Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 121
Filter
Add more filters

Country/Region as subject
Affiliation country
Publication year range
1.
Proc Natl Acad Sci U S A ; 120(17): e2211495120, 2023 Apr 25.
Article in English | MEDLINE | ID: mdl-37068228

ABSTRACT

Whether there are links between geomagnetic field and Earth's orbital parameters remains unclear. Synchronous reconstructions of parallel long-term quantitative geomagnetic field and climate change records are rare. Here, we present 10Be-derived changes of both geomagnetic field and Asian monsoon (AM) rainfall over the last 870 kyr from the Xifeng loess-paleosol sequence on the central Chinese Loess Plateau. The 10BeGM flux (a proxy for geomagnetic field-induced 10Be production rate) reveals 13 consecutive geomagnetic excursions in the Brunhes chron, which are synchronized with the global records, providing key time markers for Chinese loess-paleosol sequences. The 10Be-derived rainfall exhibits distinct ~100 kyr glacial-interglacial cycles, and superimposed precessional (~23 kyr) cycles that match with those in Chinese speleothem δ18O record. We find that changes in the geomagnetic field and AM rainfall share a common ~100 kyr cyclicity, implying a likely eccentricity modulation of both the geomagnetic field and climate.

2.
J Immunol ; 211(4): 658-672, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37417761

ABSTRACT

Gasdermin E (GSDME), to date, is considered the only direct executor of the pyroptosis process in teleost and plays an important role in innate immunity. In common carp (Cyprinus carpio), there contains two pairs of GSDME (GSDMEa/a-like and GSDMEb-1/2), and the pyroptotic function and regulation mechanism of GSDME still remain unclear. In this study, we identified two GSDMEb genes of common carp (CcGSDMEb-1/2), which contain a conserved N-terminal pore-forming domain, C-terminal autoinhibitory domain, and a flexible and pliable hinge region. We investigated the function and mechanism of CcGSDMEb-1/2 in association with inflammatory and apoptotic caspases in Epithelioma papulosum cyprinid cells and discovered that only CcCaspase-1b could cleave CcGSDMEb-1/2 through recognizing the sites 244FEVD247 and 244FEAD247 in the linker region, respectively. CcGSDMEb-1/2 exerted toxicity to human embryonic kidney 293T cells and bactericidal activity through its N-terminal domain. Interestingly, after i.p. infection by Aeromonas hydrophila, we found that CcGSDMEb-1/2 were upregulated in immune organs (head kidney and spleen) at the early stage of infection, but downregulated in mucosal immune tissues (gill and skin). After CcGSDMEb-1/2 were knocked down and overexpressed in vivo and in vitro, respectively, we found that CcGSDMEb-1/2 could govern the secretion of CcIL-1ß and regulate the bacterial clearance after A. hydrophila challenge. Taken together, in this study, it was demonstrated that the cleavage mode of CcGSDMEb-1/2 in common carp was obviously different from that in other species and played an important role in CcIL-1ß secretion and bacterial clearance.


Subject(s)
Carps , Fish Diseases , Gram-Negative Bacterial Infections , Animals , Humans , Pyroptosis , Caspases/genetics , Immunity, Innate/genetics , Skin
3.
Pharmacol Res ; 205: 107244, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38821149

ABSTRACT

Doxorubicin (Dox) is an anti-tumor drug with a broad spectrum, whereas the cardiotoxicity limits its further application. In clinical settings, liposome delivery vehicles are used to reduce Dox cardiotoxicity. Here, we substitute extracellular vesicles (EVs) for liposomes and deeply investigate the mechanism for EV-encapsulated Dox delivery. The results demonstrate that EVs dramatically increase import efficiency and anti-tumor effects of Dox in vitro and in vivo, and the efficiency increase benefits from its unique entry pattern. Dox-loading EVs repeat a "kiss-and-run" motion before EVs internalization. Once EVs touch the cell membrane, Dox disassociates from EVs and directly enters the cytoplasm, leading to higher and faster Dox import than single Dox. This unique entry pattern makes the adhesion between EVs and cell membrane rather than the total amount of EV internalization the key factor for regulating the Dox import. Furthermore, we recognize ICAM1 as the molecule mediating the adhesion between EVs and cell membranes. Interestingly, EV-encapsulated Dox can induce ICAM1 expression by irritating IFN-γ and TNF-α secretion in TME, thereby increasing tumor targeting of Dox-loading EVs. Altogether, EVs and EV-encapsulated Dox synergize via ICAM1, which collectively enhances the curative effects for tumor treatment.


Subject(s)
Antibiotics, Antineoplastic , Doxorubicin , Extracellular Vesicles , Intercellular Adhesion Molecule-1 , Doxorubicin/pharmacology , Doxorubicin/administration & dosage , Animals , Humans , Intercellular Adhesion Molecule-1/metabolism , Extracellular Vesicles/metabolism , Extracellular Vesicles/drug effects , Antibiotics, Antineoplastic/pharmacology , Antibiotics, Antineoplastic/administration & dosage , Cell Line, Tumor , Mice, Inbred BALB C , Mice , Female , Neoplasms/drug therapy , Neoplasms/metabolism , Cell Adhesion/drug effects , Drug Delivery Systems , Mice, Nude , Tumor Necrosis Factor-alpha/metabolism
4.
World J Urol ; 42(1): 425, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39037613

ABSTRACT

OBJECTIVES: This study was to investigate the correlation between oxidative balance score (OBS) and the prevalence of kidney stones in the general adult population. MATERIALS AND METHODS: We conducted an analysis using data from the 2007-2018 National Health and Nutrition Examination Survey (NHANES) project, including 17,988 participants. The OBS was computed based on previous research, combining 16 dietary factors and 4 lifestyle factors. Multiple logistic regressions and restricted cubic spline (RCS) regressions were utilized to explore the associations between OBS and kidney stone prevalence. RESULTS: Our analysis included 1,622 adults with kidney stones and 16,366 adults without kidney stones. The average age of participants was 46.86 ± 0.27 years, with 50.72% being male. The median OBS was 22.00 (17.00, 27.00). After adjusting for all covariates, each one-unit increase in OBS was associated with a 3% decrease in kidney stone prevalence (odds ratio [OR] = 0.97 [0.96-0.98], P < 0.001). Moreover, compared to the first quartile, the fourth quartile of OBS (OR = 0.65 [0.50-0.84], P = 0.001) exhibited a negative association with kidney stone prevalence after adjusting for multiple variables. Furthermore, we observed a non-linear negative relationship between OBS and kidney stone prevalence, with inflection points at 18.2 (P for nonlinearity = 0.048). Stratified analysis did not identify any variables significantly affecting the results. CONCLUSION: Our findings indicate that a higher OBS is associated with a decreased prevalence of kidney stones in the general adult population.


Subject(s)
Kidney Calculi , Humans , Kidney Calculi/epidemiology , Kidney Calculi/metabolism , Kidney Calculi/chemistry , Male , Female , Middle Aged , Prevalence , Adult , Oxidative Stress , Nutrition Surveys , Cross-Sectional Studies
5.
Fish Shellfish Immunol ; : 109832, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39147176

ABSTRACT

The interleukin-17 (IL-17) family of cytokines is critical for host defense responses and mediates different pro- or anti-inflammatory mediators through different signaling pathways. However, the function of the related family member, IL-17B, in teleosts is poorly understood. In the present study, an IL-17B homolog (CcIL-17B) in common carp (Cyprinus carpio) was identified, and sequence analysis showed that CcIL-17B had eight conserved cysteine residues, four of which could form two pairs of disulfide bonds, which in turn formed a ring structure composed of nine amino acids (aa). The deduced aa sequences of CcIL-17B shared 35.79-92.93% identify with known homologs. The expression patterns were characterized in healthy and bacteria-infected carp. In healthy carp, IL-17B mRNA was highly expressed in the spleen, whereas Aeromonas veronii effectively induced CcIL-17B expression in the liver, head, kidney, gills, and intestine. The recombinant protein rCcIL-17B could regulate the expression levels of inflammatory cytokines (such as IL-1ß, IL-6, TNF-α, and IFN-γ) in primary cultured head kidney leukocytes in vitro. As an adjuvant for the formalin-killed A. veronii (FKA) vaccine, rCcIL-17B induced the production of specific antibodies more rapidly and effectively than Freund's complete adjuvant (FCA). The results of the challenge experiments showed that the relative percent survival (RPS) after vaccination with rCcIL-17B was 78.13%. This percentage was significantly elevated compared to that observed in the alternative experimental groups (62.5% and 37.5%, respectively). Additionally, the bacterial loads in the spleen of the rCcIL-17B + FKA group were significantly lower than those in the control group from 12 h to 48 h after bacterial infection. Furthermore, histological analysis showed that the epithelial cells were largely intact, and the striated border structure was complete in the intestine of rCcIL-17B+FKA group. Collectively, our results demonstrate that CcIL-17B plays a crucial role in eliciting immune responses and evokes a higher RPS against A. veronii challenge compared to the traditional adjuvant FCA, indicating that rCcIL-17B is a promising vaccine adjuvant for controlling A. veronii infection.

6.
Fish Shellfish Immunol ; 151: 109719, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38914181

ABSTRACT

Sequestosome 1 (SQSTM1/p62) is a selective autophagy adapter protein that participates in antiviral and bacterial immune responses and plays an important regulatory role in clearing the proteins to be degraded and maintaining intracellular protein homeostasis. In this study, two p62 genes were cloned from common carp (Cyprinus carpio), namely Ccp62-1 and Ccp62-2, and conducted bioinformatics analysis on them. The results showed that Ccp62s had the same structural domain (Phox and Bem1 domain, ZZ-type zinc finger domain, and ubiquitin-associated domain) as p62 from other species. Ccp62s were widely expressed in various tissues of fish, and highly expressed in immune organs such as gills, spleen, head kidney, etc. Subcellular localization study showed that they were mainly distributed in punctate aggregates in the cytoplasm. After stimulation with Aeromonas hydrophila and spring viraemia of carp virus (SVCV), the expression level of Ccp62s was generally up-regulated. Overexpression of Ccp62s in EPC cells could inhibit SVCV replication. Upon A. hydrophila challenge, the bacterial load in Ccp62s-overexpressing group was significantly reduced, the expression levels of pro-inflammatory cytokines and interferon factors were increased, and the survival rate of the fish was improved. These results indicated that Ccp62s were involved in the immune response of common carp to bacterial and viral infections.


Subject(s)
Aeromonas hydrophila , Carps , Fish Diseases , Fish Proteins , Gram-Negative Bacterial Infections , Immunity, Innate , Phylogeny , Rhabdoviridae Infections , Rhabdoviridae , Animals , Carps/immunology , Carps/genetics , Fish Diseases/immunology , Fish Proteins/genetics , Fish Proteins/immunology , Aeromonas hydrophila/physiology , Immunity, Innate/genetics , Rhabdoviridae/physiology , Gram-Negative Bacterial Infections/immunology , Gram-Negative Bacterial Infections/veterinary , Rhabdoviridae Infections/immunology , Rhabdoviridae Infections/veterinary , Gene Expression Regulation/immunology , Sequestosome-1 Protein/genetics , Sequestosome-1 Protein/immunology , Gene Expression Profiling/veterinary , Sequence Alignment/veterinary , Amino Acid Sequence , Autophagy/immunology
7.
Fish Shellfish Immunol ; 152: 109783, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39032705

ABSTRACT

Prostaglandin-endoperoxide synthase 2 (PTGS2), a common biological macromolecule, is pivotal for innate immunity and pathogen recognition. In this study, we identified and characterized a CcPTGS2a-like gene in the common carp (Cyprinus carpio) with an open reading frame (ORF) of 1821 bp and epidermal growth factor and peroxidase domains. Our multiple sequence analysis revealed high homology between the amino acid sequence of CcPTGS2a-like and those of its homologs in other fish. CcPTGS2a-like mRNA and protein expressions were significantly upregulated in the spleen, head kidney, liver, and gill tissues upon exposure to Aeromonas hydrophila stimulation. CcPTGS2a-like protein recognized the conserved bacterial surface components and exhibited detectable bacterial binding activity. CcPTGS2a-like overexpression before exposure to A. hydrophila notably enhanced the survival rate of common carp, concomitant with decreased bacterial burden. The NF-κB/ERK signaling pathway initiated the immune response in common carp upon infection with A. hydrophila. CcPTGS2a-like overexpression or interference in the head kidney and Epithelioma papulosum cyprinid cells could modulate the p-NF-κB (p-p-65), p-IκBα, and p-ERK1/2 levels as well as the IL-1ß and IL-6 mRNA expression. These results indicated potential CcPTGS2a-like involvement in the immune response of the common carp to bacterial infections through the NF-κB/ERK signaling pathway.


Subject(s)
Aeromonas hydrophila , Carps , Fish Diseases , Fish Proteins , Gene Expression Regulation , Gram-Negative Bacterial Infections , Immunity, Innate , NF-kappa B , Animals , Carps/immunology , Carps/genetics , Aeromonas hydrophila/physiology , Fish Proteins/genetics , Fish Proteins/immunology , Fish Proteins/chemistry , Gram-Negative Bacterial Infections/immunology , Gram-Negative Bacterial Infections/veterinary , Fish Diseases/immunology , NF-kappa B/genetics , NF-kappa B/metabolism , NF-kappa B/immunology , Immunity, Innate/genetics , Gene Expression Regulation/immunology , Amino Acid Sequence , Phylogeny , Sequence Alignment/veterinary , Gene Expression Profiling/veterinary , Signal Transduction , MAP Kinase Signaling System/immunology , Base Sequence
8.
Fish Shellfish Immunol ; 145: 109318, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38142019

ABSTRACT

CD4-1 found in bony fish contains four extracellular immunoglobulin (Ig)-like domains similar to that of mammalian CD4, which is crucial for the activation of CD4+ helper T-cell. However, there is limited knowledge regarding the molecular markers, immune functions and regulation mechanism of CD4-1 in teleosts due to their vast diversity. In this study, we cloned and characterized two isoforms of Qihe crucian carp CD4-1, designated as CaCD4-1.1 and CaCD4-1.2. We further explored their expression responses upon stimulation with Aeromonas veronii, and the regulation of their immune responses against A. veronii by NF-κB. The ORF of CaCD4-1.1 and CaCD4-1.2 cDNA encoded 477 and 466 amino acids, respectively. Both proteins contained seven conserved cysteine residues in the extracellular domain, and a CCC motif in their cytoplasm, respectively. However, CaCD4-1.1 exhibited a relatively limited similarity with CaCD4-1.2 in the ectodomain. The quantitative real-time polymerase chain reaction (qRT-PCR) analysis revealed that the mRNA expression of CaCD4-1.1 and CaCD4-1.2 exhibited differential constitutive expression across all examined tissues. Furthermore, the expression level of CD4-1.2 was higher than that of CD4-1.1 in the gills, head kidney, and spleen of Qihe crucian carp subjected to A. veronii challenge, while it was lower in the trunk kidney. Inhibition of NF-κB activity resulted in a decrease in the expression levels of CD4-1.1 and CD4-1.2 mRNA in the gill, while inducing an increase in expression levels in the spleen, in accordance with the observed ultrastructural changes in both organs. Interestingly, the impact of NF-κB on the mRNA expression level of CD4-1.1 appears to be stronger than that of CD4-1.2. Our results suggest that CaCD4-1.1 and CaCD4-1.2 could be expressed on T cells and antigen-sampling cells that exhibit similar characteristics to mammalian M cells, respectively, and differentially regulated by NF-κB in adaptive immune responses against bacterial infection. This research contributes to a better understanding of the crucial role of CD4-1 in the immune response of Qihe crucian carp and provide novel insights for the prevention and treatment of fish diseases in aquaculture.


Subject(s)
Carps , Fish Diseases , Gram-Negative Bacterial Infections , Animals , Goldfish , Carps/metabolism , NF-kappa B , Aeromonas veronii/genetics , Immunity, Innate/genetics , RNA, Messenger , Fish Proteins/genetics , Aeromonas hydrophila/physiology , Mammals/metabolism
9.
Mol Biol Rep ; 51(1): 470, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38551799

ABSTRACT

BACKGROUND: The genetic improvement in growth and food habit domestication of largemouth bass (Micropterus salmoides) have made breakthroughs in past decades, while the relevant work on disease resistance were rarely carried out. Major histocompatibility complex (MHC) genes, which are well known as their numbers and high polymorphisms, have been used as candidate genes to mine disease-resistant-related molecular markers in many species. METHODS AND RESULTS: In present study, we developed and characterized 40 polymorphic and biallelic InDel markers from the major histocompatibility complex genes of largemouth bass. The minor allele frequency, observed heterozygosity, expected heterozygosity and polymorphic information content of these markers ranged from 0.0556 to 0.5000, 0.1111 to 0.6389, 0.1064 to 0.5070, and 0.0994 to 0.3750, respectively. Three loci deviated significantly from Hardy-Weinberg equilibrium, while linkage disequilibrium existed at none of these loci. CONCLUSION: These InDel markers might provide references for the further correlation analysis and molecular assisted selection of disease resistance in largemouth bass.


Subject(s)
Bass , Animals , Bass/genetics , Disease Resistance/genetics , Polymorphism, Genetic/genetics , Gene Frequency/genetics , Major Histocompatibility Complex/genetics
10.
Neoplasma ; 71(1): 48-59, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38295104

ABSTRACT

In this research, polyethylenimine-functionalized gold nanoclusters (PEI-AuNCs) were synthesized for the delivery of plasmid CMTM5 (pCMTM5) to prostate cancer (PCa) cells, with the objective of elucidating the mechanism underlying its anticancer efficacy. The PEI-AuNCs loaded with pCMTM5 (PEI-AuNCs@pCMTM5) tumor-targeting drug delivery system was established. Subsequently, both the obtained PEI-AuNCs and PEI-AuNCs@pCMTM5 underwent characterization through a transmission electron microscope (TEM) and dynamic light scattering (DLS). Employing RT-qPCR, western blot, flow cytometry, immunofluorescence, and co-immunoprecipitation (co-IP) assays, the consequences of CMTM5 overexpression on the expression of EGFR were investigated. Moreover, the influence of PEI-AuNCs@pCMTM5 on PC-3 cells was assessed through CCK-8, wound healing assay, and Transwell experiments. As a result, the PEI-AuNCs and PEI-AuNCs@pCMTM5 were presented as uniformly dispersed spherical with stable particle sizes and positive charges, showcasing favorable dispersion within the solution. In comparison to Lip2000, the PEI-AuNCs demonstrated superior transfection efficiency and lower cellular toxicity. Following the overexpression of CMTM5, the proliferative capacity of PC-3 cells was markedly suppressed, while both migratory and invasive abilities exhibited noteworthy reduction, with the efficacy of PEI-AuNCs@pCMTM5 consistently outperforming that of free pCMTM5. Subsequent mechanistic investigations unveiled that CMTM5 does not directly inhibit the synthesis of EGFR or facilitate its degradation, but rather influences the endocytic process of EGFR. In conclusion, the PEI-AuNCs nano-delivery system exhibits good biocompatibility and efficaciously conveys pCMTM5 to PCa cells. Crucially, pCMTM5 does not directly interact with EGFR, and CMTM5 governs the malignant progression of PC3 cells by promoting EGFR endocytosis.


Subject(s)
Polyethyleneimine , Prostatic Neoplasms , Male , Humans , Gold , Prostatic Neoplasms/pathology , Plasmids , Transfection , Endocytosis , ErbB Receptors/genetics , ErbB Receptors/metabolism , Chemokines/metabolism , MARVEL Domain-Containing Proteins/genetics , MARVEL Domain-Containing Proteins/metabolism
11.
Fish Shellfish Immunol ; 132: 108452, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36471559

ABSTRACT

Apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), as a critical adaptor molecule in inflammasome complexes, plays an important role in mediating inflammation reaction. In this study, the complete cDNA of ASC gene with 891 bp was cloned in Qihe crucian carp Carassius auratus (named as CaASC), which was composed of a 5'-UTR of 36 bp, a 3'-UTR of 252 bp, and an ORF of 603 bp encoded 200 amino acids with a predicted isoelectric point of 5.61 and a molecular mass of 22.0 kDa. Multiple sequence alignment and motif analysis revealed that CaASC contained a conserved N-terminal Pyrin domain (PYD) and a C-terminal Caspase recruitment domain (CARD). CaASC mRNA and protein expressions were detected in selected tissues, with the highest mRNA level in the spleen. Meanwhile, CaASC gene expressions were clearly altered in intestine, gill, skin, spleen, liver and head kidney of fish challenged by Aeromonas hydrophila, LPS, and polyI:C, respectively. The recombined proteins of CaASC with fluorescent tag were over-expressed in transfected 293T cells, and the green specks were observed obviously and located in the cytoplasm. Furthermore, knockdown of CaASC reduced the expression of IL-1ß and promoted the bacterial colonization in fish tissues, while overexpression of CaASC increased the expression of IL-1ß and hampered the bacterial colonization in these tissues. Taken together, these results identified the molecular characteristics of CaASC in C. auratus, and revealed its role in regulating IL-1ß expression and restricting bacterial infection in vivo.


Subject(s)
Fish Diseases , Gram-Negative Bacterial Infections , Animals , Goldfish/genetics , Goldfish/metabolism , Aeromonas hydrophila/physiology , Gene Expression Regulation , Fish Proteins/chemistry , Gram-Negative Bacterial Infections/microbiology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Fish Diseases/microbiology
12.
Fish Shellfish Immunol ; 141: 109028, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37633345

ABSTRACT

Though Procambarus clarkii (red swamp crayfish) is a lower invertebrate, it has nonetheless developed a complex innate immune system. The crayfish farming industry has suffered considerable economic losses in recent years as a consequence of bacterial and viral diseases. Hence, perhaps the most effective ways to prevent microbial infections in P. clarkii are to examine and elucidate its innate immunity. The first step in the immune response is to recognize pathogen-associated molecular patterns (PAMPs) through pattern recognition receptors (PRRs). PRRs are expressed mainly on immune cell surfaces and recognize at least one PAMP. Thence, downstream immune responses are activated and pathogens are phagocytosed. To date, the PRRs identified in P. clarkii include Toll-like receptors (TLRs), lectins, fibrinogen-related proteins (FREPs), and ß-1,3-glucan-binding proteins (BGRPs). The present review addresses recent progress in research on PRRs and aims to provide guidance for improving immunity and preventing and treating infectious diseases in P. clarkii.


Subject(s)
Astacoidea , Receptors, Pattern Recognition , Animals , Receptors, Pattern Recognition/genetics , Immunity, Innate , Toll-Like Receptors/metabolism , Bacteria/metabolism
13.
Fish Shellfish Immunol ; 133: 108550, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36646341

ABSTRACT

CD3γ/δ found in non-mammalian vertebrates is a CD3 homolog with structural characteristics similar to both mammalian CD3γ and CD3δ, and plays important roles in T cell recognization and immune response in fish. In this study, the full-length of CD3γ/δ from Qihe crucian carp (named CaCD3γ/δ) was cloned and characterized, then the expression response profiles and potential immune functions was explored after Aeromonas veronii and Poly(I:C) challenge. The results showed that the full-length of CaCD3γ/δ was 819 bp including a 5'-UTR of 141 bp, a 3'-UTR of 168 bp, and an ORF of 510 bp encoding a putative 169-aa protein with an estimated MW of 18.71 kD and a theoretical pI of 8.77. The protein sequence of CaCD3γ/δ contained a Leu-Leu and a CXXXC motif in the extracellular domain, and an ITAM and a Leu-Ile motif in the cytoplasm, and a residue of Asn in the transmembrane. CaCD3γ/δ was constitutively expressed in the spleen, liver, gill, and blood of Qihe crucian carp. After the carp were challenged with Poly(I:C) and Aeromonas veronii, the mRNA expression levels of CaCD3γ/δ were significantly changed in the spleen, head kidney, intestine and gill, according to the results of qPCR. However, compared with A. veronii, Poly(I:C) challenge can rapidly induce the CaCD3γ/δ expression levels in head kidney, intestine and spleen, which suggested CaCD3γ/δ may be differentially modulated by different pathogens. Moreover, the results of immunohistochemical analysis showed that the CaCD3γ/δ+ secreted cells in the spleen and gills of Qihe crucian were increased after challenged with Poly(I:C), as well as the spleen challenged with A. veronii, but at different levels. Combined with the fact that vascular congestion, necrosis of parenchymal cells, and inflammatory cells including lymphocytes infiltration were also observed in the gill and spleen of Qihe crucian carp treated with A. veronii and Poly(I:C) revealed by pathological analysis, it was predicted that CaCD3γ/δ+ T lymphocytes may participated in the immune response against pathogens. This study will contribute to understand the important role of CaCD3γ/δ+ T lymphocytes in the immune response of Qihe crucian carp, and provide new insights for the prevention and treatment of the diseases of Qihe crucian carp.


Subject(s)
Carps , Fish Diseases , Animals , Goldfish , Carps/genetics , Carps/metabolism , Aeromonas veronii/genetics , Immunity, Innate/genetics , Sequence Alignment , Fish Proteins/chemistry , Mammals/metabolism
14.
Fish Shellfish Immunol ; 141: 109058, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37673389

ABSTRACT

Prostaglandin-endoperoxide synthase 2 (PTGS2), a crucial enzyme in prostaglandin synthesis, catalyzes the conversion of arachidonic acid to prostaglandins and plays a significant role in the inflammatory response. This investigation aimed to determine the regulatory role of PTGS2a in the innate immune response to bacterial infection in fish. To achieve this objective, the CcPTGS2a gene was identified and characterized in common carp (Cyprinus carpio), and its function in immune defense was investigated. According to the sequence and structural analysis results, CcPTGS2a had an open reading frame of 1806 bp that encoded 602 amino acids. It was estimated that the protein's theoretical molecular weight was 69.0 kDa, and its isoelectric point was 8.10. The structure of CcPTGS2a was observed to be conserved, with an epidermal growth factor domain and a peroxidase domain present. Moreover, the amino acid sequence of CcPTGS2a exhibited significant homology with the amino acid sequences of several fish species. CcPTGS2a mRNA was detected in the healthy tissues of common carp, with higher expression in the head kidney, spleen, gills, and liver. Following the challenges with Aeromonas hydrophila and lipopolysaccharide, CcPTGS2a mRNA showed unique geographic and temporal expression patterns, with significant increases detected in the head kidney, gills, spleen, and liver. Additionally, the recombinant CcPTGS2a protein exhibited detectable bacterial binding to various bacteria. As determined by subcellular localization analysis, CcPTGS2a was predominantly localized in the nucleus and cytoplasm. Furthermore, it was discovered that the overexpression of CcPTGS2a stimulated the up-regulation of ferroptosis-related genes and inflammatory cytokine mRNA expression in fish and EPC (Epithelioma papulosum cyprinid) cells while concurrently reducing the bacterial load of A. hydrophila. In contrast, the interference of CcPTGS2a decreased the mRNA expression of ferroptosis-related genes and inflammatory cytokines in fish and EPC cells and increased the bacterial load of A. hydrophila. Notably, A. hydrophila stimulation resulted in the up-regulation of CcPTGS2a protein expression in EPC cells. These results suggested that CcPTGS2a was involved in the immune response to bacterial infections in common carp.

15.
Fish Shellfish Immunol ; 133: 108543, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36669601

ABSTRACT

The collectin subfamily member 11 (Colec11), plays an important role in innate immunity as a pattern recognition molecule. In the present study, a colec11 homolog was identified and characterised from Qihe crucian carp, namely, Ca-colec11. The full-length cDNA of Ca-colec11 was composed of 1129 bp, with a 99 bp 5'-untranslated region (UTR), 816 bp open reading frame (ORF) encoding a 271-aa protein and 214 bp 3'-UTR with a polyadenylation signal sequence (aataaa) and a poly(A) tail. The deduced amino acid sequence of Ca-Colec11 contained a si gnal peptide, collagen domain, neck region and carbohydrate-recognition domain (CRD), which had four conserved cysteine residues (Cys170-Cys256 and Cys242-Cys264) and an EPN/WND motif required for carbohydrate-binding specificity. Tissue expression profile analysis by quantitative real-time polymerase chain reaction (RT-qPCR) showed that Ca-colec11 was ubiquitously distributed in the tested tissues and highly expressed in the liver. The gene expression levels of Ca-colec11 were evidently up-regulated in the liver, spleen, kidney and head kidney after infection with A. hydrophila and S. aureus. The recombinant Ca-Colec11 (rCa-Colec11) purified from Escherichia coli BL21 (DE3) could agglutinate A. hydrophila and S. aureus, and it possessed haemagglutination activity against rabbit erythrocytes, which was inhibited by various carbohydrates, including d-Mannose, N-Acetyl-d-mannosamine, l-Fucose, d-Glucose, N-Acetyl-d-glucosamine, d-Galactose, LPS and PGN. Furthermore, rCa-Colec11 could inhibit the growth of A. hydrophila and S. aureus. These findings collectively demonstrated that Ca-Colec11, as a PRR, could play a role in the immune defence of Qihe crucian carp.


Subject(s)
Carps , Goldfish , Animals , Rabbits , Carps/genetics , Carps/metabolism , Staphylococcus aureus/metabolism , Aeromonas hydrophila/genetics , Base Sequence , Fish Proteins/chemistry , Collectins/genetics , Carbohydrates , Immunity, Innate/genetics , Phylogeny
16.
Fish Shellfish Immunol ; 142: 109103, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37741476

ABSTRACT

GSDMs could punch holes in cell membrane and participate in the immune response to bacterial infections. In current study, the molecular and structural characteristics of CcGSDMEa-like were analyzed, and the role of CcGSDMEa-like in the inflammatory response against Aeromonas hydrophila was studied. The results showed that the CcGSDMEa-like shared the conserved structural characteristics with GSDMEs of other teleosts. The CcGSDMEa-like mRNA and protein expression levels were significantly affected by A. hydrophila challenge. When the CcGSDMEa-like was overexpressed, the expression of CcIL-1ß were significantly increased in fish and EPC cells, and bacterial contents were significantly decreased in fish tissues. While, when the CcGSDMEa-like was knocked down, the expression and secretion of CcIL-1ß were significantly decreased in vivo and in vitro, and the bacterial contents were increased in vivo after A. hydrophila infection 12 h and 24 h. In brief, CcGSDMEa-like could regulate the content of bacteria in fish through mediating the expression and secretion of CcIL-1ß. Bactericidal assay and cytotoxicity assay showed that CcGSDMEa-like had no bactericidal activity to Escherichia coli, and did not disrupt cytomembrane integrity of HEK293T cells. This study suggested that CcGSDMEa-like could play roles in the antibacterial and inflammatory processes in fish.


Subject(s)
Carps , Fish Diseases , Gram-Negative Bacterial Infections , Humans , Animals , Carps/genetics , Carps/metabolism , Aeromonas hydrophila/physiology , HEK293 Cells , Anti-Bacterial Agents , Fish Proteins/genetics , Fish Proteins/metabolism , Immunity, Innate/genetics
17.
Fish Shellfish Immunol ; 140: 108987, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37541636

ABSTRACT

Chemokines are a group of chemotactic cytokines with an essential role in homeostasis as well as immunity via specific G protein-coupled receptors and atypical receptors. In our study, two Yellow River carp (Cyprinus carpio haematopterus) CCL19b genes (CcCCL19bs), tentatively named CcCCL19b_a and CcCCL19b_b, were cloned. The open reading frames (ORFs) of CcCCL19b_a and CcCCL19b_b were both 333 bp that encoded a 12 kDa protein with 110 amino acid residues. CcCCL19bs contained a signal peptide and a SCY domain with four typical conserved cysteine residues. The two CcCCL19b proteins shared high similarities with each other in both secondary and three-dimensional structure. Phylogenetic analysis showed that CcCCL19bs and other CCL19bs from tetraploid cyprinid fish were clustered into one clade. CcCCL19bs were highly expressed in gill and intestine in healthy fish, and a significant up-regulation of gene expression after Aeromonas hydrophila infection and poly(I:C) stimulation was observed in gill, liver, and head kidney. Furthermore, chemotaxis and antibacterial activity of CcCCL19bs were studied. The results indicated that recombinant CcCCL19b_a and CcCCL19b_b protein (rCcCCL19b_a and rCcCCL19b_b) exhibited significant attraction to primary head kidney leukocytes (HKLs). Meanwhile, both of rCcCCL19bs could promote the proliferation of HKLs, and significantly up-regulate the expressions of IL-1ß, CCR7, and IL-6, and down-regulate the expression of IL-10 in primary HKLs. In vitro, rCcCCL19bs could bind and aggregate A. hydrophila and Staphylococcus aureus. The rCcCCL19bs exhibited significant antibacterial activity against A. hydrophila, but not S. aureus. Moreover, they inhibited the growth of A. hydrophila and S. aureus. In vivo, overexpression of CcCCL19bs contributed to the bacterial clearance. These studies suggested that CcCCL19bs orchestrate an antibacterial immune response.


Subject(s)
Carps , Fish Diseases , Gram-Negative Bacterial Infections , Animals , Immunity, Innate/genetics , Carps/genetics , Carps/metabolism , Phylogeny , Poly I-C/pharmacology , Anti-Bacterial Agents , Aeromonas hydrophila/physiology , Fish Proteins/chemistry
18.
Fish Shellfish Immunol ; 143: 109222, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37956798

ABSTRACT

The hypoxia-inducing factor (HIF) is a central transcription factor in cellular oxygen sensing and regulation. It is common that the inflammation always appears in many diseases, like infectious diseases in fishes, and the inflammation is often accompanied by hypoxia, as a hallmark of inflammation. Besides coordinating cellular responses to low oxygen, HIF-mediated hypoxia signaling pathway is also crucial for immune responses such as the regulations of innate immune cell phenotype and function, as well as metabolic reprogramming under the inflammation. However, the understanding of the molecular mechanisms by which HIFs regulate the inflammatory response in fish is still very limited. Here, we review the characteristics of HIF as well as its roles in innate immune cells and the infections caused by bacteria and viruses. The regulatory effects of HIF on the metabolic reprogramming of innate immune cells are also discussed and the future research directions are outlooked. This paper will serve as a reference for elucidating the molecular mechanism of HIF regulating inflammation and identifying treatment strategies to target HIF for fish disease.


Subject(s)
Hypoxia , Inflammation , Animals , Oxygen/metabolism , Transcription Factors , Fishes/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit
19.
Fish Shellfish Immunol ; 139: 108872, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37271324

ABSTRACT

Hepcidin is a small peptide of defensins with antibacterial activity, and plays an important role in innate immunity against pathogenic microorganisms, which can also participate in the regulation of iron metabolism. The hepcidin gene in Yellow River carp (Cyprinus carpio haematopterus) (CcHep) was cloned and identified. The total length of CcHep cDNA was 480 bp, containing an open reading frame (ORF) that encoded 91 amino acids (aa), which contained a 24-aa signal peptide, a 42-aa propeptide, and a 25-aa mature peptide. The mature peptide had a typical RX (K/R) R motif and eight conserved cysteine residues forming four pairs of disulfide bonds. Homology and phylogenetic tree analysis showed that CcHep had the closest relationship with that of crucian carp. The expression levels of hepcidin mRNA in healthy and Aeromonas hydrophila stimulated fish were measured by real-time fluorescence quantitative PCR. The results showed that CcHep mRNA was expressed in different tissues of healthy fish with the highest relative expression level in liver, followed by kidney and intestine, and the lowest expression level was observed in heart. The hepcidin gene was extremely significantly up-regulated in head kidney, intestine, liver, skin, spleen, and gill at 6 h and 12 h after A. hydrophila infection. Furthermore, the immunoregulation effect of dietary recombinant protein was evaluated. The recombinant hepcidin protein (rCcHep) was successfully expressed by Pichia pastoris X-33 and showed strong antibacterial activity against A. hydrophila, Escherichia coli, Vibrio anguillarum and Bacillus subtilis in vitro. In order to evaluate the preventive effect of rCcHep, fish were fed with basal diet or diet supplemented with different doses of rCcHep, and then challenged with A. hydrophila. The results showed that immune genes were up-regulated to varying degrees, and feed additive groups exhibited a significantly improved up-regulation expressions of Lysozyme, Toll-like receptor 5 (TLR 5), Major histocompatibility complex classⅡ (MHCⅡ), while inhibited up-regulation expressions of Interleukin 1ß (IL-1ß), Interleukin 8 (IL-8), and Tumor necrosis factor α (TNF-α) in liver and spleen compared to the control. Meanwhile, the relative immune protection rate in 120 mg/kg feed additive group was 28%, and the bacterial clearance rate in tissues of this group was higher than that of the control. Collectively, these results indicated that rCcHep had antibacterial activity and showed an immune protection effect against A. hydrophila, and could be considered as a dietary supplement to apply in aquaculture.


Subject(s)
Carps , Fish Diseases , Gram-Negative Bacterial Infections , Animals , Carps/metabolism , Aeromonas hydrophila/physiology , Hepcidins/metabolism , Phylogeny , Gram-Negative Bacterial Infections/prevention & control , Gram-Negative Bacterial Infections/veterinary , Gram-Negative Bacterial Infections/genetics , Dietary Supplements/analysis , Immunity, Innate/genetics , RNA, Messenger/metabolism , Fish Proteins/chemistry
20.
J Fish Dis ; 46(3): 247-259, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36515399

ABSTRACT

Aeromonas veronii is an important zoonotic and aquatic pathogen that causes a number of illnesses in both humans and animals. It is related to gastroenteritis, skin and soft tissue infections and bacteremia in humans, as well as causing significant economic losses in aquaculture owing to fish sepsis. Here, we constructed the flagellar cap gene (fliD) mutant strain of A. veronii by suicide plasmid-mediated homologous recombination system and analysed its characteristics. It was found that the deletion of fliD had no effect on growth and biochemical properties and could be inherited stably. However, the motility of A. veronii ΔfliD was significantly reduced, the flagellum was defective and the biofilm formation was attenuated compared with that of A. veronii wild-type strain. In vivo experiments revealed that the colonization capacity of ΔfliD was significantly lower than that of the wild-type strain in the period of first 24 h, and the median lethal dose (LD50 ) was 56 times higher than that of the wild-type strain. The Cyprinus carpio infected with the wild-type strain indicated faster death speed and more severe clinical signs compared to ΔfliD strain. These results suggest that fliD is closely related to the virulence of A. veronii and plays an important role in pathogenicity, providing the foundation for pathogenic mechanism studies of A. veronii.


Subject(s)
Aeromonas , Carps , Fish Diseases , Gram-Negative Bacterial Infections , Humans , Animals , Aeromonas veronii/genetics , Virulence/genetics
SELECTION OF CITATIONS
SEARCH DETAIL