Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 165
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nat Immunol ; 22(5): 654-665, 2021 05.
Article in English | MEDLINE | ID: mdl-33888898

ABSTRACT

Controlled human infections provide opportunities to study the interaction between the immune system and malaria parasites, which is essential for vaccine development. Here, we compared immune signatures of malaria-naive Europeans and of Africans with lifelong malaria exposure using mass cytometry, RNA sequencing and data integration, before and 5 and 11 days after venous inoculation with Plasmodium falciparum sporozoites. We observed differences in immune cell populations, antigen-specific responses and gene expression profiles between Europeans and Africans and among Africans with differing degrees of immunity. Before inoculation, an activated/differentiated state of both innate and adaptive cells, including elevated CD161+CD4+ T cells and interferon-γ production, predicted Africans capable of controlling parasitemia. After inoculation, the rapidity of the transcriptional response and clusters of CD4+ T cells, plasmacytoid dendritic cells and innate T cells were among the features distinguishing Africans capable of controlling parasitemia from susceptible individuals. These findings can guide the development of a vaccine effective in malaria-endemic regions.


Subject(s)
Adaptive Immunity/immunology , Disease Susceptibility/immunology , Malaria, Falciparum/immunology , Plasmodium falciparum/immunology , Adaptive Immunity/genetics , Adolescent , Adult , Antibodies, Protozoan/blood , Antibodies, Protozoan/immunology , Antigens, Protozoan/immunology , Black People/genetics , Dendritic Cells/immunology , Disease Susceptibility/blood , Disease Susceptibility/parasitology , Female , Healthy Volunteers , Host-Parasite Interactions/genetics , Host-Parasite Interactions/immunology , Humans , Immunity, Innate/genetics , Immunity, Innate/immunology , Interferon-gamma/metabolism , Malaria, Falciparum/blood , Malaria, Falciparum/parasitology , Male , RNA-Seq , Systems Analysis , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , White People/genetics , Young Adult
2.
Nat Immunol ; 20(3): 301-312, 2019 03.
Article in English | MEDLINE | ID: mdl-30664737

ABSTRACT

The fetus is thought to be protected from exposure to foreign antigens, yet CD45RO+ T cells reside in the fetal intestine. Here we combined functional assays with mass cytometry, single-cell RNA sequencing and high-throughput T cell antigen receptor (TCR) sequencing to characterize the CD4+ T cell compartment in the human fetal intestine. We identified 22 CD4+ T cell clusters, including naive-like, regulatory-like and memory-like subpopulations, which were confirmed and further characterized at the transcriptional level. Memory-like CD4+ T cells had high expression of Ki-67, indicative of cell division, and CD5, a surrogate marker of TCR avidity, and produced the cytokines IFN-γ and IL-2. Pathway analysis revealed a differentiation trajectory associated with cellular activation and proinflammatory effector functions, and TCR repertoire analysis indicated clonal expansions, distinct repertoire characteristics and interconnections between subpopulations of memory-like CD4+ T cells. Imaging mass cytometry indicated that memory-like CD4+ T cells colocalized with antigen-presenting cells. Collectively, these results provide evidence for the generation of memory-like CD4+ T cells in the human fetal intestine that is consistent with exposure to foreign antigens.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Fetus/immunology , Immunologic Memory/immunology , Intestines/immunology , Antigen-Presenting Cells/cytology , Antigen-Presenting Cells/immunology , Antigen-Presenting Cells/metabolism , CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/metabolism , CD5 Antigens/genetics , CD5 Antigens/immunology , CD5 Antigens/metabolism , Cells, Cultured , Fetus/cytology , Fetus/metabolism , Flow Cytometry , Gene Expression Profiling/methods , Gene Expression Regulation, Developmental/immunology , High-Throughput Nucleotide Sequencing , Humans , Immunologic Memory/genetics , Immunophenotyping , Intestines/cytology , Intestines/embryology , Ki-67 Antigen/genetics , Ki-67 Antigen/immunology , Ki-67 Antigen/metabolism
3.
Nature ; 613(7945): 743-750, 2023 01.
Article in English | MEDLINE | ID: mdl-36631610

ABSTRACT

DNA mismatch repair-deficient (MMR-d) cancers present an abundance of neoantigens that is thought to explain their exceptional responsiveness to immune checkpoint blockade (ICB)1,2. Here, in contrast to other cancer types3-5, we observed that 20 out of 21 (95%) MMR-d cancers with genomic inactivation of ß2-microglobulin (encoded by B2M) retained responsiveness to ICB, suggesting the involvement of immune effector cells other than CD8+ T cells in this context. We next identified a strong association between B2M inactivation and increased infiltration by γδ T cells in MMR-d cancers. These γδ T cells mainly comprised the Vδ1 and Vδ3 subsets, and expressed high levels of PD-1, other activation markers, including cytotoxic molecules, and a broad repertoire of killer-cell immunoglobulin-like receptors. In vitro, PD-1+ γδ T cells that were isolated from MMR-d colon cancers exhibited enhanced reactivity to human leukocyte antigen (HLA)-class-I-negative MMR-d colon cancer cell lines and B2M-knockout patient-derived tumour organoids compared with antigen-presentation-proficient cells. By comparing paired tumour samples from patients with MMR-d colon cancer that were obtained before and after dual PD-1 and CTLA-4 blockade, we found that immune checkpoint blockade substantially increased the frequency of γδ T cells in B2M-deficient cancers. Taken together, these data indicate that γδ T cells contribute to the response to immune checkpoint blockade in patients with HLA-class-I-negative MMR-d colon cancers, and underline the potential of γδ T cells in cancer immunotherapy.


Subject(s)
Colonic Neoplasms , Genes, MHC Class I , Histocompatibility Antigens Class I , Immune Checkpoint Inhibitors , Immunotherapy , Receptors, Antigen, T-Cell, gamma-delta , T-Lymphocytes , Humans , Colonic Neoplasms/drug therapy , Colonic Neoplasms/genetics , Colonic Neoplasms/immunology , Colonic Neoplasms/therapy , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/immunology , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Receptors, Antigen, T-Cell, gamma-delta/immunology , T-Lymphocytes/immunology , beta 2-Microglobulin/deficiency , beta 2-Microglobulin/genetics , DNA Mismatch Repair/genetics , Receptors, KIR , Cell Line, Tumor , Organoids , Antigen Presentation , Genes, MHC Class I/genetics
4.
Gastroenterology ; 167(1): 90-103, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38604542

ABSTRACT

The only proven treatment for celiac disease is adherence to a strict, lifelong, gluten-free diet. However, complete dietary gluten avoidance is challenging and a substantial number of patients do not respond fully, clinically, or histologically, despite their best efforts. As celiac disease is common and its central pathophysiology is well elucidated, it has become attractive for drug development to address the limitations of dietary treatment. Most efforts address nonresponsive celiac disease, defined as continued symptoms and/or signs of disease activity despite a gluten-free diet, and the more severe forms of refractory celiac disease, types I and II. An increasing spectrum of therapeutic approaches target defined mechanisms in celiac disease pathogenesis and some have advanced to current phase 2 and 3 clinical studies. We discuss these approaches in terms of potential efficiency, practicability, safety, and need, as defined by patients, regulatory authorities, health care providers, and payors.


Subject(s)
Celiac Disease , Diet, Gluten-Free , Celiac Disease/diet therapy , Celiac Disease/immunology , Celiac Disease/drug therapy , Humans , Treatment Outcome , Gastrointestinal Agents/therapeutic use , Gastrointestinal Agents/adverse effects , Gastrointestinal Agents/administration & dosage , Animals
5.
Immunity ; 44(5): 1227-39, 2016 05 17.
Article in English | MEDLINE | ID: mdl-27178470

ABSTRACT

Inflammatory intestinal diseases are characterized by abnormal immune responses and affect distinct locations of the gastrointestinal tract. Although the role of several immune subsets in driving intestinal pathology has been studied, a system-wide approach that simultaneously interrogates all major lineages on a single-cell basis is lacking. We used high-dimensional mass cytometry to generate a system-wide view of the human mucosal immune system in health and disease. We distinguished 142 immune subsets and through computational applications found distinct immune subsets in peripheral blood mononuclear cells and intestinal biopsies that distinguished patients from controls. In addition, mucosal lymphoid malignancies were readily detected as well as precursors from which these likely derived. These findings indicate that an integrated high-dimensional analysis of the entire immune system can identify immune subsets associated with the pathogenesis of complex intestinal disorders. This might have implications for diagnostic procedures, immune-monitoring, and treatment of intestinal diseases and mucosal malignancies.


Subject(s)
Celiac Disease/immunology , Crohn Disease/immunology , Image Cytometry/methods , Intestinal Mucosa/immunology , Lymphocyte Subsets/immunology , Lymphocytes/immunology , Lymphocytes/physiology , Lymphoma, T-Cell/immunology , Adult , Aged , Celiac Disease/diagnosis , Cohort Studies , Computational Biology , Crohn Disease/diagnosis , Female , HEK293 Cells , Humans , Immunologic Tests , Lymphoma, T-Cell/diagnosis , Male , Middle Aged , Monitoring, Immunologic , Organ Specificity , Single-Cell Analysis
6.
Article in English | MEDLINE | ID: mdl-38536165

ABSTRACT

RATIONALE: Chronic inflammation plays an important role in alveolar tissue damage in emphysema, but the underlying immune alterations and cellular interactions are incompletely understood. OBJECTIVE: To explore disease-specific pulmonary immune cell alterations and cellular interactions in emphysema. METHODS: We used single-cell mass cytometry to compare the immune compartment in alveolar tissue from 15 patients with severe emphysema and 5 controls. Imaging mass cytometry (IMC) was applied to identify altered cell-cell interactions in alveolar tissue from emphysema patients (n=12) compared to controls (n=8). MEASUREMENTS AND MAIN RESULTS: We observed higher percentages of central memory CD4 T cells in combination with lower proportions of effector memory CD4 T cells in emphysema. In addition, proportions of cytotoxic central memory CD8 T cells and CD127+CD27+CD69- T cells were higher in emphysema, the latter potentially reflecting an influx of circulating lymphocytes into the lungs. Central memory CD8 T cells, isolated from alveolar tissue from emphysema patients exhibited an IFN-γ-response upon anti-CD3/anti-CD28 activation. Proportions of CD1c+ dendritic cells (DC), expressing migratory and costimulatory markers, were higher in emphysema. Importantly, IMC enabled us to visualize increased spatial colocalization of CD1c+ DC and CD8 T cells in emphysema in situ. CONCLUSION: Using single-cell CyTOF, we characterized the alterations of the immune cell signature in alveolar tissue from patients with COPD stage III/IV emphysema versus control lung tissue. These data contribute to a better understanding of the pathogenesis of emphysema and highlight the feasibility of interrogating the immune cell signature using single-cell and IMC in human lung tissue.

7.
Article in English | MEDLINE | ID: mdl-38821313

ABSTRACT

Refractory celiac disease type 2 (RCDII) is a rare condition with high mortality because of a lack of effective treatment strategies. RCDII is caused by clonal expansion of intraepithelial lymphocytes (IELs). Gain-of-function JAK1 mutations are frequently found in these cells.1,2 In a previous in vitro study,3 we demonstrated the potential of tofacitinib, a small-molecule JAK1/JAK3 inhibitor, to control activity of the aberrant IEL population. Here, we report on an open-label prospective pilot study with tofacitinib in patients with therapy-refractory RCDII (EudraCT 2018-001678-10; Dutch Trial Registry [LTR] NL7313). Between November 2019 and February 2022, 4 patients with an established diagnosis of RCDII4 who had failed previous therapies were treated in the Netherlands with tofacitinib 10 mg twice-daily for 12 weeks (Methods; Supporting Documents). Two patients in Germany who fulfilled the inclusion criteria received similar treatment outside this protocol.

8.
Molecules ; 29(2)2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38257197

ABSTRACT

Peptide-protein interactions form a cornerstone in molecular biology, governing cellular signaling, structure, and enzymatic activities in living organisms. Improving computational models and experimental techniques to describe and predict these interactions remains an ongoing area of research. Here, we present a computational method for peptide-protein interactions' description and prediction based on leveraged amino acid frequencies within specific binding cores. Utilizing normalized frequencies, we construct quantitative matrices (QMs), termed 'logo models' derived from sequence logos. The method was developed to predict peptide binding to HLA-DQ2.5 and HLA-DQ8.1 proteins associated with susceptibility to celiac disease. The models were validated by more than 17,000 peptides demonstrating their efficacy in discriminating between binding and non-binding peptides. The logo method could be applied to diverse peptide-protein interactions, offering a versatile tool for predictive analysis in molecular binding studies.


Subject(s)
Celiac Disease , Peptides , Humans , Amino Acids , Molecular Biology , Position-Specific Scoring Matrices
9.
Vet Res ; 54(1): 76, 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37705063

ABSTRACT

Due to the increase in bacterial resistance, improving the anti-infectious immunity of the host is rapidly becoming a new strategy for the prevention and treatment of bacterial pneumonia. However, the specific lung immune responses and key immune cell subsets involved in bacterial infection are obscure. Actinobacillus pleuropneumoniae (APP) can cause porcine pleuropneumonia, a highly contagious respiratory disease that has caused severe economic losses in the swine industry. Here, using high-dimensional mass cytometry, the major immune cell repertoire in the lungs of mice with APP infection was profiled. Various phenotypically distinct neutrophil subsets and Ly-6C+ inflammatory monocytes/macrophages accumulated post-infection. Moreover, a linear differentiation trajectory from inactivated to activated to apoptotic neutrophils corresponded with the stages of uninfected, onset, and recovery of APP infection. CD14+ neutrophils, which mainly increased in number during the recovery stage of infection, were revealed to have a stronger ability to produce cytokines, especially IL-10 and IL-21, than their CD14- counterparts. Importantly, MHC-II+ neutrophils with antigen-presenting cell features were identified, and their numbers increased in the lung after APP infection. Similar results were further confirmed in the lungs of piglets infected with APP and Klebsiella pneumoniae infection by using a single-cell RNA-seq technique. Additionally, a correlation analysis between cluster composition and the infection process yielded a dynamic and temporally associated immune landscape where key immune clusters, including previously unrecognized ones, marked various stages of infection. Thus, these results reveal the characteristics of key neutrophil clusters and provide a detailed understanding of the immune response to bacterial pneumonia.


Subject(s)
Actinobacillus Infections , Actinobacillus pleuropneumoniae , Ascomycota , Mycoplasma Infections , Pleuropneumonia , Pneumonia , Swine Diseases , Animals , Mice , Swine , Neutrophils , Pneumonia/veterinary , Pleuropneumonia/veterinary , Mycoplasma Infections/veterinary , Actinobacillus Infections/veterinary , Lung
10.
Transpl Int ; 36: 11329, 2023.
Article in English | MEDLINE | ID: mdl-37426430

ABSTRACT

Tacrolimus is the backbone of immunosuppressive agents to prevent transplant rejection. Paradoxically, tacrolimus is nephrotoxic, causing irreversible tubulointerstitial damage. Therefore, infusion of mesenchymal stromal cells (MSC) 6 and 7 weeks post-transplantation was assessed to facilitate withdrawal of tacrolimus in the randomized phase II TRITON trial. Here, we performed detailed analysis of the peripheral blood immune composition using mass cytometry to assess potential effects of MSC therapy on the immune system. We developed two metal-conjugated antibody panels containing 40 antibodies each. PBMC samples from 21 MSC-treated patients and 13 controls, obtained pre-transplant and at 24 and 52 weeks post-transplantation, were analyzed. In the MSC group at 24 weeks, 17 CD4+ T cell clusters were increased of which 14 Th2-like clusters and three Th1/Th2-like clusters, as well as CD4+FoxP3+ Tregs. Additionally, five B cell clusters were increased, representing either class switched memory B cells or proliferating B cells. At 52 weeks, CCR7+CD38+ mature B cells were decreased. Finally, eight Tc1 (effector) memory cytotoxic T cell clusters were increased. Our work provides a comprehensive account of the peripheral blood immune cell composition in kidney transplant recipients after MSC therapy and tacrolimus withdrawal. These results may help improving therapeutic strategies using MSCs with the aim to reduce the use of calcineurin inhibitors. Clinical Trial Registration: ClinicalTrials.gov, identifier NCT02057965.


Subject(s)
Kidney Transplantation , Mesenchymal Stem Cells , Humans , Tacrolimus , Kidney Transplantation/methods , Leukocytes, Mononuclear , Immunosuppressive Agents/therapeutic use , Graft Rejection
11.
Molecules ; 29(1)2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38202724

ABSTRACT

Human leukocyte antigens (HLAs) are pivotal in antigen processing, presenting to CD4+ T cells, and are linked to autoimmune disease susceptibility. In celiac disease, HLA-DQ2.5 and HLA-DQ8.1 bind gluten peptides on APCs, some recognized by CD4+ T cells, prompting inflammation and tissue damage. While extensively studied experimentally, these alleles lack comprehensive in silico analysis. To explore peptide-HLA preferences, we used molecular docking on peptide libraries, deriving quantitative matrices (QMs) for evaluating amino acids at nine-residue peptide binding cores. Our findings tie specific residue preferences to peptide backbone conformations. Validating QMs on known binders and non-binders showed strong predictive power (89-94% accuracy). These QMs excel in screening protein libraries, even whole proteomes, notably reducing time and costs for celiac disease risk assessment in novel proteins. This computational approach aligns with European Food Safety Authority guidance, promising efficient screening for potential celiac disease triggers.


Subject(s)
Celiac Disease , Humans , Molecular Docking Simulation , Glutens , Amino Acids , Peptides
12.
J Virol ; 94(9)2020 04 16.
Article in English | MEDLINE | ID: mdl-32075930

ABSTRACT

The major histocompatibility complex (MHC) class I region of humans, chimpanzees (Pan troglodytes), and bonobos (Pan paniscus) is highly similar, and orthologues of HLA-A, -B, and -C are present in both Pan species. Based on functional characteristics, the different HLA-A allotypes are classified into different supertypes. One of them, the HLA A03 supertype, is widely distributed among different human populations. All contemporary known chimpanzee and bonobo MHC class I A allotypes cluster genetically into one of the six HLA-A families, the HLA-A1/A3/A11/A30 family. We report here that the peptide-binding motif of the Patr-A*05:01 allotype, which is commonly present in a cohort of western African chimpanzees, has a strong preference for binding peptides with basic amino acids at the carboxyl terminus. This phenomenon is shared with the family members of the HLA A03 supertype. Based on the chemical similarities in the peptide-binding pocket, we inferred that the preference for binding peptides with basic amino acids at the carboxyl terminus is widely present among the human, chimpanzee, and bonobo MHC-A allotypes. Subsequent in silico peptide-binding predictions illustrated that these allotypes have the capacity to target conserved parts of the proteome of human immunodeficiency virus type 1 (HIV-1) and the simian immunodeficiency virus SIVcpz.IMPORTANCE Most experimentally infected chimpanzees seem to control an HIV-1 infection and are therefore considered to be relatively resistant to developing AIDS. Contemporary free-ranging chimpanzees may carry SIVcpz, and there is evidence for AIDS-like symptoms in these free-ranging animals, whereas SIV infections in bonobos appear to be absent. In humans, the natural control of an HIV-1 infection is strongly associated with the presence of particular HLA class I allotypes. The ancestor of the contemporary living chimpanzees and bonobos survived a selective sweep targeting the MHC class I repertoire. We have put forward a hypothesis that this may have been caused by an ancestral retroviral infection similar to SIVcpz. Characterization of the relevant MHC allotypes may contribute to understanding the shaping of their immune repertoire. The abundant presence of MHC-A allotypes that prefer peptides with basic amino acids at the C termini suggests that these molecules may contribute to the control of retroviral infections in humans, chimpanzees, and bonobos.


Subject(s)
Genes, MHC Class I/immunology , HLA-A3 Antigen/immunology , Primates/immunology , Alleles , Amino Acid Sequence , Animals , HIV-1/immunology , HLA-A3 Antigen/metabolism , Histocompatibility Antigens , Histocompatibility Antigens Class I/immunology , Humans , Pan paniscus/immunology , Pan troglodytes/immunology , Peptides/metabolism , Phylogeny , Protein Binding/immunology , Retroviridae Infections/immunology , Simian Immunodeficiency Virus/immunology
13.
Exp Dermatol ; 30(10): 1517-1531, 2021 10.
Article in English | MEDLINE | ID: mdl-34387406

ABSTRACT

The two most common chronic inflammatory skin diseases are atopic dermatitis (AD) and psoriasis. The underpinnings of the remarkable degree of clinical heterogeneity of AD and psoriasis are poorly understood and, as a consequence, disease onset and progression are unpredictable and the optimal type and time point for intervention are as yet unknown. The BIOMAP project is the first IMI (Innovative Medicines Initiative) project dedicated to investigating the causes and mechanisms of AD and psoriasis and to identify potential biomarkers responsible for the variation in disease outcome. The consortium includes 7 large pharmaceutical companies and 25 non-industry partners including academia. Since there is mounting evidence supporting an important role for microbial exposures and our microbiota as factors mediating immune polarization and AD and psoriasis pathogenesis, an entire work package is dedicated to the investigation of skin and gut microbiome linked to AD or psoriasis. The large collaborative BIOMAP project will enable the integration of patient cohorts, data and knowledge in unprecedented proportions. The project has a unique opportunity with a potential to bridge and fill the gaps between current problems and solutions. This review highlights the power and potential of the BIOMAP project in the investigation of microbe-host interplay in AD and psoriasis.


Subject(s)
Dermatitis, Atopic/immunology , Dermatitis, Atopic/microbiology , Microbiota/immunology , Psoriasis/immunology , Psoriasis/microbiology , Skin/immunology , Skin/microbiology , Humans
14.
Immunity ; 37(4): 611-21, 2012 Oct 19.
Article in English | MEDLINE | ID: mdl-23063329

ABSTRACT

Celiac disease is a human leukocyte antigen (HLA)-DQ2- and/or DQ8-associated T cell-mediated disorder that is induced by dietary gluten. Although it is established how gluten peptides bind HLA-DQ8 and HLA-DQ2, it is unclear how such peptide-HLA complexes are engaged by the T cell receptor (TCR), a recognition event that triggers disease pathology. We show that biased TCR usage (TRBV9(∗)01) underpins the recognition of HLA-DQ8-α-I-gliadin. The structure of a prototypical TRBV9(∗)01-TCR-HLA-DQ8-α-I-gliadin complex shows that the TCR docks centrally above HLA-DQ8-α-I-gliadin, in which all complementarity-determining region-ß (CDRß) loops interact with the gliadin peptide. Mutagenesis at the TRBV9(∗)01-TCR-HLA-DQ8-α-I-gliadin interface provides an energetic basis for the Vß bias. Moreover, CDR3 diversity accounts for TRBV9(∗)01(+) TCRs exhibiting differing reactivities toward the gliadin epitopes at various deamidation states. Accordingly, biased TCR usage is an important factor in the pathogenesis of DQ8-mediated celiac disease.


Subject(s)
Celiac Disease/immunology , Gliadin/immunology , HLA-DQ Antigens/immunology , Receptors, Antigen, T-Cell/immunology , Amino Acid Sequence , Epitopes, T-Lymphocyte/immunology , HLA-DQ Antigens/chemistry , Humans , Models, Molecular , Molecular Sequence Data , Peptide Fragments/immunology , Protein Interaction Domains and Motifs , Receptors, Antigen, T-Cell/chemistry
15.
Gut ; 69(4): 691-703, 2020 04.
Article in English | MEDLINE | ID: mdl-31270164

ABSTRACT

OBJECTIVE: A comprehensive understanding of anticancer immune responses is paramount for the optimal application and development of cancer immunotherapies. We unravelled local and systemic immune profiles in patients with colorectal cancer (CRC) by high-dimensional analysis to provide an unbiased characterisation of the immune contexture of CRC. DESIGN: Thirty-six immune cell markers were simultaneously assessed at the single-cell level by mass cytometry in 35 CRC tissues, 26 tumour-associated lymph nodes, 17 colorectal healthy mucosa and 19 peripheral blood samples from 31 patients with CRC. Additionally, functional, transcriptional and spatial analyses of tumour-infiltrating lymphocytes were performed by flow cytometry, single-cell RNA-sequencing and multispectral immunofluorescence. RESULTS: We discovered that a previously unappreciated innate lymphocyte population (Lin-CD7+CD127-CD56+CD45RO+) was enriched in CRC tissues and displayed cytotoxic activity. This subset demonstrated a tissue-resident (CD103+CD69+) phenotype and was most abundant in immunogenic mismatch repair (MMR)-deficient CRCs. Their presence in tumours was correlated with the infiltration of tumour-resident cytotoxic, helper and γδ T cells with highly similar activated (HLA-DR+CD38+PD-1+) phenotypes. Remarkably, activated γδ T cells were almost exclusively found in MMR-deficient cancers. Non-activated counterparts of tumour-resident cytotoxic and γδ T cells were present in CRC and healthy mucosa tissues, but not in lymph nodes, with the exception of tumour-positive lymph nodes. CONCLUSION: This work provides a blueprint for the understanding of the heterogeneous and intricate immune landscape of CRC, including the identification of previously unappreciated immune cell subsets. The concomitant presence of tumour-resident innate and adaptive immune cell populations suggests a multitargeted exploitation of their antitumour properties in a therapeutic setting.


Subject(s)
Colonic Neoplasms/immunology , Colonic Neoplasms/pathology , Antigens, CD/metabolism , CD8 Antigens/metabolism , Case-Control Studies , Colonic Neoplasms/metabolism , Flow Cytometry , Humans , Integrin alpha Chains/metabolism , Lymphocyte Count , Lymphocytes, Tumor-Infiltrating
16.
Immunogenetics ; 72(1-2): 85-88, 2020 02.
Article in English | MEDLINE | ID: mdl-31735991

ABSTRACT

Celiac disease is caused by an abnormal intestinal T cell response to cereal gluten proteins. The disease has a strong human leukocyte antigen (HLA) association, and CD4+ T cells recognizing gluten epitopes presented by disease-associated HLA-DQ allotypes are considered to be drivers of the disease. This paper provides an update of the currently known HLA-DQ restricted gluten T cell epitopes with their names and sequences.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Celiac Disease/immunology , Epitopes, T-Lymphocyte/immunology , Glutens/immunology , Major Histocompatibility Complex/immunology , Animals , Humans , Terminology as Topic
17.
Bioinformatics ; 35(20): 4063-4071, 2019 10 15.
Article in English | MEDLINE | ID: mdl-30874801

ABSTRACT

MOTIVATION: High-dimensional mass cytometry (CyTOF) allows the simultaneous measurement of multiple cellular markers at single-cell level, providing a comprehensive view of cell compositions. However, the power of CyTOF to explore the full heterogeneity of a biological sample at the single-cell level is currently limited by the number of markers measured simultaneously on a single panel. RESULTS: To extend the number of markers per cell, we propose an in silico method to integrate CyTOF datasets measured using multiple panels that share a set of markers. Additionally, we present an approach to select the most informative markers from an existing CyTOF dataset to be used as a shared marker set between panels. We demonstrate the feasibility of our methods by evaluating the quality of clustering and neighborhood preservation of the integrated dataset, on two public CyTOF datasets. We illustrate that by computationally extending the number of markers we can further untangle the heterogeneity of mass cytometry data, including rare cell-population detection. AVAILABILITY AND IMPLEMENTATION: Implementation is available on GitHub (https://github.com/tabdelaal/CyTOFmerge). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Software , Biomarkers , Cluster Analysis , Computer Simulation
18.
Proc Natl Acad Sci U S A ; 114(6): E980-E989, 2017 02 07.
Article in English | MEDLINE | ID: mdl-28049849

ABSTRACT

Refractory celiac disease type II (RCDII) is a severe complication of celiac disease (CD) characterized by the presence of an enlarged clonal population of innate intraepithelial lymphocytes (IELs) lacking classical B-, T-, and natural killer (NK)-cell lineage markers (Lin-IELs) in the duodenum. In ∼50% of patients with RCDII, these Lin-IELs develop into a lymphoma for which no effective treatment is available. Current evidence indicates that the survival and expansion of these malignant Lin-IELs is driven by epithelial cell-derived IL-15. Like CD, RCDII is strongly associated with HLA-DQ2, suggesting the involvement of HLA-DQ2-restricted gluten-specific CD4+ T cells. We now show that gluten-specific CD4+ T cells isolated from CD duodenal biopsy specimens produce cytokines able to trigger proliferation of malignant Lin-IEL lines as powerfully as IL-15. Furthermore, we identify TNF, IL-2, and IL-21 as CD4+ T-cell cytokines that synergistically mediate this effect. Like IL-15, these cytokines were found to increase the phosphorylation of STAT5 and Akt and transcription of antiapoptotic mediator bcl-xL Several small-molecule inhibitors targeting the JAK/STAT pathway blocked proliferation elicited by IL-2 and IL-15, but only an inhibitor targeting the PI3K/Akt/mTOR pathway blocked proliferation induced by IL-15 as well as the CD4+ T-cell cytokines. Confirming and extending these findings, TNF, IL-2, and IL-21 also synergistically triggered the proliferation of freshly isolated Lin-IELs and CD3-CD56+ IELs (NK-IELs) from RCDII as well as non-RCDII duodenal biopsy specimens. These data provide evidence implicating CD4+ T-cell cytokines in the pathogenesis of RCDII. More broadly, they suggest that adaptive immune responses can contribute to innate IEL activation during mucosal inflammation.


Subject(s)
CD4-Positive T-Lymphocytes/metabolism , Cell Proliferation/drug effects , Cytokines/pharmacology , Intraepithelial Lymphocytes/drug effects , Apoptosis/drug effects , Apoptosis/genetics , Celiac Disease/genetics , Celiac Disease/metabolism , Cell Proliferation/genetics , Cells, Cultured , Cytokines/genetics , Cytokines/metabolism , Drug Synergism , Duodenum/metabolism , Humans , Interleukin-15/genetics , Interleukin-15/metabolism , Interleukin-15/pharmacology , Interleukin-2/genetics , Interleukin-2/metabolism , Interleukin-2/pharmacology , Interleukins/genetics , Interleukins/metabolism , Interleukins/pharmacology , Intraepithelial Lymphocytes/metabolism , Recombinant Proteins/pharmacology , Transcriptome/drug effects , Transcriptome/genetics , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/pharmacology
20.
Cytometry A ; 95(7): 769-781, 2019 07.
Article in English | MEDLINE | ID: mdl-30861637

ABSTRACT

Mass cytometry by time-of-flight (CyTOF) is a valuable technology for high-dimensional analysis at the single cell level. Identification of different cell populations is an important task during the data analysis. Many clustering tools can perform this task, which is essential to identify "new" cell populations in explorative experiments. However, relying on clustering is laborious since it often involves manual annotation, which significantly limits the reproducibility of identifying cell-populations across different samples. The latter is particularly important in studies comparing different conditions, for example in cohort studies. Learning cell populations from an annotated set of cells solves these problems. However, currently available methods for automatic cell population identification are either complex, dependent on prior biological knowledge about the populations during the learning process, or can only identify canonical cell populations. We propose to use a linear discriminant analysis (LDA) classifier to automatically identify cell populations in CyTOF data. LDA outperforms two state-of-the-art algorithms on four benchmark datasets. Compared to more complex classifiers, LDA has substantial advantages with respect to the interpretable performance, reproducibility, and scalability to larger datasets with deeper annotations. We apply LDA to a dataset of ~3.5 million cells representing 57 cell populations in the Human Mucosal Immune System. LDA has high performance on abundant cell populations as well as the majority of rare cell populations, and provides accurate estimates of cell population frequencies. Further incorporating a rejection option, based on the estimated posterior probabilities, allows LDA to identify previously unknown (new) cell populations that were not encountered during training. Altogether, reproducible prediction of cell population compositions using LDA opens up possibilities to analyze large cohort studies based on CyTOF data. © 2019 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of International Society for Advancement of Cytometry.


Subject(s)
Bone Marrow Cells/classification , Flow Cytometry/methods , Single-Cell Analysis/methods , Algorithms , Animals , Bone Marrow Cells/cytology , Bone Marrow Cells/metabolism , Cluster Analysis , Datasets as Topic , Humans , Mice , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL