Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 98
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 174(4): 856-869.e17, 2018 08 09.
Article in English | MEDLINE | ID: mdl-30096312

ABSTRACT

Recent sequencing analyses have shed light on heterogeneous patterns of genomic aberrations in human gastric cancers (GCs). To explore how individual genetic events translate into cancer phenotypes, we established a biological library consisting of genetically engineered gastric organoids carrying various GC mutations and 37 patient-derived organoid lines, including rare genomically stable GCs. Phenotype analyses of GC organoids revealed divergent genetic and epigenetic routes to gain Wnt and R-spondin niche independency. An unbiased phenotype-based genetic screening identified a significant association between CDH1/TP53 compound mutations and the R-spondin independency that was functionally validated by CRISPR-based knockout. Xenografting of GC organoids further established the feasibility of Wnt-targeting therapy for Wnt-dependent GCs. Our results collectively demonstrate that multifaceted genetic abnormalities render human GCs independent of the stem cell niche and highlight the validity of the genotype-phenotype screening strategy in gaining deeper understanding of human cancers.


Subject(s)
Adenocarcinoma/pathology , Organoids/pathology , Stomach Neoplasms/pathology , Stomach/pathology , Thrombospondins/metabolism , Wnt Proteins/metabolism , Adenocarcinoma/genetics , Adenocarcinoma/metabolism , Animals , Antigens, CD/genetics , Apoptosis , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cadherins/genetics , Carcinogenesis , Cell Proliferation , Clustered Regularly Interspaced Short Palindromic Repeats , Humans , Male , Mice , Mice, Inbred NOD , Mice, SCID , Mutation , Organoids/metabolism , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Thrombospondins/genetics , Tumor Cells, Cultured , Tumor Suppressor Protein p53/genetics , Wnt Proteins/genetics , Xenograft Model Antitumor Assays
2.
Nat Rev Mol Cell Biol ; 21(10): 571-584, 2020 10.
Article in English | MEDLINE | ID: mdl-32636524

ABSTRACT

The historical reliance of biological research on the use of animal models has sometimes made it challenging to address questions that are specific to the understanding of human biology and disease. But with the advent of human organoids - which are stem cell-derived 3D culture systems - it is now possible to re-create the architecture and physiology of human organs in remarkable detail. Human organoids provide unique opportunities for the study of human disease and complement animal models. Human organoids have been used to study infectious diseases, genetic disorders and cancers through the genetic engineering of human stem cells, as well as directly when organoids are generated from patient biopsy samples. This Review discusses the applications, advantages and disadvantages of human organoids as models of development and disease and outlines the challenges that have to be overcome for organoids to be able to substantially reduce the need for animal experiments.


Subject(s)
Biology/methods , Medicine/methods , Organoids/physiology , Animals , Communicable Diseases/pathology , Genetic Diseases, Inborn/pathology , Genetic Engineering/methods , Humans , Neoplasms/pathology , Stem Cells/physiology
3.
Cell ; 155(2): 357-68, 2013 Oct 10.
Article in English | MEDLINE | ID: mdl-24120136

ABSTRACT

Proliferation of the self-renewing epithelium of the gastric corpus occurs almost exclusively in the isthmus of the glands, from where cells migrate bidirectionally toward pit and base. The isthmus is therefore generally viewed as the stem cell zone. We find that the stem cell marker Troy is expressed at the gland base by a small subpopulation of fully differentiated chief cells. By lineage tracing with a Troy-eGFP-ires-CreERT2 allele, single marked chief cells are shown to generate entirely labeled gastric units over periods of months. This phenomenon accelerates upon tissue damage. Troy(+) chief cells can be cultured to generate long-lived gastric organoids. Troy marks a specific subset of chief cells that display plasticity in that they are capable of replenishing entire gastric units, essentially serving as quiescent "reserve" stem cells. These observations challenge the notion that stem cell hierarchies represent a "one-way street."


Subject(s)
Chief Cells, Gastric/cytology , Stem Cells/cytology , Stomach/cytology , Animals , Cell Lineage , Chief Cells, Gastric/chemistry , Gastric Mucosa/cytology , Mice , Organoids/cytology , Receptors, Tumor Necrosis Factor/analysis , Wnt Signaling Pathway
4.
Nature ; 594(7863): 442-447, 2021 06.
Article in English | MEDLINE | ID: mdl-34079126

ABSTRACT

Interactions between tumour cells and the surrounding microenvironment contribute to tumour progression, metastasis and recurrence1-3. Although mosaic analyses in Drosophila have advanced our understanding of such interactions4,5, it has been difficult to engineer parallel approaches in vertebrates. Here we present an oncogene-associated, multicolour reporter mouse model-the Red2Onco system-that allows differential tracing of mutant and wild-type cells in the same tissue. By applying this system to the small intestine, we show that oncogene-expressing mutant crypts alter the cellular organization of neighbouring wild-type crypts, thereby driving accelerated clonal drift. Crypts that express oncogenic KRAS or PI3K secrete BMP ligands that suppress local stem cell activity, while changes in PDGFRloCD81+ stromal cells induced by crypts with oncogenic PI3K alter the WNT signalling environment. Together, these results show how oncogene-driven paracrine remodelling creates a niche environment that is detrimental to the maintenance of wild-type tissue, promoting field transformation dominated by oncogenic clones.


Subject(s)
Colorectal Neoplasms/pathology , Intestine, Small/pathology , Neoplastic Stem Cells/pathology , Oncogenes , Stem Cell Niche , Animals , Clone Cells/pathology , Colorectal Neoplasms/genetics , Female , Intestine, Small/metabolism , Male , Mice , Mutation , Neoplastic Stem Cells/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Reproducibility of Results , Single-Cell Analysis , Stem Cell Niche/genetics , Tumor Microenvironment , Wnt Proteins/genetics , Wnt Proteins/metabolism , Wnt Signaling Pathway
5.
Genes Dev ; 33(3-4): 209-220, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30692207

ABSTRACT

Spatiotemporal control of Wnt signaling is essential for the development and homeostasis of many tissues. The transmembrane E3 ubiquitin ligases ZNRF3 (zinc and ring finger 3) and RNF43 (ring finger protein 43) antagonize Wnt signaling by promoting degradation of frizzled receptors. ZNRF3 and RNF43 are frequently inactivated in human cancer, but the molecular and therapeutic implications remain unclear. Here, we demonstrate that adrenocortical-specific loss of ZNRF3, but not RNF43, results in adrenal hyperplasia that depends on Porcupine-mediated Wnt ligand secretion. Furthermore, we discovered a Wnt/ß-catenin signaling gradient in the adrenal cortex that is disrupted upon loss of ZNRF3. Unlike ß-catenin gain-of-function models, which induce high Wnt/ß-catenin activation and expansion of the peripheral cortex, ZNRF3 loss triggers activation of moderate-level Wnt/ß-catenin signaling that drives proliferative expansion of only the histologically and functionally distinct inner cortex. Genetically reducing ß-catenin dosage significantly reverses the ZNRF3-deficient phenotype. Thus, homeostatic maintenance of the adrenal cortex is dependent on varying levels of Wnt/ß-catenin activation, which is regulated by ZNRF3.


Subject(s)
Adrenal Cortex/metabolism , Homeostasis/genetics , Ubiquitin-Protein Ligases/metabolism , Wnt Signaling Pathway/physiology , beta Catenin/metabolism , Adrenal Cortex/cytology , Adrenal Cortex/growth & development , Adrenal Cortex Diseases/physiopathology , Animals , Cell Proliferation/genetics , Female , Gene Knockout Techniques , Male , Mice , Models, Animal , Transcriptional Activation/genetics , Ubiquitin-Protein Ligases/genetics
6.
Development ; 150(22)2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37905445

ABSTRACT

Failures in growth and differentiation of the early human placenta are associated with severe pregnancy disorders such as pre-eclampsia and fetal growth restriction. However, regulatory mechanisms controlling development of placental epithelial cells, the trophoblasts, remain poorly elucidated. Using trophoblast stem cells (TSCs), trophoblast organoids (TB-ORGs) and primary cytotrophoblasts (CTBs) of early pregnancy, we herein show that autocrine NOTCH3 signalling controls human placental expansion and differentiation. The NOTCH3 receptor was specifically expressed in proliferative CTB progenitors and its active form, the nuclear NOTCH3 intracellular domain (NOTCH3-ICD), interacted with the transcriptional co-activator mastermind-like 1 (MAML1). Doxycycline-inducible expression of dominant-negative MAML1 in TSC lines provoked cell fusion and upregulation of genes specific for multinucleated syncytiotrophoblasts, which are the differentiated hormone-producing cells of the placenta. However, progenitor expansion and markers of trophoblast stemness and proliferation were suppressed. Accordingly, inhibition of NOTCH3 signalling diminished growth of TB-ORGs, whereas overexpression of NOTCH3-ICD in primary CTBs and TSCs showed opposite effects. In conclusion, the data suggest that canonical NOTCH3 signalling plays a key role in human placental development by promoting self-renewal of CTB progenitors.


Subject(s)
Placenta , Trophoblasts , Humans , Pregnancy , Female , Placenta/metabolism , Receptor, Notch3/genetics , Receptor, Notch3/metabolism , Cell Differentiation/genetics , Cell Proliferation/genetics , Stem Cells , DNA-Binding Proteins/metabolism , Transcription Factors/metabolism
7.
Development ; 149(20)2022 10 15.
Article in English | MEDLINE | ID: mdl-35993866

ABSTRACT

Embryogenesis is supported by dynamic loops of cellular interactions. Here, we create a partial mouse embryo model to elucidate the principles of epiblast (Epi) and extra-embryonic endoderm co-development (XEn). We trigger naive mouse embryonic stem cells to form a blastocyst-stage niche of Epi-like cells and XEn-like cells (3D, hydrogel free and serum free). Once established, these two lineages autonomously progress in minimal medium to form an inner pro-amniotic-like cavity surrounded by polarized Epi-like cells covered with visceral endoderm (VE)-like cells. The progression occurs through reciprocal inductions by which the Epi supports the primitive endoderm (PrE) to produce a basal lamina that subsequently regulates Epi polarization and/or cavitation, which, in return, channels the transcriptomic progression to VE. This VE then contributes to Epi bifurcation into anterior- and posterior-like states. Similarly, boosting the formation of PrE-like cells within blastoids supports developmental progression. We argue that self-organization can arise from lineage bifurcation followed by a pendulum of induction that propagates over time.


Subject(s)
Endoderm , Germ Layers , Animals , Blastocyst , Cell Differentiation , Cell Lineage/physiology , Embryo Implantation , Embryo, Mammalian , Mice
8.
EMBO J ; 39(18): e103932, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32965059

ABSTRACT

Wnt/ß-catenin signaling is a primary pathway for stem cell maintenance during tissue renewal and a frequent target for mutations in cancer. Impaired Wnt receptor endocytosis due to loss of the ubiquitin ligase RNF43 gives rise to Wnt-hypersensitive tumors that are susceptible to anti-Wnt-based therapy. Contrary to this paradigm, we identify a class of RNF43 truncating cancer mutations that induce ß-catenin-mediated transcription, despite exhibiting retained Wnt receptor downregulation. These mutations interfere with a ubiquitin-independent suppressor role of the RNF43 cytosolic tail that involves Casein kinase 1 (CK1) binding and phosphorylation. Mechanistically, truncated RNF43 variants trap CK1 at the plasma membrane, thereby preventing ß-catenin turnover and propelling ligand-independent target gene transcription. Gene editing of human colon stem cells shows that RNF43 truncations cooperate with p53 loss to drive a niche-independent program for self-renewal and proliferation. Moreover, these RNF43 variants confer decreased sensitivity to anti-Wnt-based therapy. Our data demonstrate the relevance of studying patient-derived mutations for understanding disease mechanisms and improved applications of precision medicine.


Subject(s)
Casein Kinase I/metabolism , Neoplasms/metabolism , Ubiquitin-Protein Ligases/metabolism , Wnt Signaling Pathway , Casein Kinase I/genetics , HEK293 Cells , Humans , Neoplasms/genetics , Neoplasms/pathology , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Ubiquitin-Protein Ligases/genetics , beta Catenin/genetics , beta Catenin/metabolism
9.
Proc Natl Acad Sci U S A ; 118(30)2021 07 27.
Article in English | MEDLINE | ID: mdl-34301885

ABSTRACT

Germ cells form the basis for sexual reproduction by producing gametes. In ovaries, primordial germ cells exit the cell cycle and the pluripotency-associated state, differentiate into oogonia, and initiate meiosis. Despite the importance of germ cell differentiation for sexual reproduction, signaling pathways regulating their fate remain largely unknown. Here, we show in mouse embryonic ovaries that germ cell-intrinsic ß-catenin activity maintains pluripotency and that its repression is essential to allow differentiation and meiosis entry in a timely manner. Accordingly, in ß-catenin loss-of-function and gain-of-function mouse models, the germ cells precociously enter meiosis or remain in the pluripotent state, respectively. We further show that interaction of ß-catenin and the pluripotent-associated factor POU5F1 in the nucleus is associated with germ cell pluripotency. The exit of this complex from the nucleus correlates with germ cell differentiation, a process promoted by the up-regulation of Znrf3, a negative regulator of WNT/ß-catenin signaling. Together, these data identify the molecular basis of the transition from primordial germ cells to oogonia and demonstrate that ß-catenin is a central gatekeeper in ovarian differentiation and gametogenesis.


Subject(s)
Cell Differentiation , Germ Cells/cytology , Octamer Transcription Factor-3/metabolism , Pluripotent Stem Cells/cytology , Wnt Proteins/metabolism , beta Catenin/metabolism , Animals , Female , Germ Cells/metabolism , Male , Mice , Mice, Inbred C57BL , Octamer Transcription Factor-3/genetics , Pluripotent Stem Cells/metabolism , Wnt Proteins/genetics , beta Catenin/genetics
10.
EMBO Rep ; 22(5): e52970, 2021 05 05.
Article in English | MEDLINE | ID: mdl-33938624

ABSTRACT

The E3 ubiquitin ligases RING finger protein 43 (RNF43) and zinc and RING finger 3 (ZNRF3) have received great attention for their critical role in regulating WNT signalling during adult stem cell homeostasis. By promoting the turnover of WNT receptors, Frizzled and LRP5/6, RNF43 and ZNRF3 ensure that proper levels of WNT activity are maintained in stem cells. The molecular mechanism of RNF43/ZNRF3 activity is beginning to emerge from several recent studies, yet little is known about the regulation of RNF43/ZNRF3 at the post-translational level. A study in this issue of EMBO Reports identifies the deubiquitinating enzyme USP42 as a key regulator of WNT signalling, which acts by antagonizing the ubiquitin-dependent clearance of RNF43/ZNRF3 induced by R-spondins (Giebel et al, 2021).


Subject(s)
Thrombospondins , Zinc , Homeostasis , Receptors, G-Protein-Coupled , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Wnt Signaling Pathway
11.
Bioessays ; 43(4): e2000297, 2021 04.
Article in English | MEDLINE | ID: mdl-33569855

ABSTRACT

Wnt signaling plays pivotal roles during our entire lives, from conception to death, through the regulation of morphogenesis in developing embryos and the maintenance of tissue homeostasis in adults. The regulation of Wnt signaling occurs on several levels: at the receptor level on the plasma membrane, at the ß-catenin protein level in the cytoplasm, and through transcriptional regulation in the nucleus. Several recent studies have focused on the mechanisms of Wnt receptor regulation, following the discovery that the Wnt receptor frizzled (Fzd) is a target of the ubiquitin ligases, RNF43 and ZNRF3. RNF43 and ZNRF3 are homologous genes that are mutated in several cancers. The details underlying their mechanism of action continue to unfold, while at the same time raising many new questions. In this review, we discuss advances and controversies in our understanding of Wnt receptor regulation.


Subject(s)
Ubiquitin-Protein Ligases , Ubiquitin , Homeostasis , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Wnt Signaling Pathway
12.
Dev Growth Differ ; 63(3): 199-218, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33619734

ABSTRACT

Wnt/ß-catenin signaling is an ancient pathway that regulates key aspects of embryonic development, cell differentiation, proliferation, and adult stem cell homeostasis. Work from different laboratories has shed light on the molecular mechanisms underlying the Wnt pathway, including structural details of ligand-receptor interactions. One key aspect that has emerged from multiple studies is that endocytosis of the receptor complex plays a crucial role in fine-tuning Wnt/ß-catenin signaling. Endocytosis is a key process involved in both activation as well as attenuation of Wnt signaling, but how this is regulated is still poorly understood. Importantly, recent findings show that Wnt also regulates central metabolic pathways such as the acquisition of nutrients through actin-driven endocytic mechanisms. In this review, we propose that the Wnt pathway displays diverse characteristics that go beyond the regulation of gene expression, through a connection with the endocytic machinery.


Subject(s)
beta Catenin/genetics , Animals , Endocytosis/genetics , Humans , Wnt Signaling Pathway/genetics
13.
Proc Natl Acad Sci U S A ; 115(21): 5474-5479, 2018 05 22.
Article in English | MEDLINE | ID: mdl-29735715

ABSTRACT

Mammalian sex determination is controlled by the antagonistic interactions of two genetic pathways: The SRY-SOX9-FGF9 network promotes testis determination partly by opposing proovarian pathways, while RSPO1/WNT-ß-catenin/FOXL2 signals control ovary development by inhibiting SRY-SOX9-FGF9. The molecular basis of this mutual antagonism is unclear. Here we show that ZNRF3, a WNT signaling antagonist and direct target of RSPO1-mediated inhibition, is required for sex determination in mice. XY mice lacking ZNRF3 exhibit complete or partial gonadal sex reversal, or related defects. These abnormalities are associated with ectopic WNT/ß-catenin activity and reduced Sox9 expression during fetal sex determination. Using exome sequencing of individuals with 46,XY disorders of sex development, we identified three human ZNRF3 variants in very rare cases of XY female presentation. We tested two missense variants and show that these disrupt ZNRF3 activity in both human cell lines and zebrafish embryo assays. Our data identify a testis-determining function for ZNRF3 and indicate a mechanism of direct molecular interaction between two mutually antagonistic organogenetic pathways.


Subject(s)
Disorders of Sex Development/genetics , Sex Differentiation , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/physiology , Wnt Proteins/antagonists & inhibitors , beta Catenin/antagonists & inhibitors , Adolescent , Adult , Animals , Cells, Cultured , Disorders of Sex Development/pathology , Embryo, Nonmammalian/cytology , Embryo, Nonmammalian/metabolism , Female , Gene Expression Regulation, Developmental , Gonads/metabolism , Gonads/pathology , Humans , Male , Mice , Mutation, Missense , SOX9 Transcription Factor/genetics , SOX9 Transcription Factor/metabolism , Testis/metabolism , Testis/pathology , Thrombospondins/genetics , Thrombospondins/metabolism , Wnt Proteins/genetics , Wnt Proteins/metabolism , Young Adult , Zebrafish , beta Catenin/genetics , beta Catenin/metabolism
14.
Gastroenterology ; 157(6): 1599-1614.e2, 2019 12.
Article in English | MEDLINE | ID: mdl-31585123

ABSTRACT

BACKGROUND & AIMS: Patterns of genetic alterations characterize different molecular subtypes of human gastric cancer. We aimed to establish mouse models of these subtypes. METHODS: We searched databases to identify genes with unique expression in the stomach epithelium, resulting in the identification of Anxa10. We generated mice with tamoxifen-inducible Cre recombinase (CreERT2) in the Anxa10 gene locus. We created 3 mouse models with alterations in pathways that characterize the chromosomal instability (CIN) and the genomically stable (GS) subtypes of human gastric cancer: Anxa10-CreERT2;KrasG12D/+;Tp53R172H/+;Smad4fl/f (CIN mice), Anxa10-CreERT2;Cdh1fl/fl;KrasG12D/+;Smad4fl/fl (GS-TGBF mice), and Anxa10-CreERT2;Cdh1fl/fl;KrasG12D/+;Apcfl/fl (GS-Wnt mice). We analyzed tumors that developed in these mice by histology for cell types and metastatic potential. We derived organoids from the tumors and tested their response to chemotherapeutic agents and the epithelial growth factor receptor signaling pathway inhibitor trametinib. RESULTS: The gastric tumors from the CIN mice had an invasive phenotype and formed liver and lung metastases. The tumor cells had a glandular morphology, similar to human intestinal-type gastric cancer. The gastric tumors from the GS-TGFB mice were poorly differentiated with diffuse morphology and signet ring cells, resembling human diffuse-type gastric cancer. Cells from these tumors were invasive, and mice developed peritoneal carcinomatosis and lung metastases. GS-Wnt mice developed adenomatous tooth-like gastric cancer. Organoids derived from tumors of GS-TGBF and GS-Wnt mice were more resistant to docetaxel, whereas organoids from the CIN tumors were more resistant to trametinib. CONCLUSIONS: Using a stomach-specific CreERT2 system, we created mice that develop tumors with morphologic similarities to subtypes of human gastric cancer. These tumors have different patterns of local growth, metastasis, and response to therapeutic agents. They can be used to study different subtypes of human gastric cancer.


Subject(s)
Disease Models, Animal , Gastric Mucosa/pathology , Genetic Loci/genetics , Stomach Neoplasms/genetics , Adenomatous Polyposis Coli Protein/genetics , Animals , Annexins/genetics , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Transformation, Neoplastic/genetics , Drug Resistance, Neoplasm/genetics , Female , Humans , Integrases/genetics , Male , Mice , Mice, Transgenic , Mutation , Proto-Oncogene Proteins p21(ras)/genetics , Smad4 Protein/genetics , Stomach Neoplasms/drug therapy , Stomach Neoplasms/pathology , Tumor Suppressor Protein p53/genetics
15.
Nat Methods ; 14(3): 287-289, 2017 03.
Article in English | MEDLINE | ID: mdl-28135257

ABSTRACT

Loss-of-function studies are key for investigating gene function, and CRISPR technology has made genome editing widely accessible in model organisms and cells. However, conditional gene inactivation in diploid cells is still difficult to achieve. Here, we present CRISPR-FLIP, a strategy that provides an efficient, rapid and scalable method for biallelic conditional gene knockouts in diploid or aneuploid cells, such as pluripotent stem cells, 3D organoids and cell lines, by co-delivery of CRISPR-Cas9 and a universal conditional intronic cassette.


Subject(s)
CRISPR-Cas Systems/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Embryonic Stem Cells/cytology , Gene Editing/methods , Gene Knockout Techniques/methods , beta Catenin/genetics , Animals , Cell Line , Genome/genetics , HEK293 Cells , Humans , Mice
16.
Nucleic Acids Res ; 46(13): 6435-6454, 2018 07 27.
Article in English | MEDLINE | ID: mdl-29955892

ABSTRACT

Model systems with defined genetic modifications are powerful tools for basic research and translational disease modelling. Fortunately, generating state-of-the-art genetic model systems is becoming more accessible to non-geneticists due to advances in genome editing technologies. As a consequence, solely relying on (transient) overexpression of (mutant) effector proteins is no longer recommended since scientific standards increasingly demand genetic modification of endogenous loci. In this review, we provide up-to-date guidelines with respect to homology-directed repair (HDR)-mediated editing of mammalian model systems, aimed at assisting researchers in designing an efficient genome editing strategy.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Models, Genetic , CRISPR-Associated Protein 9 , Endodeoxyribonucleases , Polymerase Chain Reaction , Recombinational DNA Repair
17.
Gut ; 68(1): 49-61, 2019 01.
Article in English | MEDLINE | ID: mdl-29141958

ABSTRACT

OBJECTIVE: Human intestinal epithelial organoids (IEOs) are increasingly being recognised as a highly promising translational research tool. However, our understanding of their epigenetic molecular characteristics and behaviour in culture remains limited. DESIGN: We performed genome-wide DNA methylation and transcriptomic profiling of human IEOs derived from paediatric/adult and fetal small and large bowel as well as matching purified human gut epithelium. Furthermore, organoids were subjected to in vitro differentiation and genome editing using CRISPR/Cas9 technology. RESULTS: We discovered stable epigenetic signatures which define regional differences in gut epithelial function, including induction of segment-specific genes during cellular differentiation. Established DNA methylation profiles were independent of cellular environment since organoids retained their regional DNA methylation over prolonged culture periods. In contrast to paediatric and adult organoids, fetal gut-derived organoids showed distinct dynamic changes of DNA methylation and gene expression in culture, indicative of an in vitro maturation. By applying CRISPR/Cas9 genome editing to fetal organoids, we demonstrate that this process is partly regulated by TET1, an enzyme involved in the DNA demethylation process. Lastly, generating IEOs from a child diagnosed with gastric heterotopia revealed persistent and distinct disease-associated DNA methylation differences, highlighting the use of organoids as disease-specific research models. CONCLUSIONS: Our study demonstrates striking similarities of epigenetic signatures in mucosa-derived IEOs with matching primary epithelium. Moreover, these results suggest that intestinal stem cell-intrinsic DNA methylation patterns establish and maintain regional gut specification and are involved in early epithelial development and disease.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Epithelial Cells/metabolism , Intestinal Mucosa/cytology , Intestinal Mucosa/metabolism , Organoids/metabolism , Transcriptome , Cell Differentiation , Cells, Cultured , Clustered Regularly Interspaced Short Palindromic Repeats , Humans
18.
Gut ; 68(2): 207-217, 2019 02.
Article in English | MEDLINE | ID: mdl-29703791

ABSTRACT

OBJECTIVE: Gastric cancer is the second leading cause of cancer-related deaths and the fifth most common malignancy worldwide. In this study, human and mouse gastric cancer organoids were generated to model the disease and perform drug testing to delineate treatment strategies. DESIGN: Human gastric cancer organoid cultures were established, samples classified according to their molecular profile and their response to conventional chemotherapeutics tested. Targeted treatment was performed according to specific druggable mutations. Mouse gastric cancer organoid cultures were generated carrying molecular subtype-specific alterations. RESULTS: Twenty human gastric cancer organoid cultures were established and four selected for a comprehensive in-depth analysis. Organoids demonstrated divergent growth characteristics and morphologies. Immunohistochemistry showed similar characteristics to the corresponding primary tissue. A divergent response to 5-fluoruracil, oxaliplatin, irinotecan, epirubicin and docetaxel treatment was observed. Whole genome sequencing revealed a mutational spectrum that corresponded to the previously identified microsatellite instable, genomic stable and chromosomal instable subtypes of gastric cancer. The mutational landscape allowed targeted therapy with trastuzumab for ERBB2 alterations and palbociclib for CDKN2A loss. Mouse cancer organoids carrying Kras and Tp53 or Apc and Cdh1 mutations were characterised and serve as model system to study the signalling of induced pathways. CONCLUSION: We generated human and mouse gastric cancer organoids modelling typical characteristics and altered pathways of human gastric cancer. Successful interference with activated pathways demonstrates their potential usefulness as living biomarkers for therapy response testing.


Subject(s)
Disease Models, Animal , Organoids/pathology , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Animals , Cdh1 Proteins/genetics , Genes, APC , Humans , Immunohistochemistry , Mice , Mutation , Organ Culture Techniques , Piperazines/pharmacology , Proto-Oncogene Proteins p21(ras)/genetics , Pyridines/pharmacology , Stomach Neoplasms/drug therapy , Trastuzumab/pharmacology , Tumor Suppressor Protein p53/genetics
19.
Gastroenterology ; 154(3): 585-598, 2018 02.
Article in English | MEDLINE | ID: mdl-29031501

ABSTRACT

BACKGROUND & AIMS: We analyzed DNA methylation patterns and transcriptomes of primary intestinal epithelial cells (IEC) of children newly diagnosed with inflammatory bowel diseases (IBD) to learn more about pathogenesis. METHODS: We obtained mucosal biopsies (N = 236) collected from terminal ileum and ascending and sigmoid colons of children (median age 13 years) newly diagnosed with IBD (43 with Crohn's disease [CD], 23 with ulcerative colitis [UC]), and 30 children without IBD (controls). Patients were recruited and managed at a hospital in the United Kingdom from 2013 through 2016. We also obtained biopsies collected at later stages from a subset of patients. IECs were purified and analyzed for genome-wide DNA methylation patterns and gene expression profiles. Adjacent microbiota were isolated from biopsies and analyzed by 16S gene sequencing. We generated intestinal organoid cultures from a subset of samples and genome-wide DNA methylation analysis was performed. RESULTS: We found gut segment-specific differences in DNA methylation and transcription profiles of IECs from children with IBD vs controls; some were independent of mucosal inflammation. Changes in gut microbiota between IBD and control groups were not as large and were difficult to assess because of large amounts of intra-individual variation. Only IECs from patients with CD had changes in DNA methylation and transcription patterns in terminal ileum epithelium, compared with controls. Colon epithelium from patients with CD and from patients with ulcerative colitis had distinct changes in DNA methylation and transcription patterns, compared with controls. In IECs from patients with IBD, changes in DNA methylation, compared with controls, were stable over time and were partially retained in ex-vivo organoid cultures. Statistical analyses of epithelial cell profiles allowed us to distinguish children with CD or UC from controls; profiles correlated with disease outcome parameters, such as the requirement for treatment with biologic agents. CONCLUSIONS: We identified specific changes in DNA methylation and transcriptome patterns in IECs from pediatric patients with IBD compared with controls. These data indicate that IECs undergo changes during IBD development and could be involved in pathogenesis. Further analyses of primary IECs from patients with IBD could improve our understanding of the large variations in disease progression and outcomes.


Subject(s)
Colitis, Ulcerative/genetics , Colon, Sigmoid/metabolism , Crohn Disease/genetics , DNA Methylation , Epigenesis, Genetic , Epithelial Cells/metabolism , Ileum/metabolism , Intestinal Mucosa/metabolism , Transcription, Genetic , Transcriptome , Adolescent , Age Factors , Biopsy , Case-Control Studies , Colitis, Ulcerative/diagnosis , Colitis, Ulcerative/microbiology , Colon, Sigmoid/microbiology , Crohn Disease/diagnosis , Crohn Disease/microbiology , Diagnosis, Differential , England , Epithelial Cells/microbiology , Female , Gastrointestinal Microbiome , Gene Expression Profiling/methods , Genome-Wide Association Study , Humans , Ileum/microbiology , Intestinal Mucosa/microbiology , Male , Organoids , Predictive Value of Tests , Prognosis , Prospective Studies , Ribotyping , Time Factors , Tissue Culture Techniques
20.
Physiology (Bethesda) ; 32(4): 278-289, 2017 07.
Article in English | MEDLINE | ID: mdl-28615312

ABSTRACT

Among the endodermal tissues of adult mammals, the gastrointestinal (GI) epithelium exhibits the highest turnover rate. As the ingested food moves along the GI tract, gastric acid, digestive enzymes, and gut resident microbes aid digestion as well as nutrient and mineral absorption. Due to the harsh luminal environment, replenishment of new epithelial cells is essential to maintain organ structure and function during routine turnover and injury repair. Tissue-specific adult stem cells in the GI tract serve as a continuous source for this immense regenerative activity. Tissue homeostasis is achieved by a delicate balance between gain and loss of cells. In homeostasis, temporal tissue damage is rapidly restored by well-balanced tissue regeneration, whereas prolonged imbalance may result in diverse pathologies of homeostasis and injury repair. Starting with a summary of the current knowledge of GI tract homeostasis, we continue with providing models of acute injury and chronic diseases. Finally, we will discuss how primary organoid cultures allow new insights into the mechanisms of homeostasis, injury repair, and disease, and how this novel 3D culture system has the potential to translate into the clinic.


Subject(s)
Epithelial Cells/physiology , Gastrointestinal Tract/physiology , Regeneration/physiology , Stem Cells/cytology , Wound Healing/physiology , Animals , Homeostasis/physiology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL