Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 181
Filter
Add more filters

Publication year range
1.
Cell ; 185(11): 1986-2005.e26, 2022 05 26.
Article in English | MEDLINE | ID: mdl-35525246

ABSTRACT

Unlike copy number variants (CNVs), inversions remain an underexplored genetic variation class. By integrating multiple genomic technologies, we discover 729 inversions in 41 human genomes. Approximately 85% of inversions <2 kbp form by twin-priming during L1 retrotransposition; 80% of the larger inversions are balanced and affect twice as many nucleotides as CNVs. Balanced inversions show an excess of common variants, and 72% are flanked by segmental duplications (SDs) or retrotransposons. Since flanking repeats promote non-allelic homologous recombination, we developed complementary approaches to identify recurrent inversion formation. We describe 40 recurrent inversions encompassing 0.6% of the genome, showing inversion rates up to 2.7 × 10-4 per locus per generation. Recurrent inversions exhibit a sex-chromosomal bias and co-localize with genomic disorder critical regions. We propose that inversion recurrence results in an elevated number of heterozygous carriers and structural SD diversity, which increases mutability in the population and predisposes specific haplotypes to disease-causing CNVs.


Subject(s)
Chromosome Inversion , Segmental Duplications, Genomic , Chromosome Inversion/genetics , DNA Copy Number Variations/genetics , Genome, Human , Genomics , Humans
2.
Nature ; 621(7978): 355-364, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37612510

ABSTRACT

The prevalence of highly repetitive sequences within the human Y chromosome has prevented its complete assembly to date1 and led to its systematic omission from genomic analyses. Here we present de novo assemblies of 43 Y chromosomes spanning 182,900 years of human evolution and report considerable diversity in size and structure. Half of the male-specific euchromatic region is subject to large inversions with a greater than twofold higher recurrence rate compared with all other chromosomes2. Ampliconic sequences associated with these inversions show differing mutation rates that are sequence context dependent, and some ampliconic genes exhibit evidence for concerted evolution with the acquisition and purging of lineage-specific pseudogenes. The largest heterochromatic region in the human genome, Yq12, is composed of alternating repeat arrays that show extensive variation in the number, size and distribution, but retain a 1:1 copy-number ratio. Finally, our data suggest that the boundary between the recombining pseudoautosomal region 1 and the non-recombining portions of the X and Y chromosomes lies 500 kb away from the currently established1 boundary. The availability of fully sequence-resolved Y chromosomes from multiple individuals provides a unique opportunity for identifying new associations of traits with specific Y-chromosomal variants and garnering insights into the evolution and function of complex regions of the human genome.


Subject(s)
Chromosomes, Human, Y , Evolution, Molecular , Humans , Male , Chromosomes, Human, Y/genetics , Genome, Human/genetics , Genomics , Mutation Rate , Phenotype , Euchromatin/genetics , Pseudogenes , Genetic Variation/genetics , Chromosomes, Human, X/genetics , Pseudoautosomal Regions/genetics
3.
Cell ; 152(6): 1226-36, 2013 Mar 14.
Article in English | MEDLINE | ID: mdl-23498933

ABSTRACT

Chromothripsis scars the genome when localized chromosome shattering and repair occurs in a one-off catastrophe. Outcomes of this process are detectable as massive DNA rearrangements affecting one or a few chromosomes. Although recent findings suggest a crucial role of chromothripsis in cancer development, the reproducible inference of this process remains challenging, requiring that cataclysmic one-off rearrangements be distinguished from localized lesions that occur progressively. We describe conceptual criteria for the inference of chromothripsis, based on ruling out the alternative hypothesis that stepwise rearrangements occurred. Robust means of inference may facilitate in-depth studies on the impact of, and the mechanisms underlying, chromothripsis.


Subject(s)
Chromosome Aberrations , Neoplasms/genetics , Animals , Cell Transformation, Neoplastic , Gene Rearrangement , Humans
4.
Nature ; 611(7936): 519-531, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36261518

ABSTRACT

The current human reference genome, GRCh38, represents over 20 years of effort to generate a high-quality assembly, which has benefitted society1,2. However, it still has many gaps and errors, and does not represent a biological genome as it is a blend of multiple individuals3,4. Recently, a high-quality telomere-to-telomere reference, CHM13, was generated with the latest long-read technologies, but it was derived from a hydatidiform mole cell line with a nearly homozygous genome5. To address these limitations, the Human Pangenome Reference Consortium formed with the goal of creating high-quality, cost-effective, diploid genome assemblies for a pangenome reference that represents human genetic diversity6. Here, in our first scientific report, we determined which combination of current genome sequencing and assembly approaches yield the most complete and accurate diploid genome assembly with minimal manual curation. Approaches that used highly accurate long reads and parent-child data with graph-based haplotype phasing during assembly outperformed those that did not. Developing a combination of the top-performing methods, we generated our first high-quality diploid reference assembly, containing only approximately four gaps per chromosome on average, with most chromosomes within ±1% of the length of CHM13. Nearly 48% of protein-coding genes have non-synonymous amino acid changes between haplotypes, and centromeric regions showed the highest diversity. Our findings serve as a foundation for assembling near-complete diploid human genomes at scale for a pangenome reference to capture global genetic variation from single nucleotides to structural rearrangements.


Subject(s)
Chromosome Mapping , Diploidy , Genome, Human , Genomics , Humans , Chromosome Mapping/standards , Genome, Human/genetics , Haplotypes/genetics , High-Throughput Nucleotide Sequencing/methods , High-Throughput Nucleotide Sequencing/standards , Sequence Analysis, DNA/methods , Sequence Analysis, DNA/standards , Reference Standards , Genomics/methods , Genomics/standards , Chromosomes, Human/genetics , Genetic Variation/genetics
5.
Genome Res ; 33(4): 496-510, 2023 04.
Article in English | MEDLINE | ID: mdl-37164484

ABSTRACT

There has been tremendous progress in phased genome assembly production by combining long-read data with parental information or linked-read data. Nevertheless, a typical phased genome assembly generated by trio-hifiasm still generates more than 140 gaps. We perform a detailed analysis of gaps, assembly breaks, and misorientations from 182 haploid assemblies obtained from a diversity panel of 77 unique human samples. Although trio-based approaches using HiFi are the current gold standard, chromosome-wide phasing accuracy is comparable when using Strand-seq instead of parental data. Importantly, the majority of assembly gaps cluster near the largest and most identical repeats (including segmental duplications [35.4%], satellite DNA [22.3%], or regions enriched in GA/AT-rich DNA [27.4%]). Consequently, 1513 protein-coding genes overlap assembly gaps in at least one haplotype, and 231 are recurrently disrupted or missing from five or more haplotypes. Furthermore, we estimate that 6-7 Mbp of DNA are misorientated per haplotype irrespective of whether trio-free or trio-based approaches are used. Of these misorientations, 81% correspond to bona fide large inversion polymorphisms in the human species, most of which are flanked by large segmental duplications. We also identify large-scale alignment discontinuities consistent with 11.9 Mbp of deletions and 161.4 Mbp of insertions per haploid genome. Although 99% of this variation corresponds to satellite DNA, we identify 230 regions of euchromatic DNA with frequent expansions and contractions, nearly half of which overlap with 197 protein-coding genes. Such variable and incompletely assembled regions are important targets for future algorithmic development and pangenome representation.


Subject(s)
DNA, Satellite , Polymorphism, Genetic , Humans , DNA, Satellite/genetics , Haplotypes , Segmental Duplications, Genomic , Sequence Analysis, DNA
6.
Nature ; 578(7793): 112-121, 2020 02.
Article in English | MEDLINE | ID: mdl-32025012

ABSTRACT

A key mutational process in cancer is structural variation, in which rearrangements delete, amplify or reorder genomic segments that range in size from kilobases to whole chromosomes1-7. Here we develop methods to group, classify and describe somatic structural variants, using data from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA), which aggregated whole-genome sequencing data from 2,658 cancers across 38 tumour types8. Sixteen signatures of structural variation emerged. Deletions have a multimodal size distribution, assort unevenly across tumour types and patients, are enriched in late-replicating regions and correlate with inversions. Tandem duplications also have a multimodal size distribution, but are enriched in early-replicating regions-as are unbalanced translocations. Replication-based mechanisms of rearrangement generate varied chromosomal structures with low-level copy-number gains and frequent inverted rearrangements. One prominent structure consists of 2-7 templates copied from distinct regions of the genome strung together within one locus. Such cycles of templated insertions correlate with tandem duplications, and-in liver cancer-frequently activate the telomerase gene TERT. A wide variety of rearrangement processes are active in cancer, which generate complex configurations of the genome upon which selection can act.


Subject(s)
Genetic Variation , Genome, Human/genetics , Neoplasms/genetics , Gene Rearrangement/genetics , Genomics , Humans , Mutagenesis, Insertional , Telomerase/genetics
7.
Nature ; 578(7793): 129-136, 2020 02.
Article in English | MEDLINE | ID: mdl-32025019

ABSTRACT

Transcript alterations often result from somatic changes in cancer genomes1. Various forms of RNA alterations have been described in cancer, including overexpression2, altered splicing3 and gene fusions4; however, it is difficult to attribute these to underlying genomic changes owing to heterogeneity among patients and tumour types, and the relatively small cohorts of patients for whom samples have been analysed by both transcriptome and whole-genome sequencing. Here we present, to our knowledge, the most comprehensive catalogue of cancer-associated gene alterations to date, obtained by characterizing tumour transcriptomes from 1,188 donors of the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA)5. Using matched whole-genome sequencing data, we associated several categories of RNA alterations with germline and somatic DNA alterations, and identified probable genetic mechanisms. Somatic copy-number alterations were the major drivers of variations in total gene and allele-specific expression. We identified 649 associations of somatic single-nucleotide variants with gene expression in cis, of which 68.4% involved associations with flanking non-coding regions of the gene. We found 1,900 splicing alterations associated with somatic mutations, including the formation of exons within introns in proximity to Alu elements. In addition, 82% of gene fusions were associated with structural variants, including 75 of a new class, termed 'bridged' fusions, in which a third genomic location bridges two genes. We observed transcriptomic alteration signatures that differ between cancer types and have associations with variations in DNA mutational signatures. This compendium of RNA alterations in the genomic context provides a rich resource for identifying genes and mechanisms that are functionally implicated in cancer.


Subject(s)
Gene Expression Regulation, Neoplastic , Neoplasms/genetics , RNA/genetics , DNA Copy Number Variations , DNA, Neoplasm , Genome, Human , Genomics , Humans , Transcriptome
8.
Annu Rev Genomics Hum Genet ; 23: 123-152, 2022 08 31.
Article in English | MEDLINE | ID: mdl-35655332

ABSTRACT

Somatic rearrangements resulting in genomic structural variation drive malignant phenotypes by altering the expression or function of cancer genes. Pan-cancer studies have revealed that structural variants (SVs) are the predominant class of driver mutation in most cancer types, but because they are difficult to discover, they remain understudied when compared with point mutations. This review provides an overview of the current knowledge of somatic SVs, discussing their primary roles, prevalence in different contexts, and mutational mechanisms. SVs arise throughout the life history of cancer, and 55% of driver mutations uncovered by the Pan-Cancer Analysis of Whole Genomes project represent SVs. Leveraging the convergence of cell biology and genomics, we propose a mechanistic classification of somatic SVs, from simple to highly complex DNA rearrangement classes. The actions of DNA repair and DNA replication processes together with mitotic errors result in a rich spectrum of SV formation processes, with cascading effects mediating extensive structural diversity after an initiating DNA lesion has formed. Thanks to new sequencing technologies, including the sequencing of single-cell genomes, open questions about the molecular triggers and the biomolecules involved in SV formation as well as their mutational rates can now be addressed.


Subject(s)
Genomic Structural Variation , Neoplasms , Genome, Human , Genomics , Humans , Mutation , Neoplasms/epidemiology , Neoplasms/genetics , Neoplasms/pathology , Prevalence
9.
Am J Hum Genet ; 109(4): 631-646, 2022 04 07.
Article in English | MEDLINE | ID: mdl-35290762

ABSTRACT

Studies of de novo mutation (DNM) have typically excluded some of the most repetitive and complex regions of the genome because these regions cannot be unambiguously mapped with short-read sequencing data. To better understand the genome-wide pattern of DNM, we generated long-read sequence data from an autism parent-child quad with an affected female where no pathogenic variant had been discovered in short-read Illumina sequence data. We deeply sequenced all four individuals by using three sequencing platforms (Illumina, Oxford Nanopore, and Pacific Biosciences) and three complementary technologies (Strand-seq, optical mapping, and 10X Genomics). Using long-read sequencing, we initially discovered and validated 171 DNMs across two children-a 20% increase in the number of de novo single-nucleotide variants (SNVs) and indels when compared to short-read callsets. The number of DNMs further increased by 5% when considering a more complete human reference (T2T-CHM13) because of the recovery of events in regions absent from GRCh38 (e.g., three DNMs in heterochromatic satellites). In total, we validated 195 de novo germline mutations and 23 potential post-zygotic mosaic mutations across both children; the overall true substitution rate based on this integrated callset is at least 1.41 × 10-8 substitutions per nucleotide per generation. We also identified six de novo insertions and deletions in tandem repeats, two of which represent structural variants. We demonstrate that long-read sequencing and assembly, especially when combined with a more complete reference genome, increases the number of DNMs by >25% compared to previous studies, providing a more complete catalog of DNM compared to short-read data alone.


Subject(s)
Genomics , High-Throughput Nucleotide Sequencing , Female , Humans , Mutation/genetics , Nucleotides , Sequence Analysis, DNA , Software
10.
Genome Res ; 32(4): 643-655, 2022 04.
Article in English | MEDLINE | ID: mdl-35177558

ABSTRACT

The occurrence and formation of genomic structural variants (SVs) is known to be influenced by the 3D chromatin architecture, but the extent and magnitude have been challenging to study. Here, we apply Hi-C to study chromatin organization before and after induction of chromothripsis in human cells. We use Hi-C to manually assemble the derivative chromosomes following the occurrence of massive complex rearrangements, which allows us to study the sources of SV formation and their consequences on gene regulation. We observe an action-reaction interplay whereby the 3D chromatin architecture directly impacts the location and formation of SVs. In turn, the SVs reshape the chromatin organization to alter the local topologies, replication timing, and gene regulation in cis We show that SVs have a strong tendency to occur between similar chromatin compartments and replication timing regions. Moreover, we find that SVs frequently occur at 3D loop anchors, that SVs can cause a switch in chromatin compartments and replication timing, and that this is a major source of SV-mediated effects on nearby gene expression changes. Finally, we provide evidence for a general mechanistic bias of the 3D chromatin on SV occurrence using data from more than 2700 patient-derived cancer genomes.


Subject(s)
Chromothripsis , Genome , Chromatin/genetics , Chromosomes , Genome, Human , Genomic Structural Variation , Humans
11.
Genome Res ; 32(10): 1941-1951, 2022 10.
Article in English | MEDLINE | ID: mdl-36180231

ABSTRACT

Gibbons are the most speciose family of living apes, characterized by a diverse chromosome number and rapid rate of large-scale rearrangements. Here we performed single-cell template strand sequencing (Strand-seq), molecular cytogenetics, and deep in silico analysis of a southern white-cheeked gibbon genome, providing the first comprehensive map of 238 previously hidden small-scale inversions. We determined that more than half are gibbon specific, at least fivefold higher than shown for other primate lineage-specific inversions, with a significantly high number of small heterozygous inversions, suggesting that accelerated evolution of inversions may have played a role in the high sympatric diversity of gibbons. Although the precise mechanisms underlying these inversions are not yet understood, it is clear that segmental duplication-mediated NAHR only accounts for a small fraction of events. Several genomic features, including gene density and repeat (e.g., LINE-1) content, might render these regions more break-prone and susceptible to inversion formation. In the attempt to characterize interspecific variation between southern and northern white-cheeked gibbons, we identify several large assembly errors in the current GGSC Nleu3.0/nomLeu3 reference genome comprising more than 49 megabases of DNA. Finally, we provide a list of 182 candidate genes potentially involved in gibbon diversification and speciation.


Subject(s)
Hominidae , Hylobates , Animals , Hylobates/genetics , Genome , Primates/genetics , Chromosome Inversion/genetics , Chromosomes , Hominidae/genetics
12.
Nat Rev Genet ; 20(11): 693-701, 2019 11.
Article in English | MEDLINE | ID: mdl-31455890

ABSTRACT

Human genomics is undergoing a step change from being a predominantly research-driven activity to one driven through health care as many countries in Europe now have nascent precision medicine programmes. To maximize the value of the genomic data generated, these data will need to be shared between institutions and across countries. In recognition of this challenge, 21 European countries recently signed a declaration to transnationally share data on at least 1 million human genomes by 2022. In this Roadmap, we identify the challenges of data sharing across borders and demonstrate that European research infrastructures are well-positioned to support the rapid implementation of widespread genomic data access.


Subject(s)
Biomedical Research , Genome, Human , Human Genome Project , Europe , Humans
14.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Article in English | MEDLINE | ID: mdl-35105814

ABSTRACT

The remarkable robustness of many social systems has been associated with a peculiar triangular structure in the underlying social networks. Triples of people that have three positive relations (e.g., friendship) between each other are strongly overrepresented. Triples with two negative relations (e.g., enmity) and one positive relation are also overrepresented, and triples with one or three negative relations are drastically suppressed. For almost a century, the mechanism behind these very specific ("balanced") triad statistics remained elusive. Here, we propose a simple realistic adaptive network model, where agents tend to minimize social tension that arises from dyadic interactions. Both opinions of agents and their signed links (positive or negative relations) are updated in the dynamics. The key aspect of the model resides in the fact that agents only need information about their local neighbors in the network and do not require (often unrealistic) higher-order network information for their relation and opinion updates. We demonstrate the quality of the model on detailed temporal relation data of a society of thousands of players of a massive multiplayer online game where we can observe triangle formation directly. It not only successfully predicts the distribution of triangle types but also explains empirical group size distributions, which are essential for social cohesion. We discuss the details of the phase diagrams behind the model and their parameter dependence, and we comment on to what extent the results might apply universally in societies.


Subject(s)
Computer Simulation , Interpersonal Relations , Models, Theoretical , Social Networking , Female , Humans , Male
15.
Am J Hum Genet ; 108(5): 919-928, 2021 05 06.
Article in English | MEDLINE | ID: mdl-33789087

ABSTRACT

Virtually all genome sequencing efforts in national biobanks, complex and Mendelian disease programs, and medical genetic initiatives are reliant upon short-read whole-genome sequencing (srWGS), which presents challenges for the detection of structural variants (SVs) relative to emerging long-read WGS (lrWGS) technologies. Given this ubiquity of srWGS in large-scale genomics initiatives, we sought to establish expectations for routine SV detection from this data type by comparison with lrWGS assembly, as well as to quantify the genomic properties and added value of SVs uniquely accessible to each technology. Analyses from the Human Genome Structural Variation Consortium (HGSVC) of three families captured ~11,000 SVs per genome from srWGS and ~25,000 SVs per genome from lrWGS assembly. Detection power and precision for SV discovery varied dramatically by genomic context and variant class: 9.7% of the current GRCh38 reference is defined by segmental duplication (SD) and simple repeat (SR), yet 91.4% of deletions that were specifically discovered by lrWGS localized to these regions. Across the remaining 90.3% of reference sequence, we observed extremely high (93.8%) concordance between technologies for deletions in these datasets. In contrast, lrWGS was superior for detection of insertions across all genomic contexts. Given that non-SD/SR sequences encompass 95.9% of currently annotated disease-associated exons, improved sensitivity from lrWGS to discover novel pathogenic deletions in these currently interpretable genomic regions is likely to be incremental. However, these analyses highlight the considerable added value of assembly-based lrWGS to create new catalogs of insertions and transposable elements, as well as disease-associated repeat expansions in genomic sequences that were previously recalcitrant to routine assessment.


Subject(s)
Genome, Human/genetics , Genomic Structural Variation , Genomics/methods , Goals , Whole Genome Sequencing/methods , Whole Genome Sequencing/standards , DNA Copy Number Variations , Exons/genetics , Humans , Research Design , Segmental Duplications, Genomic , Sequence Alignment
16.
Bioinformatics ; 39(11)2023 11 01.
Article in English | MEDLINE | ID: mdl-37851409

ABSTRACT

SUMMARY: Single-cell DNA template strand sequencing (Strand-seq) allows a range of various genomic analysis including chromosome length haplotype phasing and structural variation (SV) calling in individual cells. Here, we present MosaiCatcher v2, a standardized workflow and reference framework for single-cell SV detection using Strand-seq. This framework introduces a range of functionalities, including: an automated upstream Quality Control (QC) and assembly sub-workflow that relies on multiple genome assemblies and incorporates a multistep normalization module, integration of the single-cell nucleosome occupancy and genetic variation analysis SV functional characterization and of the ArbiGent SV genotyping modules, platform portability, as well as a user-friendly and shareable web report. These new features of MosaiCatcher v2 enable reproducible computational processing of Strand-seq data, which are increasingly used in human genetics and single-cell genomics, toward production environments. MosaiCatcher v2 is compatible with both container and conda environments, ensuring reproducibility and robustness and positioning the framework as a cornerstone in computational processing of Strand-seq data. AVAILABILITY AND IMPLEMENTATION: MosaiCatcher v2 is a standardized workflow, implemented using the Snakemake workflow management system. The pipeline is available on GitHub: https://github.com/friendsofstrandseq/mosaicatcher-pipeline/ and on the snakemake-workflow-catalog: https://snakemake.github.io/snakemake-workflow-catalog/?usage=friendsofstrandseq/mosaicatcher-pipeline. Strand-seq example input data used in the publication can be found in the Data availability statement. Additionally, a lightweight dataset for test purposes can be found on the GitHub repository.


Subject(s)
DNA Replication , Genomics , Humans , Reproducibility of Results , Sequence Analysis, DNA , Haplotypes , Software , Workflow , Single-Cell Analysis
19.
Genome Res ; 30(11): 1680-1693, 2020 11.
Article in English | MEDLINE | ID: mdl-33093070

ABSTRACT

Rhesus macaque is an Old World monkey that shared a common ancestor with human ∼25 Myr ago and is an important animal model for human disease studies. A deep understanding of its genetics is therefore required for both biomedical and evolutionary studies. Among structural variants, inversions represent a driving force in speciation and play an important role in disease predisposition. Here we generated a genome-wide map of inversions between human and macaque, combining single-cell strand sequencing with cytogenetics. We identified 375 total inversions between 859 bp and 92 Mbp, increasing by eightfold the number of previously reported inversions. Among these, 19 inversions flanked by segmental duplications overlap with recurrent copy number variants associated with neurocognitive disorders. Evolutionary analyses show that in 17 out of 19 cases, the Hominidae orientation of these disease-associated regions is always derived. This suggests that duplicated sequences likely played a fundamental role in generating inversions in humans and great apes, creating architectures that nowadays predispose these regions to disease-associated genetic instability. Finally, we identified 861 genes mapping at 156 inversions breakpoints, with some showing evidence of differential expression in human and macaque cell lines, thus highlighting candidates that might have contributed to the evolution of species-specific features. This study depicts the most accurate fine-scale map of inversions between human and macaque using a two-pronged integrative approach, such as single-cell strand sequencing and cytogenetics, and represents a valuable resource toward understanding of the biology and evolution of primate species.


Subject(s)
Chromosome Breakpoints , Chromosome Inversion , Evolution, Molecular , Macaca mulatta/genetics , Animals , Disease/genetics , Gene Expression Regulation , Genome , Genomics , Heterozygote , Humans , In Situ Hybridization, Fluorescence , Recombination, Genetic , Sequence Analysis, DNA , Single-Cell Analysis
20.
Nat Methods ; 17(6): 629-635, 2020 06.
Article in English | MEDLINE | ID: mdl-32483332

ABSTRACT

The transcriptome contains rich information on molecular, cellular and organismal phenotypes. However, experimental and statistical limitations constrain sensitivity and throughput of genetic screening with single-cell transcriptomics readout. To overcome these limitations, we introduce targeted Perturb-seq (TAP-seq), a sensitive, inexpensive and platform-independent method focusing single-cell RNA-seq coverage on genes of interest, thereby increasing the sensitivity and scale of genetic screens by orders of magnitude. TAP-seq permits routine analysis of thousands of CRISPR-mediated perturbations within a single experiment, detects weak effects and lowly expressed genes, and decreases sequencing requirements by up to 50-fold. We apply TAP-seq to generate perturbation-based enhancer-target gene maps for 1,778 enhancers within 2.5% of the human genome. We thereby show that enhancer-target association is jointly determined by three-dimensional contact frequency and epigenetic states, allowing accurate prediction of enhancer targets throughout the genome. In addition, we demonstrate that TAP-seq can identify cell subtypes with only 100 sequencing reads per cell.


Subject(s)
Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Genome, Human , RNA-Seq/methods , Single-Cell Analysis/methods , Transcriptome/genetics , Humans
SELECTION OF CITATIONS
SEARCH DETAIL