Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Nucleic Acids Res ; 47(D1): D433-D441, 2019 01 08.
Article in English | MEDLINE | ID: mdl-30445427

ABSTRACT

For 15 years the mission of PhosphoSitePlus® (PSP, https://www.phosphosite.org) has been to provide comprehensive information and tools for the study of mammalian post-translational modifications (PTMs). The number of unique PTMs in PSP is now more than 450 000 from over 22 000 articles and thousands of MS datasets. The most important areas of growth in PSP are in disease and isoform informatics. Germline mutations associated with inherited diseases and somatic cancer mutations have been added to the database and can now be viewed along with PTMs and associated quantitative information on novel 'lollipop' plots. These plots enable researchers to interactively visualize the overlap between disease variants and PTMs, and to identify mutations that may alter phenotypes by rewiring signaling networks. We are expanding the sequence space to include over 30 000 human and mouse isoforms to enable researchers to explore the important but understudied biology of isoforms. This represents a necessary expansion of sequence space to accommodate the growing precision and depth of coverage enabled by ongoing advances in mass spectrometry. Isoforms are aligned using a new algorithm. Exploring the worlds of PTMs and disease mutations in the entire isoform space will hopefully lead to new biomarkers, therapeutic targets, and insights into isoform biology.


Subject(s)
Databases, Protein , Protein Processing, Post-Translational , Animals , Disease/genetics , Humans , Mice , Mutation, Missense , Protein Isoforms/chemistry , Protein Isoforms/metabolism , Proteins/genetics , Rats , User-Computer Interface
2.
Nucleic Acids Res ; 43(Database issue): D512-20, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25514926

ABSTRACT

PhosphoSitePlus(®) (PSP, http://www.phosphosite.org/), a knowledgebase dedicated to mammalian post-translational modifications (PTMs), contains over 330,000 non-redundant PTMs, including phospho, acetyl, ubiquityl and methyl groups. Over 95% of the sites are from mass spectrometry (MS) experiments. In order to improve data reliability, early MS data have been reanalyzed, applying a common standard of analysis across over 1,000,000 spectra. Site assignments with P > 0.05 were filtered out. Two new downloads are available from PSP. The 'Regulatory sites' dataset includes curated information about modification sites that regulate downstream cellular processes, molecular functions and protein-protein interactions. The 'PTMVar' dataset, an intersect of missense mutations and PTMs from PSP, identifies over 25,000 PTMVars (PTMs Impacted by Variants) that can rewire signaling pathways. The PTMVar data include missense mutations from UniPROTKB, TCGA and other sources that cause over 2000 diseases or syndromes (MIM) and polymorphisms, or are associated with hundreds of cancers. PTMVars include 18 548 phosphorlyation sites, 3412 ubiquitylation sites, 2316 acetylation sites, 685 methylation sites and 245 succinylation sites.


Subject(s)
Databases, Protein , Protein Processing, Post-Translational , Disease/genetics , Internet , Mutation , Mutation, Missense , Phosphorylation , Position-Specific Scoring Matrices , Protein Kinases/metabolism , Protein Processing, Post-Translational/genetics , Protein Structure, Tertiary , Sequence Analysis, Protein , Signal Transduction/genetics
3.
Mol Cell Proteomics ; 13(1): 372-87, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24129315

ABSTRACT

Protein methylation is a common posttranslational modification that mostly occurs on arginine and lysine residues. Arginine methylation has been reported to regulate RNA processing, gene transcription, DNA damage repair, protein translocation, and signal transduction. Lysine methylation is best known to regulate histone function and is involved in epigenetic regulation of gene transcription. To better study protein methylation, we have developed highly specific antibodies against monomethyl arginine; asymmetric dimethyl arginine; and monomethyl, dimethyl, and trimethyl lysine motifs. These antibodies were used to perform immunoaffinity purification of methyl peptides followed by LC-MS/MS analysis to identify and quantify arginine and lysine methylation sites in several model studies. Overall, we identified over 1000 arginine methylation sites in human cell line and mouse tissues, and ∼160 lysine methylation sites in human cell line HCT116. The number of methylation sites identified in this study exceeds those found in the literature to date. Detailed analysis of arginine-methylated proteins observed in mouse brain compared with those found in mouse embryo shows a tissue-specific distribution of arginine methylation, and extends the types of proteins that are known to be arginine methylated to include many new protein types. Many arginine-methylated proteins that we identified from the brain, including receptors, ion channels, transporters, and vesicle proteins, are involved in synaptic transmission, whereas the most abundant methylated proteins identified from mouse embryo are transcriptional regulators and RNA processing proteins.


Subject(s)
Arginine/metabolism , Brain/metabolism , Lysine/metabolism , Protein Processing, Post-Translational , Amino Acid Motifs/genetics , Animals , Arginine/genetics , Chromatography, Liquid , HCT116 Cells , Humans , Lysine/genetics , Methylation , Mice , Tandem Mass Spectrometry
4.
Nucleic Acids Res ; 40(Database issue): D261-70, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22135298

ABSTRACT

PhosphoSitePlus (http://www.phosphosite.org) is an open, comprehensive, manually curated and interactive resource for studying experimentally observed post-translational modifications, primarily of human and mouse proteins. It encompasses 1,30,000 non-redundant modification sites, primarily phosphorylation, ubiquitinylation and acetylation. The interface is designed for clarity and ease of navigation. From the home page, users can launch simple or complex searches and browse high-throughput data sets by disease, tissue or cell line. Searches can be restricted by specific treatments, protein types, domains, cellular components, disease, cell types, cell lines, tissue and sequences or motifs. A few clicks of the mouse will take users to substrate pages or protein pages with sites, sequences, domain diagrams and molecular visualization of side-chains known to be modified; to site pages with information about how the modified site relates to the functions of specific proteins and cellular processes and to curated information pages summarizing the details from one record. PyMOL and Chimera scripts that colorize reactive groups on residues that are modified can be downloaded. Features designed to facilitate proteomic analyses include downloads of modification sites, kinase-substrate data sets, sequence logo generators, a Cytoscape plugin and BioPAX download to enable pathway visualization of the kinase-substrate interactions in PhosphoSitePlus®.


Subject(s)
Databases, Protein , Protein Processing, Post-Translational , Acetylation , Amino Acid Sequence , Animals , Cattle , Humans , Mice , Phosphorylation , Proteins/chemistry , Proteins/genetics , Proteins/metabolism , Rats , Ubiquitination
5.
Proc Natl Acad Sci U S A ; 105(2): 692-7, 2008 Jan 15.
Article in English | MEDLINE | ID: mdl-18180459

ABSTRACT

A major question regarding the sensitivity of solid tumors to targeted kinase inhibitors is why some tumors respond and others do not. The observation that many tumors express EGF receptor (EGFR), yet only a small subset with EGFR-activating mutations respond clinically to EGFR inhibitors (EGFRIs), suggests that responsive tumors uniquely depend on EGFR signaling for their survival. The nature of this dependence is not understood. Here, we investigate dependence on EGFR signaling by comparing non-small-cell lung cancer cell lines driven by EGFR-activating mutations and genomic amplifications using a global proteomic analysis of phospho-tyrosine signaling. We identify an extensive receptor tyrosine kinase signaling network established in cells expressing mutated and activated EGFR or expressing amplified c-Met. We show that in drug sensitive cells the targeted tyrosine kinase drives other RTKs and an extensive network of downstream signaling that collapse with drug treatment. Comparison of the signaling networks in EGFR and c-Met-dependent cells identify a "core network" of approximately 50 proteins that participate in pathways mediating drug response.


Subject(s)
Carcinoma, Non-Small-Cell Lung/metabolism , Drug Resistance, Neoplasm , ErbB Receptors/metabolism , Gene Expression Regulation, Neoplastic , Lung Neoplasms/metabolism , Proteomics/methods , Proto-Oncogene Proteins c-met/metabolism , Cell Line, Tumor , Gefitinib , Humans , Models, Biological , Neoplasm Metastasis , Phosphotyrosine/chemistry , Protein Kinase Inhibitors/pharmacology , Protein-Tyrosine Kinases/metabolism , Quinazolines/pharmacology , Signal Transduction
6.
Neuron ; 34(2): 221-33, 2002 Apr 11.
Article in English | MEDLINE | ID: mdl-11970864

ABSTRACT

The transcription factor CREB mediates diverse responses in the nervous system. It is not known how CREB induces specific patterns of gene expression in response to different extracellular stimuli. We find that Ca(2+) influx into neurons induces CREB phosphorylation at Ser133 and two additional sites, Ser142 and Ser143. While CREB Ser133 phosphorylation is induced by many stimuli, phosphorylation at Ser142 and Ser143 is selectively activated by Ca(2+) influx. The triple phosphorylation of CREB is required for effective Ca(2+) stimulation of CREB-dependent transcription, but the phosphorylation of Ser142 and Ser143, in addition to Ser133, disrupts the interaction of CREB with its cofactor CBP. These results suggest that Ca(2+) influx triggers a specific program of gene expression in neurons by selectively regulating CREB phosphorylation.


Subject(s)
Calcium/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism , Neurons/metabolism , Amino Acid Sequence/genetics , CREB-Binding Protein , Cells, Cultured , Cyclic AMP Response Element-Binding Protein/genetics , Electrophysiology , Immunohistochemistry , Neurons/physiology , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Nuclear Proteins/physiology , Phosphorylation , Trans-Activators/genetics , Trans-Activators/metabolism , Trans-Activators/physiology , Transcription, Genetic/physiology
7.
Front Pharmacol ; 6: 125, 2015.
Article in English | MEDLINE | ID: mdl-26150790

ABSTRACT

The recent approval of a therapeutic for a circadian disorder has increased interest in developing additional medicines for disorders characterized by circadian disruption. However, previous experience demonstrates that drug development for central nervous system (CNS) disorders has a high failure rate. Personalized medicine, or the approach to identifying the right treatment for the right patient, has recently become the standard for drug development in the oncology field. In addition to utilizing Companion Diagnostics (CDx) that identify specific genetic biomarkers to prescribe certain targeted therapies, patient profiling is regularly used to enrich for a responsive patient population during clinical trials, resulting in fewer patients required for statistical significance and a higher rate of success for demonstrating efficacy and hence receiving approval for the drug. This personalized medicine approach may be one mechanism that could reduce the high clinical trial failure rate in the development of CNS drugs. This review will discuss current circadian trials, the history of personalized medicine in oncology, lessons learned from a recently approved circadian therapeutic, and how personalized medicine can be tailored for use in future clinical trials for circadian disorders to ultimately lead to the approval of more therapeutics for patients suffering from circadian abnormalities.

8.
PLoS One ; 6(4): e19169, 2011 Apr 28.
Article in English | MEDLINE | ID: mdl-21552520

ABSTRACT

Activating mutations of FMS-like tyrosine kinase-3 (FLT3) are found in approximately 30% of patients with acute myeloid leukemia (AML). FLT3 is therefore an attractive drug target. However, the molecular mechanisms by which FLT3 mutations lead to cell transformation in AML remain unclear. To develop a better understanding of FLT3 signaling as well as its downstream effectors, we performed detailed phosphoproteomic analysis of FLT3 signaling in human leukemia cells. We identified over 1000 tyrosine phosphorylation sites from about 750 proteins in both AML (wild type and mutant FLT3) and B cell acute lymphoblastic leukemia (normal and amplification of FLT3) cell lines. Furthermore, using stable isotope labeling by amino acids in cell culture (SILAC), we were able to quantified over 400 phosphorylation sites (pTyr, pSer, and pThr) that were responsive to FLT3 inhibition in FLT3 driven human leukemia cell lines. We also extended this phosphoproteomic analysis on bone marrow from primary AML patient samples, and identify over 200 tyrosine and 800 serine/threonine phosphorylation sites in vivo. This study showed that oncogenic FLT3 regulates proteins involving diverse cellular processes and affects multiple signaling pathways in human leukemia that we previously appreciated, such as Fc epsilon RI-mediated signaling, BCR, and CD40 signaling pathways. It provides a valuable resource for investigation of oncogenic FLT3 signaling in human leukemia.


Subject(s)
Leukemia, Myeloid, Acute/pathology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Signal Transduction , fms-Like Tyrosine Kinase 3/metabolism , Bone Marrow Cells/drug effects , Bone Marrow Cells/metabolism , Cell Line, Tumor , Humans , Mutation , Phosphoamino Acids/metabolism , Phosphorylation/drug effects , Piperazines/pharmacology , Quinazolines/pharmacology , Signal Transduction/drug effects , fms-Like Tyrosine Kinase 3/genetics
9.
Sci Signal ; 3(136): ra64, 2010 Aug 24.
Article in English | MEDLINE | ID: mdl-20736484

ABSTRACT

Receptor tyrosine kinases (RTKs) activate pathways mediated by serine-threonine kinases, such as the PI3K (phosphatidylinositol 3-kinase)-Akt pathway, the Ras-MAPK (mitogen-activated protein kinase)-RSK (ribosomal S6 kinase) pathway, and the mTOR (mammalian target of rapamycin)-p70 S6 pathway, that control important aspects of cell growth, proliferation, and survival. The Akt, RSK, and p70 S6 family of protein kinases transmits signals by phosphorylating substrates on an RxRxxS/T motif (R, arginine; S, serine; T, threonine; and x, any amino acid). We developed a large-scale proteomic approach to identify more than 300 substrates of this kinase family in cancer cell lines driven by the c-Met, epidermal growth factor receptor (EGFR), or platelet-derived growth factor receptor alpha (PDGFRalpha) RTKs. We identified a subset of proteins with RxRxxS/T sites for which phosphorylation was decreased by RTK inhibitors (RTKIs), as well as by inhibitors of the PI3K, mTOR, and MAPK pathways, and we determined the effects of small interfering RNA directed against these substrates on cell viability. Phosphorylation of the protein chaperone SGTA (small glutamine-rich tetratricopeptide repeat-containing protein alpha) at serine-305 was essential for PDGFRalpha stabilization and cell survival in PDGFRalpha-dependent cancer cells. Our approach provides a new view of RTK and Akt-RSK-S6 kinase signaling, revealing previously unidentified Akt-RSK-S6 kinase substrates that merit further consideration as targets for combination therapy with RTKIs.


Subject(s)
Peptides/chemistry , Proto-Oncogene Proteins c-akt/chemistry , Receptor, Platelet-Derived Growth Factor alpha/chemistry , Ribosomal Protein S6 Kinases, 70-kDa/chemistry , TOR Serine-Threonine Kinases/chemistry , Amino Acid Motifs , Carrier Proteins/chemistry , Carrier Proteins/metabolism , Cell Line , Humans , Molecular Chaperones , Peptides/metabolism , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Receptor, Platelet-Derived Growth Factor alpha/metabolism , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , Substrate Specificity , TOR Serine-Threonine Kinases/metabolism
10.
Cell ; 131(6): 1190-203, 2007 Dec 14.
Article in English | MEDLINE | ID: mdl-18083107

ABSTRACT

Despite the success of tyrosine kinase-based cancer therapeutics, for most solid tumors the tyrosine kinases that drive disease remain unknown, limiting our ability to identify drug targets and predict response. Here we present the first large-scale survey of tyrosine kinase activity in lung cancer. Using a phosphoproteomic approach, we characterize tyrosine kinase signaling across 41 non-small cell lung cancer (NSCLC) cell lines and over 150 NSCLC tumors. Profiles of phosphotyrosine signaling are generated and analyzed to identify known oncogenic kinases such as EGFR and c-Met as well as novel ALK and ROS fusion proteins. Other activated tyrosine kinases such as PDGFRalpha and DDR1 not previously implicated in the genesis of NSCLC are also identified. By focusing on activated cell circuitry, the approach outlined here provides insight into cancer biology not available at the chromosomal and transcriptional levels and can be applied broadly across all human cancers.


Subject(s)
Carcinoma, Non-Small-Cell Lung/metabolism , Lung Neoplasms/metabolism , Phosphotyrosine/metabolism , Protein-Tyrosine Kinases/metabolism , Signal Transduction/genetics , Anaplastic Lymphoma Kinase , Carcinoma, Non-Small-Cell Lung/genetics , Cell Line, Tumor , Enzyme Activation , Gene Fusion , Humans , Lung Neoplasms/genetics , Models, Biological , Molecular Sequence Data , Phosphorylation , Phosphotyrosine/genetics , Protein-Tyrosine Kinases/genetics , Receptor Protein-Tyrosine Kinases , Receptor, Platelet-Derived Growth Factor alpha/metabolism
11.
Proteomics ; 4(6): 1551-61, 2004 Jun.
Article in English | MEDLINE | ID: mdl-15174125

ABSTRACT

PhosphoSite is a curated, web-based bioinformatics resource dedicated to physiologic sites of protein phosphorylation in human and mouse. PhosphoSite is populated with information derived from published literature as well as high-throughput discovery programs. PhosphoSite provides information about the phosphorylated residue and its surrounding sequence, orthologous sites in other species, location of the site within known domains and motifs, and relevant literature references. Links are also provided to a number of external resources for protein sequences, structure, post-translational modifications and signaling pathways, as well as sources of phospho-specific antibodies and probes. As the amount of information in the underlying knowledgebase expands, users will be able to systematically search for the kinases, phosphatases, ligands, treatments, and receptors that have been shown to regulate the phosphorylation status of the sites, and pathways in which the phosphorylation sites function. As it develops into a comprehensive resource of known in vivo phosphorylation sites, we expect that PhosphoSite will be a valuable tool for researchers seeking to understand the role of intracellular signaling pathways in a wide variety of biological processes.


Subject(s)
Computational Biology , Databases, Factual , Proteins/metabolism , Animals , Cells, Cultured , Humans , Internet , Mice , Phosphorylation , Proteins/chemistry , Quality Control
SELECTION OF CITATIONS
SEARCH DETAIL