Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Proc Natl Acad Sci U S A ; 116(39): 19440-19448, 2019 09 24.
Article in English | MEDLINE | ID: mdl-31501329

ABSTRACT

Aminoacyl-transfer RNA (tRNA) synthetases (aaRSs) are the largest protein family causatively linked to neurodegenerative Charcot-Marie-Tooth (CMT) disease. Dominant mutations cause the disease, and studies of CMT disease-causing mutant glycyl-tRNA synthetase (GlyRS) and tyrosyl-tRNA synthetase (TyrRS) showed their mutations create neomorphic structures consistent with a gain-of-function mechanism. In contrast, based on a haploid yeast model, loss of aminoacylation function was reported for CMT disease mutants in histidyl-tRNA synthetase (HisRS). However, neither that nor prior work of any CMT disease-causing aaRS investigated the aminoacylation status of tRNAs in the cellular milieu of actual patients. Using an assay that interrogated aminoacylation levels in patient cells, we investigated a HisRS-linked CMT disease family with the most severe disease phenotype. Strikingly, no difference in charged tRNA levels between normal and diseased family members was found. In confirmation, recombinant versions of 4 other HisRS CMT disease-causing mutants showed no correlation between activity loss in vitro and severity of phenotype in vivo. Indeed, a mutation having the most detrimental impact on activity was associated with a mild disease phenotype. In further work, using 3 independent biophysical analyses, structural opening (relaxation) of mutant HisRSs at the dimer interface best correlated with disease severity. In fact, the HisRS mutation in the severely afflicted patient family caused the largest degree of structural relaxation. These data suggest that HisRS-linked CMT disease arises from open conformation-induced mechanisms distinct from loss of aminoacylation.


Subject(s)
Amino Acyl-tRNA Synthetases/genetics , Charcot-Marie-Tooth Disease/genetics , Histidine-tRNA Ligase/genetics , Amino Acid Sequence , Amino Acyl-tRNA Synthetases/metabolism , Aminoacylation/genetics , Axons , Charcot-Marie-Tooth Disease/metabolism , Gain of Function Mutation/genetics , Histidine-tRNA Ligase/metabolism , Humans , Mutation , RNA, Transfer/genetics , RNA, Transfer/metabolism , Structure-Activity Relationship , Tyrosine-tRNA Ligase/genetics , Tyrosine-tRNA Ligase/metabolism
2.
Nucleic Acids Res ; 45(13): 8091-8104, 2017 Jul 27.
Article in English | MEDLINE | ID: mdl-28531329

ABSTRACT

While having multiple aminoacyl-tRNA synthetases implicated in Charcot-Marie-Tooth (CMT) disease suggests a common mechanism, a defect in enzymatic activity is not shared among the CMT-causing mutants. Protein misfolding is a common hypothesis underlying the development of many neurological diseases. Its process usually involves an initial reduction in protein stability and then the subsequent oligomerization and aggregation. Here, we study the structural effect of three CMT-causing mutations in tyrosyl-tRNA synthetase (TyrRS or YARS). Through various approaches, we found that the mutations do not induce changes in protein secondary structures, or shared effects on oligomerization state and stability. However, all mutations provide access to a surface masked in the wild-type enzyme, and that access correlates with protein misinteraction. With recent data on another CMT-linked tRNA synthetase, we suggest that an inherent plasticity, engendering the formation of alternative stable conformations capable of aberrant interactions, links the tRNA synthetase family to CMT.


Subject(s)
Charcot-Marie-Tooth Disease/enzymology , Charcot-Marie-Tooth Disease/genetics , Tyrosine-tRNA Ligase/chemistry , Tyrosine-tRNA Ligase/metabolism , Amino Acid Substitution , Crystallography, X-Ray , Deuterium Exchange Measurement , Enzyme Stability/genetics , Humans , Kinetics , Models, Molecular , Mutant Proteins/chemistry , Mutant Proteins/genetics , Mutant Proteins/metabolism , Protein Binding , Protein Conformation , Protein Folding , Protein Multimerization/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Repressor Proteins/metabolism , Scattering, Small Angle , Tripartite Motif-Containing Protein 28 , Tyrosine-tRNA Ligase/genetics , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL