Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Nat Immunol ; 25(2): 307-315, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38182667

ABSTRACT

The global outbreak of the mpox virus (MPXV) in 2022 highlights the urgent need for safer and more accessible new-generation vaccines. Here, we used a structure-guided multi-antigen fusion strategy to design a 'two-in-one' immunogen based on the single-chain dimeric MPXV extracellular enveloped virus antigen A35 bivalently fused with the intracellular mature virus antigen M1, called DAM. DAM preserved the natural epitope configuration of both components and showed stronger A35-specific and M1-specific antibody responses and in vivo protective efficacy against vaccinia virus (VACV) compared to co-immunization strategies. The MPXV-specific neutralizing antibodies elicited by DAM were 28 times higher than those induced by live VACV vaccine. Aluminum-adjuvanted DAM vaccines protected mice from a lethal VACV challenge with a safety profile, and pilot-scale production confirmed the high yield and purity of DAM. Thus, our study provides innovative insights and an immunogen candidate for the development of alternative vaccines against MPXV and other orthopoxviruses.


Subject(s)
Monkeypox virus , Vaccines , Animals , Mice , Viral Envelope Proteins , Antibodies, Viral , Vaccinia virus , Antigens, Viral , Immunity
3.
Nature ; 620(7976): 1047-1053, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37459895

ABSTRACT

Zygotic genome activation (ZGA) activates the quiescent genome to enable the maternal-to-zygotic transition1,2. However, the identity of transcription factors that underlie mammalian ZGA in vivo remains elusive. Here we show that OBOX, a PRD-like homeobox domain transcription factor family (OBOX1-OBOX8)3-5, are key regulators of mouse ZGA. Mice deficient for maternally transcribed Obox1/2/5/7 and zygotically expressed Obox3/4 had a two-cell to four-cell arrest, accompanied by impaired ZGA. The Obox knockout defects could be rescued by restoring either maternal and zygotic OBOX, which suggests that maternal and zygotic OBOX redundantly support embryonic development. Chromatin-binding analysis showed that Obox knockout preferentially affected OBOX-binding targets. Mechanistically, OBOX facilitated the 'preconfiguration' of RNA polymerase II, as the polymerase relocated from the initial one-cell binding targets to ZGA gene promoters and distal enhancers. Impaired polymerase II preconfiguration in Obox mutants was accompanied by defective ZGA and chromatin accessibility transition, as well as aberrant activation of one-cell polymerase II targets. Finally, ectopic expression of OBOX activated ZGA genes and MERVL repeats in mouse embryonic stem cells. These data thus demonstrate that OBOX regulates mouse ZGA and early embryogenesis.


Subject(s)
Embryonic Development , Gene Expression Regulation, Developmental , Genome , Homeodomain Proteins , Transcription Factors , Zygote , Animals , Mice , Chromatin/genetics , Chromatin/metabolism , Embryonic Development/genetics , Enhancer Elements, Genetic/genetics , Genome/genetics , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Mouse Embryonic Stem Cells/metabolism , Mutation , Promoter Regions, Genetic/genetics , RNA Polymerase II/metabolism , Transcription Factors/deficiency , Transcription Factors/genetics , Transcription Factors/metabolism , Zygote/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL