Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
PLoS Pathog ; 19(9): e1011446, 2023 09.
Article in English | MEDLINE | ID: mdl-37733807

ABSTRACT

Zika virus (ZIKV) is a Flavivirus responsible for recent epidemics in Pacific Islands and in the Americas. In humans, the consequences of ZIKV infection range from asymptomatic infection to severe neurological disease such as Guillain-Barré syndrome or fetal neurodevelopmental defects, suggesting, among other factors, the influence of host genetic variants. We previously reported similar diverse outcomes of ZIKV infection in mice of the Collaborative Cross (CC), a collection of inbred strains with large genetic diversity. CC071/TauUnc (CC071) was the most susceptible CC strain with severe symptoms and lethality. Notably, CC071 has been recently reported to be also susceptible to other flaviviruses including dengue virus, Powassan virus, West Nile virus, and to Rift Valley fever virus. To identify the genetic origin of this broad susceptibility, we investigated ZIKV replication in mouse embryonic fibroblasts (MEFs) from CC071 and two resistant strains. CC071 showed uncontrolled ZIKV replication associated with delayed induction of type-I interferons (IFN-I). Genetic analysis identified a mutation in the Irf3 gene specific to the CC071 strain which prevents the protein phosphorylation required to activate interferon beta transcription. We demonstrated that this mutation induces the same defective IFN-I response and uncontrolled viral replication in MEFs as an Irf3 knock-out allele. By contrast, we also showed that Irf3 deficiency did not induce the high plasma viral load and clinical severity observed in CC071 mice and that susceptibility alleles at other genes, not associated with the IFN-I response, are required. Our results provide new insight into the in vitro and in vivo roles of Irf3, and into the genetic complexity of host responses to flaviviruses.


Subject(s)
Flavivirus , Interferon Type I , Zika Virus Infection , Zika Virus , Animals , Mice , Collaborative Cross Mice , Fibroblasts , Interferon Regulatory Factor-3/genetics , Zika Virus/genetics , Zika Virus Infection/genetics
2.
EMBO J ; 38(12)2019 06 17.
Article in English | MEDLINE | ID: mdl-31068361

ABSTRACT

Several autoimmune diseases including multiple sclerosis (MS) cause increased transcription of endogenous retroviruses (HERVs) normally repressed by heterochromatin. In parallel, HERV-derived sequences were reported to drive gene expression. Here, we have examined a possible link between promoter and enhancer divergent transcription and the production of HERV transcripts. We find that HERV-derived sequences are in general counter-selected at regulatory regions, a counter-selection that is strongest in brain tissues while very moderate in stem cells. By exposing T cells to the pesticide dieldrin, we further found that a series of HERV-driven enhancers otherwise active only at stem cell stages can be reactivated by stress. This in part relies on peptidylarginine deiminase activity, possibly participating in the reawakening of silenced enhancers. Likewise, usage of HERV-driven enhancers was increased in myelin-reactive T cells from patients with MS, correlating with activation of nearby genes at several sites. Altogether, we propose that HERV-driven enhancers constitute a reservoir of auxiliary enhancers transiently induced by stress while chronically active in diseases like MS.


Subject(s)
Endogenous Retroviruses/genetics , Multiple Sclerosis/genetics , Multiple Sclerosis/immunology , Regulatory Sequences, Nucleic Acid/genetics , T-Lymphocytes/metabolism , Adult , Case-Control Studies , Cells, Cultured , Female , Gene Expression Regulation, Viral/physiology , Humans , Jurkat Cells , Male , Middle Aged , Multiple Sclerosis/metabolism , Multiple Sclerosis/virology , T-Lymphocytes/pathology
3.
EMBO Rep ; 22(9): e52320, 2021 09 06.
Article in English | MEDLINE | ID: mdl-34312949

ABSTRACT

HP1 proteins are best known as markers of heterochromatin and gene silencing. Yet, they are also RNA-binding proteins and the HP1γ/CBX3 family member is present on transcribed genes together with RNA polymerase II, where it regulates co-transcriptional processes such as alternative splicing. To gain insight in the role of the RNA-binding activity of HP1γ in transcriptionally active chromatin, we have captured and analysed RNAs associated with this protein. We find that HP1γ is specifically targeted to hexameric RNA motifs and coincidentally transposable elements of the SINE family. As these elements are abundant in introns, while essentially absent from exons, the HP1γ RNA association tethers unspliced pre-mRNA to chromatin via the intronic regions and limits the usage of intronic cryptic splice sites. Thus, our data unveil novel determinants in the relationship between chromatin and co-transcriptional splicing.


Subject(s)
RNA Precursors , RNA Splicing , Alternative Splicing/genetics , Introns/genetics , RNA Precursors/genetics , RNA Precursors/metabolism , RNA Splicing/genetics , RNA-Binding Proteins
4.
Nucleic Acids Res ; 49(11): 6213-6237, 2021 06 21.
Article in English | MEDLINE | ID: mdl-34086943

ABSTRACT

DNA methylation (meDNA) is a modulator of alternative splicing, and splicing perturbations are involved in tumorigenesis nearly as frequently as DNA mutations. However, the impact of meDNA on tumorigenesis via splicing-mediated mechanisms has not been thoroughly explored. Here, we found that HCT116 colon carcinoma cells inactivated for the DNA methylases DNMT1/3b undergo a partial epithelial to mesenchymal transition associated with increased CD44 variant exon skipping. These skipping events are directly mediated by the loss of intragenic meDNA and the chromatin factors MBD1/2/3 and HP1γ and are also linked to phosphorylation changes in elongating RNA polymerase II. The role of meDNA in alternative splicing was confirmed by using the dCas9/DNMT3b tool. We further tested whether the meDNA level could have predictive value in the MCF10A model for breast cancer progression and in patients with acute lymphoblastic leukemia (B ALL). We found that a small number of differentially spliced genes, mostly involved in splicing and signal transduction, are correlated with the local modulation of meDNA. Our observations suggest that, although DNA methylation has multiple avenues to affect alternative splicing, its indirect effect may also be mediated through alternative splicing isoforms of these meDNA sensors.


Subject(s)
Alternative Splicing , DNA Methylation , Gene Expression Regulation, Neoplastic , Hyaluronan Receptors/genetics , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Carcinogenesis/genetics , Cell Line, Tumor , Chromobox Protein Homolog 5 , Chromosomal Proteins, Non-Histone/metabolism , DNA (Cytosine-5-)-Methyltransferase 1/genetics , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA-Binding Proteins/metabolism , Epithelial-Mesenchymal Transition , Exons , Female , HeLa Cells , Histone Code , Humans , Hyaluronan Receptors/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , RNA Polymerase II/metabolism , Transcription Factors/metabolism , Transcription, Genetic , DNA Methyltransferase 3B
5.
Nucleic Acids Res ; 49(9): 5249-5264, 2021 05 21.
Article in English | MEDLINE | ID: mdl-33893809

ABSTRACT

Ribonucleases are central players in post-transcriptional regulation, a major level of gene expression regulation in all cells. Here, we characterized the 3'-5' exoribonuclease RNase R from the bacterial pathogen Helicobacter pylori. The 'prototypical' Escherichia coli RNase R displays both exoribonuclease and helicase activities, but whether this latter RNA unwinding function is a general feature of bacterial RNase R had not been addressed. We observed that H. pylori HpRNase R protein does not carry the domains responsible for helicase activity and accordingly the purified protein is unable to degrade in vitro RNA molecules with secondary structures. The lack of RNase R helicase domains is widespread among the Campylobacterota, which include Helicobacter and Campylobacter genera, and this loss occurred gradually during their evolution. An in vivo interaction between HpRNase R and RhpA, the sole DEAD-box RNA helicase of H. pylori was discovered. Purified RhpA facilitates the degradation of double stranded RNA by HpRNase R, showing that this complex is functional. HpRNase R has a minor role in 5S rRNA maturation and few targets in H. pylori, all included in the RhpA regulon. We concluded that during evolution, HpRNase R has co-opted the RhpA helicase to compensate for its lack of helicase activity.


Subject(s)
DEAD-box RNA Helicases/metabolism , Exoribonucleases/metabolism , Helicobacter pylori/enzymology , Amino Acid Motifs , Epsilonproteobacteria/enzymology , Exoribonucleases/chemistry , RNA, Double-Stranded/metabolism , RNA, Ribosomal, 5S/metabolism
6.
New Phytol ; 230(3): 972-987, 2021 05.
Article in English | MEDLINE | ID: mdl-33475158

ABSTRACT

Condensins are best known for their role in shaping chromosomes. Other functions such as organizing interphase chromatin and transcriptional control have been reported in yeasts and animals, but little is known about their function in plants. To elucidate the specific composition of condensin complexes and the expression of CAP-D2 (condensin I) and CAP-D3 (condensin II), we performed biochemical analyses in Arabidopsis. The role of CAP-D3 in interphase chromatin organization and function was evaluated using cytogenetic and transcriptome analysis in cap-d3 T-DNA insertion mutants. CAP-D2 and CAP-D3 are highly expressed in mitotically active tissues. In silico and pull-down experiments indicate that both CAP-D proteins interact with the other condensin I and II subunits. In cap-d3 mutants, an association of heterochromatic sequences occurs, but the nuclear size and the general histone and DNA methylation patterns remain unchanged. Also, CAP-D3 influences the expression of genes affecting the response to water, chemicals, and stress. The expression and composition of the condensin complexes in Arabidopsis are similar to those in other higher eukaryotes. We propose a model for the CAP-D3 function during interphase in which CAP-D3 localizes in euchromatin loops to stiffen them and consequently separates centromeric regions and 45S rDNA repeats.


Subject(s)
Arabidopsis , Chromatin , Adenosine Triphosphatases/genetics , Animals , Arabidopsis/genetics , DNA-Binding Proteins , Interphase , Multiprotein Complexes
7.
Mol Ecol ; 27(22): 4501-4515, 2018 11.
Article in English | MEDLINE | ID: mdl-30252177

ABSTRACT

Colour plays a prominent role in species recognition; therefore, understanding the proximate basis of pigmentation can provide insight into reproductive isolation and speciation. Colour differences between taxa may be the result of regulatory differences or be caused by mutations in coding regions of the expressed genes. To investigate these two alternatives, we studied the pigment composition and the genetic basis of coloration in two divergent dark-eyed junco (Junco hyemalis) subspecies, the slate-coloured and Oregon juncos, which have evolved marked differences in plumage coloration since the Last Glacial Maximum. We used HPLC and light microscopy to investigate pigment composition and deposition in feathers from four body areas. We then used RNA-seq to compare the relative roles of differential gene expression in developing feathers and sequence divergence in transcribed loci under common-garden conditions. Junco feathers differed in eumelanin and pheomelanin content and distribution. Within subspecies, in lighter feathers melanin synthesis genes were downregulated (including PMEL, TYR, TYRP1, OCA2 and MLANA), and ASIP was upregulated. Feathers from different body regions also showed differential expression of HOX and WNT genes. Feathers from the same body regions that differed in colour between the two subspecies showed differential expression of ASIP and three other genes (MFSD12, KCNJ13 and HAND2) associated with pigmentation in other taxa. Sequence variation in the expressed genes was not related to colour differences. Our findings support the hypothesis that differential regulation of a few genes can account for marked differences in coloration, a mechanism that may facilitate the rapid phenotypic diversification of juncos.


Subject(s)
Feathers , Melanins/analysis , Pigmentation/genetics , Songbirds/genetics , Animals , Melanins/biosynthesis , Oregon
9.
Nat Commun ; 15(1): 4175, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755132

ABSTRACT

Drug-recalcitrant infections are a leading global-health concern. Bacterial cells benefit from phenotypic variation, which can suggest effective antimicrobial strategies. However, probing phenotypic variation entails spatiotemporal analysis of individual cells that is technically challenging, and hard to integrate into drug discovery. In this work, we develop a multi-condition microfluidic platform suitable for imaging two-dimensional growth of bacterial cells during transitions between separate environmental conditions. With this platform, we implement a dynamic single-cell screening for pheno-tuning compounds, which induce a phenotypic change and decrease cell-to-cell variation, aiming to undermine the entire bacterial population and make it more vulnerable to other drugs. We apply this strategy to mycobacteria, as tuberculosis poses a major public-health threat. Our lead compound impairs Mycobacterium tuberculosis via a peculiar mode of action and enhances other anti-tubercular drugs. This work proves that harnessing phenotypic variation represents a successful approach to tackle pathogens that are increasingly difficult to treat.


Subject(s)
Antitubercular Agents , Mycobacterium tuberculosis , Single-Cell Analysis , Tuberculosis , Mycobacterium tuberculosis/drug effects , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Single-Cell Analysis/methods , Tuberculosis/drug therapy , Tuberculosis/microbiology , Humans , Microbial Sensitivity Tests , Microfluidics/methods , Phenotype , Drug Discovery/methods , Drug Synergism
10.
Microbiol Spectr ; 11(3): e0069023, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37039668

ABSTRACT

Bacteria can rapidly tune their physiology and metabolism to adapt to environmental fluctuations. In particular, they can adapt their lifestyle to the close proximity of other bacteria or the presence of different surfaces. However, whether these interactions trigger transcriptomic responses is poorly understood. We used a specific setup of E. coli strains expressing native or synthetic adhesins mediating bacterial aggregation to study the transcriptomic changes of aggregated compared to nonaggregated bacteria. Our results show that, following aggregation, bacteria exhibit a core response independent of the adhesin type, with differential expression of 56.9% of the coding genome, including genes involved in stress response and anaerobic lifestyle. Moreover, when aggregates were formed via a naturally expressed E. coli adhesin (antigen 43), the transcriptomic response of the bacteria was more exaggerated than that of aggregates formed via a synthetic adhesin. This suggests that the response to aggregation induced by native E. coli adhesins could have been finely tuned during bacterial evolution. Our study therefore provides insights into the effect of self-interaction in bacteria and allows a better understanding of why bacterial aggregates exhibit increased stress tolerance. IMPORTANCE The formation of bacterial aggregates has an important role in both clinical and ecological contexts. Although these structures have been previously shown to be more resistant to stressful conditions, the genetic basis of this stress tolerance associated with the aggregate lifestyle is poorly understood. Surface sensing mediated by different adhesins can result in various changes in bacterial physiology. However, whether adhesin-adhesin interactions, as well as the type of adhesin mediating aggregation, affect bacterial cell physiology is unknown. By sequencing the transcriptomes of aggregated and nonaggregated cells expressing native or synthetic adhesins, we characterized the effects of aggregation and adhesin type on E. coli physiology.


Subject(s)
Escherichia coli Infections , Escherichia coli Proteins , Humans , Escherichia coli/genetics , Bacterial Adhesion/genetics , Adhesins, Bacterial/genetics , Adhesins, Escherichia coli/genetics , Escherichia coli Proteins/genetics , Escherichia coli Infections/microbiology
11.
NAR Genom Bioinform ; 5(3): lqad074, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37608802

ABSTRACT

Bioinformatics is a field known for the numerous standards and formats that have been developed over the years. This plethora of formats, sometimes complementary, and often redundant, poses many challenges to bioinformatics data analysts. They constantly need to find the best tool to convert their data into the suitable format, which is often a complex, technical and time consuming task. Moreover, these small yet important tasks are often difficult to make reproducible. To overcome these difficulties, we initiated BioConvert, a collaborative project to facilitate the conversion of life science data from one format to another. BioConvert aggregates existing software within a single framework and complemented them with original code when needed. It provides a common interface to make the user experience more streamlined instead of having to learn tens of them. Currently, BioConvert supports about 50 formats and 100 direct conversions in areas such as alignment, sequencing, phylogeny, and variant calling. In addition to being useful for end-users, BioConvert can also be utilized by developers as a universal benchmarking framework for evaluating and comparing numerous conversion tools. Additionally, we provide a web server implementing an online user-friendly interface to BioConvert, hence allowing direct use for the community.

12.
J Travel Med ; 30(4)2023 06 23.
Article in English | MEDLINE | ID: mdl-37171132

ABSTRACT

BACKGROUND: Climate change and globalization contribute to the expansion of mosquito vectors and their associated pathogens. Long spared, temperate regions have had to deal with the emergence of arboviruses traditionally confined to tropical regions. Chikungunya virus (CHIKV) was reported for the first time in Europe in 2007, causing a localized outbreak in Italy, which then recurred repeatedly over the years in other European localities. This raises the question of climate effects, particularly temperature, on the dynamics of vector-borne viruses. The objective of this study is to improve the understanding of the molecular mechanisms set up in the vector in response to temperature. METHODS: We combine three complementary approaches by examining Aedes albopictus mosquito gene expression (transcriptomics), bacterial flora (metagenomics) and CHIKV evolutionary dynamics (genomics) induced by viral infection and temperature changes. RESULTS: We show that temperature alters profoundly mosquito gene expression, bacterial microbiome and viral population diversity. We observe that (i) CHIKV infection upregulated most genes (mainly in immune and stress-related pathways) at 20°C but not at 28°C, (ii) CHIKV infection significantly increased the abundance of Enterobacteriaceae Serratia marcescens at 28°C and (iii) CHIKV evolutionary dynamics were different according to temperature. CONCLUSION: The substantial changes detected in the vectorial system (the vector and its bacterial microbiota, and the arbovirus) lead to temperature-specific adjustments to reach the ultimate goal of arbovirus transmission; at 20°C and 28°C, the Asian tiger mosquito Ae. albopictus was able to transmit CHIKV at the same efficiency. Therefore, CHIKV is likely to continue its expansion in the northern regions and could become a public health problem in more countries than those already affected in Europe.


Subject(s)
Aedes , Chikungunya Fever , Chikungunya virus , Animals , Humans , Climate Change , Temperature , Multiomics , Chikungunya Fever/epidemiology , Chikungunya virus/genetics
13.
Nat Genet ; 55(8): 1390-1399, 2023 08.
Article in English | MEDLINE | ID: mdl-37524789

ABSTRACT

Pangenomes provide access to an accurate representation of the genetic diversity of species, both in terms of sequence polymorphisms and structural variants (SVs). Here we generated the Saccharomyces cerevisiae Reference Assembly Panel (ScRAP) comprising reference-quality genomes for 142 strains representing the species' phylogenetic and ecological diversity. The ScRAP includes phased haplotype assemblies for several heterozygous diploid and polyploid isolates. We identified circa (ca.) 4,800 nonredundant SVs that provide a broad view of the genomic diversity, including the dynamics of telomere length and transposable elements. We uncovered frequent cases of complex aneuploidies where large chromosomes underwent large deletions and translocations. We found that SVs can impact gene expression near the breakpoints and substantially contribute to gene repertoire evolution. We also discovered that horizontally acquired regions insert at chromosome ends and can generate new telomeres. Overall, the ScRAP demonstrates the benefit of a pangenome in understanding genome evolution at population scale.


Subject(s)
Genome , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Phylogeny , Genomics , Telomere/genetics
14.
Sci Rep ; 12(1): 19274, 2022 11 11.
Article in English | MEDLINE | ID: mdl-36369470

ABSTRACT

Since the beginning of the SARS-CoV-2 coronavirus pandemic, genome sequencing is essential to monitor viral mutations over time and by territory. This need for complete genetic information is further reinforced by the rapid spread of variants of concern. In this paper, we assess the ability of the hybridization technique, Capture-Seq, to detect the SARS-CoV-2 genome, either partially or in its integrity on patients samples. We studied 20 patient nasal swab samples broken down into five series of four samples of equivalent viral load from CT25 to CT36+ . For this, we tested 3 multi-virus panel as well as 2 SARS-CoV-2 only panels. The panels were chosen based on their specificity, global or specific, as well as their technological difference in the composition of the probes: ssRNA, ssDNA and dsDNA. The multi-virus panels are able to capture high-abundance targets but fail to capture the lowest-abundance targets, with a high percentage of off-target reads corresponding to the abundance of the host sequences. Both SARS-CoV-2-only panels were very effective, with high percentage of reads corresponding to the target. Overall, capture followed by sequencing is very effective for the study of SARS-CoV-2 in low-abundance patient samples and is suitable for samples with CT values up to 35.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , Pandemics , COVID-19 Testing , Base Sequence , Genome, Viral
15.
Nat Commun ; 13(1): 6634, 2022 11 04.
Article in English | MEDLINE | ID: mdl-36333300

ABSTRACT

Mitochondria are paramount to the metabolism and survival of cardiomyocytes. Here we show that Mitochondrial Fission Process 1 (MTFP1) is an inner mitochondrial membrane (IMM) protein that is dispensable for mitochondrial division yet essential for cardiac structure and function. Constitutive knockout of cardiomyocyte MTFP1 in mice resulted in a fatal, adult-onset dilated cardiomyopathy accompanied by extensive mitochondrial and cardiac remodeling during the transition to heart failure. Prior to the onset of disease, knockout cardiac mitochondria displayed specific IMM defects: futile proton leak dependent upon the adenine nucleotide translocase and an increased sensitivity to the opening of the mitochondrial permeability transition pore, with which MTFP1 physically and genetically interacts. Collectively, our data reveal new functions of MTFP1 in the control of bioenergetic efficiency and cell death sensitivity and define its importance in preventing pathogenic cardiac remodeling.


Subject(s)
Heart Failure , Mitochondrial Dynamics , Mice , Animals , Ventricular Remodeling/genetics , Myocytes, Cardiac/metabolism , Heart Failure/metabolism , Mitochondria, Heart/genetics , Mitochondria, Heart/metabolism , Membrane Proteins/metabolism , Mitochondrial Membrane Transport Proteins/genetics , Mitochondrial Membrane Transport Proteins/metabolism
16.
Cell Stem Cell ; 29(5): 856-868.e5, 2022 05 05.
Article in English | MEDLINE | ID: mdl-35523143

ABSTRACT

After birth, the intestine undergoes major changes to shift from an immature proliferative state to a functional intestinal barrier. By combining inducible lineage tracing and transcriptomics in mouse models, we identify a prodifferentiation PDGFRαHigh intestinal stromal lineage originating from postnatal LTßR+ perivascular stromal progenitors. The genetic blockage of this lineage increased the intestinal stem cell pool while decreasing epithelial and immune maturation at weaning age, leading to reduced postnatal growth and dysregulated repair responses. Ablating PDGFRα in the LTBR stromal lineage demonstrates that PDGFRα has a major impact on the lineage fate and function, inducing a transcriptomic switch from prostemness genes, such as Rspo3 and Grem1, to prodifferentiation factors, including BMPs, retinoic acid, and laminins, and on spatial organization within the crypt-villus and repair responses. Our results show that the PDGFRα-induced transcriptomic switch in intestinal stromal cells is required in the first weeks after birth to coordinate postnatal intestinal maturation and function.


Subject(s)
Intestines , Receptor, Platelet-Derived Growth Factor alpha , Animals , Cell Differentiation/physiology , Defense Mechanisms , Intestinal Mucosa , Lymphotoxin beta Receptor , Mice , Receptor, Platelet-Derived Growth Factor alpha/genetics , Stem Cells
17.
Nat Commun ; 13(1): 3507, 2022 06 18.
Article in English | MEDLINE | ID: mdl-35717442

ABSTRACT

Gephyrin (GPHN) regulates the clustering of postsynaptic components at inhibitory synapses and is involved in pathophysiology of neuropsychiatric disorders. Here, we uncover an extensive diversity of GPHN transcripts that are tightly controlled by splicing during mouse and human brain development. Proteomic analysis reveals at least a hundred isoforms of GPHN incorporated at inhibitory Glycine and gamma-aminobutyric acid A receptors containing synapses. They exhibit different localization and postsynaptic clustering properties, and altering the expression level of one isoform is sufficient to affect the number, size, and density of inhibitory synapses in cerebellar Purkinje cells. Furthermore, we discovered that splicing defects reported in neuropsychiatric disorders are carried by multiple alternative GPHN transcripts, demonstrating the need for a thorough analysis of the GPHN transcriptome in patients. Overall, we show that alternative splicing of GPHN is an important genetic variation to consider in neurological diseases and a determinant of the diversity of postsynaptic inhibitory synapses.


Subject(s)
Carrier Proteins , Proteomics , Carrier Proteins/metabolism , Humans , Membrane Proteins/genetics , Membrane Proteins/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism , Receptors, GABA/metabolism , Receptors, GABA-A/metabolism , Synapses/genetics , Synapses/metabolism
18.
J Mol Evol ; 73(1-2): 34-44, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21814841

ABSTRACT

The amphipod Crangonyx islandicus is a recently discovered species endemic to Iceland. Populations of C. islandicus are highly structured geographically and genetically. The COI and 16S mitochondrial genes confine six monophyletic groups which have diverged for up to 5 million years within Iceland, and may present two cryptic species. To investigate the potential cryptic species status we analyse here the internal transcribed spacers (ITS1 and ITS2) and compare its variation with the patterns obtained with the mtDNA. The ITS regions present much less divergence among the geographic regions in comparison with the mtDNA, distances based on ITS1 are correlated with the COI distances as well as with geographic distances, but most of the variation is observed within individuals. The variation in the ITS region appears to have been shaped both by homogenization effect of concerted evolution and divergent evolution. A duplication of 269 base pairs is found in the ITS1 of all individuals from the southern populations, its divergence from its paralog appears to predate the split of the different groups within Iceland but some evidence point to rapid diversification after the split. This duplication does not affect the secondary structures found in the 3' and 5' ends of the sequence, suggested to have a role in the excision of the ITS1. Compensatory base changes within the ITS2 sequences which have been suggested to be a species indicator were not detected.


Subject(s)
Amphipoda/genetics , DNA, Ribosomal Spacer/chemistry , Genes, Mitochondrial , Genetic Variation , Animals , Evolution, Molecular , Gene Order , Iceland , Molecular Sequence Data , Nucleic Acid Conformation , Phylogeny , Phylogeography
19.
Mol Phylogenet Evol ; 58(3): 527-39, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21195201

ABSTRACT

The amphipod superfamily Crangonyctoidea is distributed exclusively in freshwater habitats worldwide and is characteristic of subterranean habitats. Two members of the family, Crangonyx islandicus and Crymostygius thingvallensis, are endemic to Iceland and were recently discovered in groundwater underneath lava fields. Crangonyx islandicus belongs to a well-known genus with representatives both in North America and in Eurasia. Crymostygius thingvallensis defines a new family, Crymostygidae. Considering the incongruences observed recently between molecular and morphological taxonomy within subterranean species, we aim to assess the taxonomical status of the two species using molecular data. Additionally, the study contributes to the phylogenetic relationships among several crangonyctoidean species and specifically among species from four genera of the family Crangonyctidae. Given the available data we consider how the two Icelandic species could have colonized Iceland, by comparing geographical origin of the species with the phylogeny. Regions of two nuclear (18S and 28S rRNA) and two mitochondrial genes (16S rRNA and COI) for 20 different species of three families of the Crangonyctoidea were sequenced. Four different methods were used to align the RNA gene sequences and phylogenetic trees were constructed using bayesian and maximum likelihood analysis. The Crangonyctidae monophyly is supported. Crangonyx islandicus appeared more closely related to species from the Nearctic region. Crymostygius thingvallensis is clearly divergent from the other species of Crangonyctoidea. Crangonyx and Synurella genera are clearly polyphyletic and showed a geographical association, being split into a Nearctic and a Palearctic group. This research confirms that the studied species of Crangonyctidae share a common ancestor, which was probably widespread in the Northern hemisphere well before the break up of Laurasia. The Icelandic species are of particular interest since Iceland emerged after the separation of Eurasia and North America, is geographically isolated and has repeatedly been covered by glaciers during the Ice Age. The close relation between Crangonyx islandicus and North American species supports the hypothesis of the Trans-Atlantic land bridge between Greenland and Iceland which might have persisted until 6 million years ago. The status of the family Crymostygidae is supported, whereas Crangonyx islandicus might represent a new genus. As commonly observed in subterranean animals, molecular and morphological taxonomy led to different conclusions, probably due to convergent evolution of morphological traits. Our molecular analysis suggests that the family Crangonyctidae needs taxonomic revisions.


Subject(s)
Amphipoda/classification , Amphipoda/genetics , Evolution, Molecular , Phylogeny , Animals , Bayes Theorem , Cell Nucleus/genetics , DNA, Mitochondrial/genetics , Genetic Speciation , Iceland , Likelihood Functions , Nucleic Acid Conformation , Sequence Alignment , Sequence Analysis, DNA
20.
Front Immunol ; 12: 695148, 2021.
Article in English | MEDLINE | ID: mdl-34220857

ABSTRACT

CD4 T cell responses constitute an important component of adaptive immunity and are critical regulators of anti-microbial protection. CD4+ T cells expressing CD32a have been identified as a target for HIV. CD32a is an Fcγ receptor known to be expressed on myeloid cells, granulocytes, B cells and NK cells. Little is known about the biology of CD32+CD4+ T cells. Our goal was to understand the dynamics of CD32+CD4+ T cells in tissues. We analyzed these cells in the blood, lymph nodes, spleen, ileum, jejunum and liver of two nonhuman primate models frequently used in biomedical research: African green monkeys (AGM) and macaques. We studied them in healthy animals and during viral (SIV) infection. We performed phenotypic and transcriptomic analysis at different stages of infection. In addition, we compared CD32+CD4+ T cells in tissues with well-controlled (spleen) and not efficiently controlled (jejunum) SIV replication in AGM. The CD32+CD4+ T cells more frequently expressed markers associated with T cell activation and HIV infection (CCR5, PD-1, CXCR5, CXCR3) and had higher levels of actively transcribed SIV RNA than CD32-CD4+T cells. Furthermore, CD32+CD4+ T cells from lymphoid tissues strongly expressed B-cell-related transcriptomic signatures, and displayed B cell markers at the cell surface, including immunoglobulins CD32+CD4+ T cells were rare in healthy animals and blood but increased strongly in tissues with ongoing viral replication. CD32+CD4+ T cell levels in tissues correlated with viremia. Our results suggest that the tissue environment induced by SIV replication drives the accumulation of these unusual cells with enhanced susceptibility to viral infection.


Subject(s)
B-Lymphocytes/virology , CD4-Positive T-Lymphocytes/virology , Lymphoid Tissue/virology , Receptors, IgG/metabolism , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/growth & development , Virus Replication , Animals , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Chlorocebus aethiops , Disease Models, Animal , Host-Pathogen Interactions , Jejunum/immunology , Jejunum/metabolism , Jejunum/virology , Lymphocyte Activation , Lymphoid Tissue/immunology , Lymphoid Tissue/metabolism , Macaca fascicularis , Phenotype , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Acquired Immunodeficiency Syndrome/metabolism , Simian Immunodeficiency Virus/immunology , Spleen/immunology , Spleen/metabolism , Spleen/virology , Viral Load
SELECTION OF CITATIONS
SEARCH DETAIL