abdominal Fat/pathology , Adipose Tissue, Beige/cytology , Adipose Tissue, Beige/metabolism , Adipose Tissue, Beige/pathology , Adiposity , Angiopoietin-Like Protein 4 , Angiopoietins/blood , Angiopoietins/chemistry , Angiopoietins/genetics , Animals , Cells, Cultured , Liver/enzymology , Liver/metabolism , Male , Mice, Inbred C57BL , Mice, Transgenic , Muscle, Skeletal/enzymology , Muscle, Skeletal/metabolism , Mutation , Obesity/blood , Obesity/metabolism , Obesity/pathology , Obesity/prevention & control , Oligopeptides/genetics , Oligopeptides/metabolism , Peptide Fragments/blood , Peptide Fragments/chemistry , Peptide Fragments/genetics , Peptide Fragments/metabolism , Protein Interaction Domains and Motifs , Recombinant Fusion Proteins/blood , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism , Triglycerides/blood , Triglycerides/metabolism
11.
Curr Opin Clin Nutr Metab Care ; 21(6): 437-443, 2018 11.
Article in English | MEDLINE | ID: mdl-30148740

ABSTRACT

PURPOSE OF REVIEW: The current review provides an update on secreted factors and mechanisms that promote a thermogenic program in beige adipocytes, and their potential roles as therapeutic targets to fight obesity. RECENT FINDINGS: We outline recent studies revealing unrecognized mechanisms controlling beige adipocyte physiology, and summarize in particular those that underlie beige thermogenesis independently of classical uncoupling. We also update strategies aimed at fostering beige adipogenesis and white-to beige adipocyte conversion. Finally, we summarize newly identified endogenous secreted factors that promote the thermogenic activation of beige adipocytes and discuss their therapeutic potential. SUMMARY: The identification of novel endogenous factors that promote beiging and regulate beige adipocyte-specific physiological pathways opens up new avenues for therapeutic engineering targeting obesity and related metabolic disorders.


Subject(s)
Adipocytes, Beige/physiology , Adipogenesis/physiology , Obesity/physiopathology , Thermogenesis/physiology , Adipocytes, White/physiology , Animals , Humans
12.
Hepatology ; 61(1): 141-52, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25131933

ABSTRACT

UNLABELLED: Identification of microRNAs (miRNAs) that regulate lipid metabolism is important to advance the understanding and treatment of some of the most common human diseases. In the liver, a few key miRNAs have been reported that regulate lipid metabolism, but since many genes contribute to hepatic lipid metabolism, we hypothesized that other such miRNAs exist. To identify genes repressed by miRNAs in mature hepatocytes in vivo, we injected adult mice carrying floxed Dicer1 alleles with an adenoassociated viral vector expressing Cre recombinase specifically in hepatocytes. By inactivating Dicer in adult quiescent hepatocytes we avoided the hepatocyte injury and regeneration observed in previous mouse models of global miRNA deficiency in hepatocytes. Next, we combined gene and miRNA expression profiling to identify candidate gene/miRNA interactions involved in hepatic lipid metabolism and validated their function in vivo using antisense oligonucleotides. A candidate gene that emerged from our screen was lipoprotein lipase (Lpl), which encodes an enzyme that facilitates cellular uptake of lipids from the circulation. Unlike in energy-dependent cells like myocytes, LPL is normally repressed in adult hepatocytes. We identified miR-29a as the miRNA responsible for repressing LPL in hepatocytes, and found that decreasing hepatic miR-29a levels causes lipids to accumulate in mouse livers. CONCLUSION: Our screen suggests several new miRNAs are regulators of hepatic lipid metabolism. We show that one of these, miR-29a, contributes to physiological lipid distribution away from the liver and protects hepatocytes from steatosis. Our results, together with miR-29a's known antifibrotic effect, suggest miR-29a is a therapeutic target in fatty liver disease.


Subject(s)
Lipid Metabolism , Lipoprotein Lipase/biosynthesis , Liver/metabolism , MicroRNAs/metabolism , Animals , Enzyme Repression , Fatty Liver/etiology , Hepatocytes/metabolism , Male , Mice, Inbred C57BL
13.
J Med Internet Res ; 18(5): e134, 2016 May 27.
Article in English | MEDLINE | ID: mdl-27234480

ABSTRACT

BACKGROUND: Effective lifestyle interventions targeting high-risk adults that are both practical for use in ambulatory care settings and scalable at a population management level are needed. OBJECTIVE: Our aim was to examine the potential effectiveness, feasibility, and acceptability of delivering an evidence-based Electronic Cardio-Metabolic Program (eCMP) for improving health-related quality of life, improving health behaviors, and reducing cardiometabolic risk factors in ambulatory care high-risk adults. METHODS: We conducted a randomized, wait-list controlled trial with 74 adults aged ≥18 years recruited from a large multispecialty health care organization. Inclusion criteria were (1) BMI ≥35 kg/m(2) and prediabetes, previous gestational diabetes and/or metabolic syndrome, or (2) BMI ≥30 kg/m(2) and type 2 diabetes and/or cardiovascular disease. Participants had a mean age of 59.7 years (SD 11.2), BMI 37.1 kg/m(2) (SD 5.4) and were 59.5% female, 82.4% white. Participants were randomized to participate in eCMP immediately (n=37) or 3 months later (n=37). eCMP is a 6-month program utilizing video conferencing, online tools, and pre-recorded didactic videos to deliver evidence-based curricula. Blinded outcome assessments were conducted at 3 and 6 months postbaseline. Data were collected and analyzed between 2014 and 2015. The primary outcome was health-related quality of life. Secondary outcomes included biometric cardiometabolic risk factors (eg, body weight), self-reported diet and physical activity, mental health status, retention, session attendance, and participant satisfaction. RESULTS: Change in quality of life was not significant in both immediate and delayed participants. Both groups significantly lost weight and reduced waist circumference at 6 months, with some cardiometabolic factors trending accordingly. Significant reduction in self-reported anxiety and perceived stress was seen in the immediate intervention group at 6 months. Retention rate was 93% at 3 months and 86% at 6 months post-baseline. Overall eCMP attendance was high with 59.5-83.8% of immediate and delayed intervention participants attending 50% of the virtual stress management and behavioral lifestyle sessions and 37.8-62.2% attending at least 4 out of 7 in-person physical activity sessions. The intervention received high ratings for satisfaction. CONCLUSIONS: The technology-assisted eCMP is a feasible and well-accepted intervention and may significantly decrease cardiometabolic risk among high-risk individuals. TRIAL REGISTRATION: Clinicaltrials.gov NCT02246400; https://clinicaltrials.gov/ct2/show/NCT02246400 (Archived by WebCite at http://www.webcitation.org/6h6mWWokP).


Subject(s)
Cardiovascular Diseases/complications , Metabolic Syndrome/complications , Body Weight , Female , Health Behavior , Humans , Life Style , Male , Middle Aged , Pilot Projects , Quality of Life , Risk Factors
14.
J Neurosci ; 33(29): 11972-85, 2013 Jul 17.
Article in English | MEDLINE | ID: mdl-23864684

ABSTRACT

Like obesity, prolonged food deprivation induces severe hepatic steatosis; however, the functional significance of this phenomenon is not well understood. In this study, we show that the fall in plasma leptin concentration during fasting is required for the development of hepatic steatosis in mice. Removal of leptin receptors from AGRP neurons diminishes fasting-induced hepatic steatosis. Furthermore, the suppressive effects of leptin on fasting-induced hepatic steatosis are absent in mice lacking the gene encoding agouti-related protein (Agrp), suggesting that this function of leptin is mediated by AGRP. Prolonged fasting leads to suppression of hepatic sympathetic activity, increased expression of acyl CoA:diacylglycerol acyltransferase-2 in the liver, and elevation of hepatic triglyceride content and all of these effects are blunted in the absence of AGRP. AGRP deficiency, despite having no effects on feeding or body adiposity in the free-fed state, impairs triglyceride and ketone body release from the liver during prolonged fasting. Furthermore, reducing CNS Agrp expression in wild-type mice by RNAi protected against the development of hepatic steatosis not only during starvation, but also in response to consumption of a high-fat diet. These findings identify the leptin-AGRP circuit as a critical modulator of hepatic triglyceride stores in starvation and suggest a vital role for this circuit in sustaining the supply of energy from the liver to extrahepatic tissues during periods of prolonged food deprivation.


Subject(s)
Agouti-Related Protein/genetics , Energy Metabolism/physiology , Hypothalamus/metabolism , Leptin/metabolism , Liver/metabolism , Receptors, Leptin/genetics , Acyl Coenzyme A/genetics , Acyl Coenzyme A/metabolism , Agouti-Related Protein/metabolism , Animals , Body Composition/drug effects , Body Composition/physiology , Eating/drug effects , Eating/physiology , Energy Metabolism/drug effects , Fatty Liver/genetics , Fatty Liver/metabolism , Food Deprivation/physiology , Hypothalamus/drug effects , Leptin/pharmacology , Liver/drug effects , Male , Mice , Mice, Inbred C57BL , Neurons/drug effects , Neurons/metabolism , Norepinephrine/metabolism , Obesity/genetics , Obesity/metabolism , Receptors, Leptin/metabolism
15.
J Diabetes Sci Technol ; 18(3): 541-548, 2024 May.
Article in English | MEDLINE | ID: mdl-38454631

ABSTRACT

BACKGROUND: Hyperglycemia occurs in 22% to 46% of hospitalized patients, negatively affecting patient outcomes, including mortality, inpatient complications, length of stay, and hospital costs. Achieving inpatient glycemic control is challenging due to inconsistent caloric intake, changes from home medications, a catabolic state in the setting of acute illness, consequences of acute inflammation, intercurrent infection, and limitations in labor-intensive glucose monitoring and insulin administration. METHOD: We conducted a retrospective cross-sectional analysis at the University of California San Francisco hospitals between September 3, 2020 and September 2, 2021, comparing point-of-care glucose measurements in patients on nil per os (NPO), continuous total parenteral nutrition, or continuous tube feeding assigned to our novel automated self-adjusting subcutaneous insulin algorithm (SQIA) or conventional, physician-driven insulin dosing. We also evaluated physician efficiency by tracking the number of insulin orders placed or modified. RESULTS: The proportion of glucose in range (70-180 mg/dL) was higher in the SQIA group than in the conventional group (71.0% vs 69.0%, P = .153). The SQIA led to a lower proportion of severe hyperglycemia (>250 mg/dL; 5.8% vs 7.2%, P = .017), hypoglycemia (54-69 mg/dL; 0.8% vs 1.2%, P = .029), and severe hypoglycemia (<54 mg/dL; 0.3% vs 0.5%, P = .076) events. The number of orders a physician had to place while a patient was on the SQIA was reduced by a factor of more than 12, when compared with while a patient was on conventional insulin dosing. CONCLUSIONS: The SQIA reduced severe hyperglycemia, hypoglycemia, and severe hypoglycemia compared with conventional insulin dosing. It also improved physician efficiency by reducing the number of order modifications a physician had to place.


Subject(s)
Algorithms , Blood Glucose , Glycemic Control , Hypoglycemic Agents , Insulin , Humans , Retrospective Studies , Insulin/administration & dosage , Insulin/adverse effects , Female , Male , Middle Aged , Blood Glucose/analysis , Blood Glucose/drug effects , Cross-Sectional Studies , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/adverse effects , Glycemic Control/adverse effects , Glycemic Control/methods , Aged , Hyperglycemia/blood , Hyperglycemia/drug therapy , Hospitalization , Injections, Subcutaneous , Hypoglycemia/chemically induced , Hypoglycemia/prevention & control , Hypoglycemia/blood , Hypoglycemia/epidemiology
16.
J Biol Chem ; 287(11): 8444-56, 2012 Mar 09.
Article in English | MEDLINE | ID: mdl-22267746

ABSTRACT

Intracellular triacylglycerol (TG) hydrolysis and fatty acid release by the white adipose tissue (WAT) during a fast is stimulated by counter-regulatory factors acting in concert, although how adipocytes integrate these lipolytic inputs is unknown. We tested the role of angiopoietin-like 4 (Angptl4), a secreted protein induced by fasting or glucocorticoid treatment, in modulating intracellular adipocyte lipolysis. Glucocorticoid receptor blockade prevented fasting-induced tissue Angptl4 expression and WAT TG hydrolysis in mice, and TG hydrolysis induced by fasts of 6 or 24 h was greatly reduced in mice lacking Angptl4 (Angptl4(-/-)). Glucocorticoid treatment mimicked the lipolytic effects of fasting, although with slower kinetics, and this too required Angptl4. Thus, fasting-induced WAT TG hydrolysis requires glucocorticoid action and Angptl4. Both fasting and glucocorticoid treatment also increased WAT cAMP levels and downstream phosphorylation of lipolytic enzymes. Angptl4 deficiency markedly reduced these effects, suggesting that Angptl4 may stimulate lipolysis by modulating cAMP-dependent signaling. In support of this, cAMP levels and TG hydrolysis were reduced in primary Angptl4(-/-) murine adipocytes treated with catecholamines, which stimulate cAMP-dependent signaling to promote lipolysis, and was restored by treatment with purified human ANGPTL4. Remarkably, human ANGPTL4 treatment alone increased cAMP levels and induced lipolysis in these cells. Pharmacologic agents revealed that Angptl4 modulation of cAMP-dependent signaling occurs upstream of adenylate cyclase and downstream of receptor activation. We show that Angptl4 is a glucocorticoid-responsive mediator of fasting-induced intracellular lipolysis and stimulates cAMP signaling in adipocytes. Such a role is relevant to diseases of aberrant lipolysis, such as insulin resistance.


Subject(s)
Adipocytes, White/metabolism , Adipose Tissue, White/metabolism , Angiopoietins/metabolism , Fasting/physiology , Lipolysis/physiology , Second Messenger Systems/physiology , Angiopoietins/genetics , Angiopoietins/pharmacology , Animals , Cyclic AMP/genetics , Cyclic AMP/metabolism , Glucocorticoids/metabolism , Glucocorticoids/pharmacology , Humans , Insulin Resistance/genetics , Lipolysis/drug effects , Mice , Mice, Knockout , Second Messenger Systems/drug effects , Triglycerides/genetics , Triglycerides/metabolism
18.
bioRxiv ; 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37398282

ABSTRACT

The role of integrins in regulating insulin signaling is incompletely understood. We have previously shown that binding of the integrin ligand milk fat globule epidermal growth factor like 8 (MFGE8) to the αvß5 integrin promotes termination of insulin receptor signaling in mice. Upon ligation of MFGE8, ß5 complexes with the insulin receptor beta (IRß) in skeletal muscle resulting in dephosphorylation of IRß and reduction of insulin-stimulated glucose uptake. Here we investigate the mechanism by which the interaction between ß5 and IRß impacts IRß phosphorylation status. We show that ß5 blockade inhibits and MFGE8 promotes PTP1B binding to and dephosphorylation of IRß resulting in reduced or increased insulin-stimulated myotube glucose uptake respectively. The ß5-PTP1B complex is recruited by MFGE8 to IRß leading to termination of canonical insulin signaling. ß5 blockade enhances insulin-stimulated glucose uptake in wild type but not Ptp1b KO mice indicating that PTP1B functions downstream of MFGE8 in modulating insulin receptor signaling. Furthermore, in a human cohort, we report serum MFGE8 levels correlate with indices of insulin resistance. These data provide mechanistic insights into the role of MFGE8 and ß5 in regulating insulin signaling.

19.
J Telemed Telecare ; : 1357633X231184503, 2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37475531

ABSTRACT

This commentary article discusses the benefits of utilizing telemedicine to conduct shared medical appointments for people with type 1 diabetes and type 2 diabetes. We conducted a literature review of articles about shared medical appointments or group medical visits in people with diabetes with associated clinical data. We identified 43 articles. Models of this approach to care have demonstrated positive outcomes in adults and children with type 1 diabetes. Shared telemedicine appointments also have the potential to improve diabetes self-management, reduce the treatment burden, and improve psychosocial outcomes in adults with type 2 diabetes. Ten key recommendations for implementation are presented to guide the development of shared telemedicine appointments for diabetes. These recommendations can improve care for diabetes.

20.
JAMA Netw Open ; 6(10): e2336613, 2023 10 02.
Article in English | MEDLINE | ID: mdl-37782497

ABSTRACT

Importance: Assessing the relative effectiveness and safety of additional treatments when metformin monotherapy is insufficient remains a limiting factor in improving treatment choices in type 2 diabetes. Objective: To determine whether data from electronic health records across the University of California Health system could be used to assess the comparative effectiveness and safety associated with 4 treatments in diabetes when added to metformin monotherapy. Design, Setting, and Participants: This multicenter, new user, multidimensional propensity score-matched retrospective cohort study with leave-one-medical-center-out (LOMCO) sensitivity analysis used principles of emulating target trial. Participants included patients with diabetes receiving metformin who were then additionally prescribed either a sulfonylurea, dipeptidyl peptidase-4 inhibitor (DPP4I), sodium-glucose cotransporter-2 inhibitor (SGLT2I), or glucagon-like peptide-1 receptor agonist (GLP1RA) for the first time and followed-up over a 5-year monitoring period. Data were analyzed between January 2022 and April 2023. Exposure: Treatment with sulfonylurea, DPP4I, SGLT2I, or GLP1RA added to metformin monotherapy. Main Outcomes and Measures: The main effectiveness outcome was the ability of patients to maintain glycemic control, represented as time to metabolic failure (hemoglobin A1c [HbA1c] ≥7.0%). A secondary effectiveness outcome was assessed by monitoring time to new incidence of any of 28 adverse outcomes, including diabetes-related complications while treated with the assigned drug. Sensitivity analysis included LOMCO. Results: This cohort study included 31 852 patients (16 635 [52.2%] male; mean [SD] age, 61.4 [12.6] years) who were new users of diabetes treatments added on to metformin monotherapy. Compared with sulfonylurea in random-effect meta-analysis, treatment with SGLT2I (summary hazard ratio [sHR], 0.75 [95% CI, 0.69-0.83]; I2 = 37.5%), DPP4I (sHR, 0.79 [95% CI, 0.75-0.84]; I2 = 0%), GLP1RA (sHR, 0.62 [95% CI, 0.57-0.68]; I2 = 23.6%) were effective in glycemic control; findings from LOMCO sensitivity analysis were similar. Treatment with SGLT2I showed no significant difference in effectiveness compared with GLP1RA (sHR, 1.26 [95% CI, 1.12-1.42]; I2 = 47.3%; no LOMCO) or DPP4I (sHR, 0.97 [95% CI, 0.90-1.04]; I2 = 0%). Patients treated with DPP4I and SGLT2I had fewer cardiovascular events compared with those treated with sulfonylurea (DPP4I: sHR, 0.84 [95% CI, 0.74-0.96]; I2 = 0%; SGLT2I: sHR, 0.78 [95% CI, 0.62-0.98]; I2 = 0%). Patients treated with a GLP1RA or SGLT2I were less likely to develop chronic kidney disease (GLP1RA: sHR, 0.75 [95% CI 0.6-0.94]; I2 = 0%; SGLT2I: sHR, 0.77 [95% CI, 0.61-0.97]; I2 = 0%), kidney failure (GLP1RA: sHR, 0.69 [95% CI, 0.56-0.86]; I2 = 9.1%; SGLT2I: sHR, 0.72 [95% CI, 0.59-0.88]; I2 = 0%), or hypertension (GLP1RA: sHR, 0.82 [95% CI, 0.68-0.97]; I2 = 0%; SGLT2I: sHR, 0.73 [95% CI, 0.58-0.92]; I2 = 38.5%) compared with those treated with a sulfonylurea. Patients treated with an SGLT2I, vs a DPP4I, GLP1RA, or sulfonylurea, were less likely to develop indicators of chronic hepatic dysfunction (sHR vs DPP4I, 0.68 [95% CI, 0.49-0.95]; I2 = 0%; sHR vs GLP1RA, 0.66 [95% CI, 0.48-0.91]; I2 = 0%; sHR vs sulfonylurea, 0.60 [95% CI, 0.44-0.81]; I2 = 0%), and those treated with a DPP4I were less likely to develop new incidence of hypoglycemia (sHR, 0.48 [95% CI, 0.36-0.65]; I2 = 22.7%) compared with those treated with a sulfonylurea. Conclusions and Relevance: These findings highlight familiar medication patterns, including those mirroring randomized clinical trials, as well as providing new insights underscoring the value of robust clinical data analytics in swiftly generating evidence to help guide treatment choices in diabetes.


Subject(s)
Diabetes Mellitus, Type 2 , Dipeptidyl-Peptidase IV Inhibitors , Metformin , Sodium-Glucose Transporter 2 Inhibitors , Aged , Female , Humans , Male , Middle Aged , Antiviral Agents , Cohort Studies , Diabetes Mellitus, Type 2/drug therapy , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , Hypoglycemic Agents/therapeutic use , Metformin/therapeutic use , Protease Inhibitors , Retrospective Studies , Sulfonylurea Compounds/therapeutic use , Network Meta-Analysis
SELECTION OF CITATIONS
SEARCH DETAIL