Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
Exp Hematol ; 123: 28-33.e3, 2023 07.
Article in English | MEDLINE | ID: mdl-37209901

ABSTRACT

Mantle cell lymphoma (MCL) is an aggressive, noncurative, mature B-cell lymphoma, with a median overall survival of 6-7 years. This underlines a need for effective therapeutic strategies to treat MCL better. Epidermal growth factor-like 7 (EGFL7) is a protein secreted by endothelial cells shown to play a critical role in angiogenesis. Our laboratory has previously demonstrated that EGFL7 supports the growth of leukemic blasts in patients with acute myeloid leukemia (AML); however, its role in MCL has not been investigated yet. In this study, we report that EGFL7 messenger RNA (mRNA) is increased in the cells of patients with MCL compared with cells from healthy controls, and patients with high EGFL7 are associated with lower overall survival rates. Furthermore, EGFL7 is increased in the plasma of patients with MCL compared with the plasma from healthy controls. We further show that EGFL7 binds to epidermal growth factor receptor (EGFR) and activates AKT signaling pathway in MCL cells and that blocking EGFL7 in MCL in patient and cell lines decreases cell growth and increases apoptosis in vitro. Finally, anti-EGFL7 treatment inhibits tumor size and prolongs survival in a mouse model of MCL. In conclusion, our study reveals a role for EGFL7 in MCL cell proliferation and highlights EGFL7 inhibition as a promising new treatment for patients with MCL.


Subject(s)
Lymphoma, Mantle-Cell , Animals , Mice , Cell Line, Tumor , EGF Family of Proteins/metabolism , Endothelial Cells/metabolism , Lymphoma, Mantle-Cell/metabolism , Signal Transduction , Humans
2.
Cell Rep Med ; 4(10): 101200, 2023 10 17.
Article in English | MEDLINE | ID: mdl-37734378

ABSTRACT

Targeted therapies are effective in treating cancer, but success depends on identifying cancer vulnerabilities. In our study, we utilize small RNA sequencing to examine the impact of pathway activation on microRNA (miRNA) expression patterns. Interestingly, we discover that miRNAs capable of inhibiting key members of activated pathways are frequently diminished. Building on this observation, we develop an approach that integrates a low-miRNA-expression signature to identify druggable target genes in cancer. We train and validate our approach in colorectal cancer cells and extend it to diverse cancer models using patient-derived in vitro and in vivo systems. Finally, we demonstrate its additional value to support genomic and transcriptomic-based drug prediction strategies in a pan-cancer patient cohort from the National Center for Tumor Diseases (NCT)/German Cancer Consortium (DKTK) Molecularly Aided Stratification for Tumor Eradication (MASTER) precision oncology trial. In conclusion, our strategy can predict cancer vulnerabilities with high sensitivity and accuracy and might be suitable for future therapy recommendations in a variety of cancer subtypes.


Subject(s)
MicroRNAs , Neoplasms , Humans , Neoplasms/drug therapy , Neoplasms/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Precision Medicine , Genomics , Transcriptome
3.
Blood Adv ; 6(7): 2403-2408, 2022 04 12.
Article in English | MEDLINE | ID: mdl-34654057

ABSTRACT

Acute graft-versus-host disease (aGVHD) is the second most common cause of death after allogeneic hematopoietic stem cell transplantation (allo-HSCT), underscoring the need for novel therapies. Based on previous work that endothelial cell dysfunction is present in aGVHD and that epidermal growth factor-like domain 7 (EGFL7) plays a significant role in decreasing inflammation by repressing endothelial cell activation and T-cell migration, we hypothesized that increasing EGFL7 levels after allo-HSCT will diminish the severity of aGVHD. Here, we show that treatment with recombinant EGFL7 (rEGFL7) in 2 different murine models of aGVHD decreases aGVHD severity and improves survival in recipient mice after allogeneic transplantation with respect to controls without affecting graft-versus-leukemia effect. Furthermore, we showed that rEGFL7 treatment results in higher thymocytes, T, B, and dendritic cell counts in recipient mice after allo-HSCT. This study constitutes a proof of concept of the ability of rEGFL7 therapy to reduce GHVD severity and mortality after allo-HSCT.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Animals , Bone Marrow Transplantation/adverse effects , Endothelial Cells , Graft vs Host Disease/etiology , Hematopoietic Stem Cell Transplantation/adverse effects , Hematopoietic Stem Cell Transplantation/methods , Mice , Transplantation, Homologous
SELECTION OF CITATIONS
SEARCH DETAIL