Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Genet Med ; 21(3): 631-640, 2019 03.
Article in English | MEDLINE | ID: mdl-30093709

ABSTRACT

PURPOSE: We conducted a consented pilot newborn screening (NBS) for Pompe, Gaucher, Niemann-Pick A/B, Fabry, and MPS 1 to assess the suitability of these lysosomal storage disorders (LSDs) for public health mandated screening. METHODS: At five participating high-birth rate, ethnically diverse New York City hospitals, recruiters discussed the study with postpartum parents and documented verbal consent. Screening on consented samples was performed using multiplexed tandem mass spectrometry. Screen-positive infants underwent confirmatory enzymology, DNA testing, and biomarker quantitation when available. Affected infants are being followed for clinical management and long-term outcome. RESULTS: Over 4 years, 65,605 infants participated, representing an overall consent rate of 73%. Sixty-nine infants were screen-positive. Twenty-three were confirmed true positives, all of whom were predicted to have late-onset phenotypes. Six of the 69 currently have undetermined disease status. CONCLUSION: Our results suggest that NBS for LSDs is much more likely to detect individuals at risk for late-onset disease, similar to results from other NBS programs. This work has demonstrated the feasibility of using a novel consented pilot NBS study design that can be modified to include other disorders under consideration for public health implementation as a means to gather critical evidence for evidence-based NBS practices.


Subject(s)
Lysosomal Storage Diseases/diagnosis , Lysosomal Storage Diseases/genetics , Neonatal Screening/methods , Dried Blood Spot Testing/methods , Female , Genetic Testing/methods , Genomics , Humans , Infant, Newborn , Male , New York City , Parents , Pilot Projects , Sequence Analysis, DNA , Tandem Mass Spectrometry
2.
PLoS Genet ; 12(4): e1005848, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27120463

ABSTRACT

Genetic leukoencephalopathies (gLEs) are a group of heterogeneous disorders with white matter abnormalities affecting the central nervous system (CNS). The causative mutation in ~50% of gLEs is unknown. Using whole exome sequencing (WES), we identified homozygosity for a missense variant, VPS11: c.2536T>G (p.C846G), as the genetic cause of a leukoencephalopathy syndrome in five individuals from three unrelated Ashkenazi Jewish (AJ) families. All five patients exhibited highly concordant disease progression characterized by infantile onset leukoencephalopathy with brain white matter abnormalities, severe motor impairment, cortical blindness, intellectual disability, and seizures. The carrier frequency of the VPS11: c.2536T>G variant is 1:250 in the AJ population (n = 2,026). VPS11 protein is a core component of HOPS (homotypic fusion and protein sorting) and CORVET (class C core vacuole/endosome tethering) protein complexes involved in membrane trafficking and fusion of the lysosomes and endosomes. The cysteine 846 resides in an evolutionarily conserved cysteine-rich RING-H2 domain in carboxyl terminal regions of VPS11 proteins. Our data shows that the C846G mutation causes aberrant ubiquitination and accelerated turnover of VPS11 protein as well as compromised VPS11-VPS18 complex assembly, suggesting a loss of function in the mutant protein. Reduced VPS11 expression leads to an impaired autophagic activity in human cells. Importantly, zebrafish harboring a vps11 mutation with truncated RING-H2 domain demonstrated a significant reduction in CNS myelination following extensive neuronal death in the hindbrain and midbrain. Thus, our study reveals a defect in VPS11 as the underlying etiology for an autosomal recessive leukoencephalopathy disorder associated with a dysfunctional autophagy-lysosome trafficking pathway.


Subject(s)
Autophagy/genetics , Founder Effect , Genes, Recessive , Leukoencephalopathies/genetics , Mutation , Vesicular Transport Proteins/genetics , Adult , Amino Acid Sequence , Animals , Cell Death/genetics , Child , Child, Preschool , Female , Humans , Infant , Male , Molecular Sequence Data , Sequence Homology, Amino Acid , Vesicular Transport Proteins/chemistry , Young Adult
3.
Clin Chem ; 63(4): 842-851, 2017 04.
Article in English | MEDLINE | ID: mdl-28196920

ABSTRACT

BACKGROUND: Pompe disease (PD) is the first lysosomal storage disorder to be added to the Recommended Uniform Screening Panel for newborn screening. This condition has a broad phenotypic spectrum, ranging from an infantile form (IOPD), with severe morbidity and mortality in infancy, to a late-onset form (LOPD) with variable onset and progressive weakness and respiratory failure. Because the prognosis and treatment options are different for IOPD and LOPD, it is important to accurately determine an individual's phenotype. To date, no enzyme assay of acid α-glucosidase (GAA) has been described that can differentiate IOPD vs LOPD using blood samples. METHODS: We incubated 10 µL leukocyte lysate and 25 µL GAA substrate and internal standard (IS) assay cocktail for 1 h. The reaction was purified by a liquid-liquid extraction. The extracts were evaporated and reconstituted in 200 µL methanol and analyzed by LC-MS/MS for GAA activity. RESULTS: A 700-fold higher analytical range was observed with the LC-MS/MS assay compared to the fluorometric method. When GAA-null and GAA-containing fibroblast lysates were mixed, GAA activity could be measured accurately even in the range of 0%-1% of normal. The leukocyte GAA activity in IOPD (n = 4) and LOPD (n = 19) was 0.44-1.75 nmol · h-1 · mg-1 and 2.0-6.5 nmol · h-1 · mg-1, respectively, with no overlap. The GAA activity of pseudodeficiency patients ranged from 3.0-28.1 nmol · h-1 · mg-1, showing substantial but incomplete separation from the LOPD group. CONCLUSIONS: This assay allows determination of low residual GAA activity in leukocytes. IOPD, LOPD, and pseudodeficiency patients can be partially differentiated by measuring GAA using blood samples.


Subject(s)
Chromatography, Liquid , Glycogen Storage Disease Type II/blood , Leukocytes/enzymology , Neonatal Screening , Tandem Mass Spectrometry , alpha-Glucosidases/blood , Adult , Alleles , Child , Child, Preschool , Glycogen Storage Disease Type II/diagnosis , Glycogen Storage Disease Type II/enzymology , Humans , Infant , Infant, Newborn , Leukocytes/metabolism , alpha-Glucosidases/genetics , alpha-Glucosidases/metabolism
4.
Genet Med ; 16(2): 149-56, 2014 Feb.
Article in English | MEDLINE | ID: mdl-23788250

ABSTRACT

PURPOSE: Spinal muscular atrophy is a common autosomal-recessive disorder caused by mutations of the SMN1 gene. Spinal muscular atrophy carrier screening uses dosage-sensitive methods that determine SMN1 copy number, and the frequency of carriers varies by ethnicity, with detection rates ranging from 71 to 94% due to the inability to identify silent (2 + 0) carriers with two copies of SMN1 on one chromosome 5 and deletion on the other. We hypothesized that identification of deletion and/or duplication founder alleles might provide an approach to identify silent carriers in various ethnic groups. METHODS: SMN1 founder alleles were investigated in the Ashkenazi Jewish population by microsatellite analysis and next-generation sequencing. RESULTS: An extended haplotype block, specific to Ashkenazi Jewish SMN1 duplications, was identified by microsatellite analysis, and next-generation sequencing of SMN1 further defined a more localized haplotype. Of note, six novel SMN1 sequence variants were identified that were specific to duplications and not present on single-copy alleles. The haplotype was also identified on SMN1 duplication alleles in additional ethnic groups. CONCLUSION: Identification of these novel variants in an individual with two copies of SMN1 significantly improves the accuracy of residual risk estimates and has important implications for spinal muscular atrophy carrier screening.


Subject(s)
Gene Duplication , Jews/genetics , Muscular Atrophy, Spinal/genetics , Survival of Motor Neuron 1 Protein/genetics , Genetic Testing , Genetic Variation , Haplotypes , Humans , Microsatellite Repeats , Muscular Atrophy, Spinal/ethnology , Sequence Analysis, DNA
5.
Prenat Diagn ; 34(12): 1161-7, 2014 Dec.
Article in English | MEDLINE | ID: mdl-24996053

ABSTRACT

OBJECTIVE: Although prenatal/preconception carrier screening recommendations for individuals of Ashkenazi Jewish descent (AJ) were published by American College of Medical Genetics and Genomics (2008) and American College of Obstetrics and Gynecology (2009), scientific advances have led to widely varied screening panels. Mutation carrier frequencies are sometimes based on small, homogeneous AJ populations. This study sought to update the state of AJ screening for the obstetrician by assessing laboratory screening panel compositions as well as assessing literature and laboratory carrier frequencies for common AJ mutations. METHODS: A literature review (1991-2013) was performed for AJ disease carrier frequencies. AJ screening data from six screening laboratories were collected. AJ panel composition was compared across 16 commercial and academic laboratories. RESULTS: Overall literature and laboratory carrier frequencies of AJ mutations were similar, although the Walker-Warburg syndrome laboratory carrier frequency was almost twice that in the literature. Laboratory AJ disease panel composition varied widely, from 8 to 25 diseases. CONCLUSIONS: Current AJ panels vary widely by laboratory, resulting in disparate levels of screening. Consideration of an updated professional standard for prenatal/preconception AJ screening based on carrier frequency rates, level of disease burden, availability of screening, and cost of technology may be useful in providing equitable and appropriate care for those planning a pregnancy.


Subject(s)
Genetic Carrier Screening , Genetic Diseases, Inborn/ethnology , Genetic Testing/statistics & numerical data , Jews/genetics , Gene Frequency , Humans
6.
Cancer Cell Int ; 13(1): 70, 2013 Jul 15.
Article in English | MEDLINE | ID: mdl-23855721

ABSTRACT

BACKGROUND: The breast and ovarian cancer susceptibility gene (BRCA1) encodes a tumor suppressor. The BRCA1 protein is found primarily in cell nuclei and plays an important role in the DNA damage response and transcriptional regulation. Deficiencies in DNA repair capabilities have been associated with higher histopathological grade and worse prognosis in breast cancer. METHODS: In order to investigate the subcellular distribution of BRCA1 in tumor tissue we randomly selected 22 breast carcinomas and tested BRCA1 protein localization in frozen and contiguous formalin-fixed, paraffin embedded (FFPE) tissue, using pressure cooker antigen-retrieval and the MS110 antibody staining. To assess the impact of BRCA1 germline mutations on protein localization, we retrospectively tested 16 of the tumor specimens to determine whether they contained the common Ashkenazi Jewish founder mutations in BRCA1 (185delAG, 5382insC), and BRCA2 (6174delT). We also compared co-localization of BRCA1 and nucleolin in MCF7 cells (wild type) and a mutant BRCA1 cell line, HCC1937 (5382insC). RESULTS: In FFPE tissue, with MS110 antibody staining, we frequently found reduced BRCA1 nuclear staining in breast tumor tissue compared to normal tissue, and less BRCA1 staining with higher histological grade in the tumors. However, in the frozen sections, BRCA1 antibody staining showed punctate, intra-nuclear granules in varying numbers of tumor, lactating, and normal cells. Two mutation carriers were identified and were confirmed by gene sequencing. We have also compared co-localization of BRCA1 and nucleolin in MCF7 cells (wild type) and a mutant BRCA1 cell line, HCC1937 (5382insC) and found altered sub-nuclear and nucleolar localization patterns consistent with a functional impact of the mutation on protein localization. CONCLUSIONS: The data presented here support a role for BRCA1 in the pathogenesis of sporadic and inherited breast cancers. The use of well-characterized reagents may lead to further insights into the function of BRCA1 and possibly the further development of targeted therapeutics.

7.
Eur J Hum Genet ; 31(11): 1237-1250, 2023 11.
Article in English | MEDLINE | ID: mdl-37460656

ABSTRACT

Nemaline myopathy (NM) is a heterogeneous genetic neuromuscular disorder characterized by rod bodies in muscle fibers resulting in multiple complications due to muscle weakness. NM patients and their families could benefit from genetic analysis for early diagnosis, carrier and prenatal testing; however, clinical classification of variants is subject to change as further information becomes available. Reclassification can significantly alter the clinical management of patients and their families. We used the newly published data and ACMG/AMP guidelines to reassess NM-associated variants previously reported by clinical laboratories (ClinVar). Our analyses on rare variants that were not canonical loss-of-function (LOF) resulted in the downgrading of ~29% (28/97) of variants from pathogenic or likely-pathogenic (P/LP) to variants of uncertain significance (VUS). In addition, we analyzed the splicing effect of variants identified in NM patients by clinical laboratories or research, using an accurate in silico prediction tool that applies a deep-learning network. We identified 55 rare variants that may impact splicing (cryptic splicing). We also analyzed six new NM families and identified eight variants in NEB and ACTA1, including three novel variants: homozygous pathogenic c.164A > G (p.Tyr55Cys), and homozygous likely pathogenic c.980T > C (p.Met327Thr) in ACTA1, and heterozygous VUS c.18694-3T > G in NEB. This study demonstrates the importance of reclassifying variants to facilitate more definitive "calls" on causality or no causality in clinical genetic testing of patients with NM. Reclassification of ~150 variants is now available for improved clinical management, risk counseling and screening of NM patients.


Subject(s)
Myopathies, Nemaline , Humans , Myopathies, Nemaline/diagnosis , Myopathies, Nemaline/genetics , Myopathies, Nemaline/pathology , Mutation , Genetic Testing/methods , RNA Splicing , Heterozygote
8.
Clin Pharmacol Ther ; 114(2): 262-265, 2023 08.
Article in English | MEDLINE | ID: mdl-37314952

ABSTRACT

Aminoglycoside antibiotic exposure can result in ototoxicity and irreversible hearing loss among individuals that harbor the m.1555A>G variant in the mitochondrial 12S rRNA gene, MT-RNR1. Importantly, pre-emptive m.1555A>G screening has been shown to reduce the prevalence of pediatric aminoglycoside-induced ototoxicity; however, professional guidelines to support and guide post-test pharmacogenomic counseling in this context are not currently available. This Perspective highlights key issues with delivering MT-RNR1 results, including longitudinal familial care considerations and communicating m.1555A>G heteroplasmy.


Subject(s)
Aminoglycosides , Genes, rRNA , Ototoxicity , Child , Humans , Aminoglycosides/adverse effects , Anti-Bacterial Agents/adverse effects , DNA, Mitochondrial/genetics , Mutation , Ototoxicity/genetics , Pharmacogenetics
9.
Am J Hum Genet ; 82(2): 495-500, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18252229

ABSTRACT

Warfarin is a widely used anticoagulant that has a narrow therapeutic range because of both genetic and environmental factors. CYP2C9( *)2 (p.R144C), CYP2C9( *)3 (p.I359L), and the VKORC1 promoter (g.-1639G-->A) polymorphisms occur frequently in patients who are warfarin "sensitive" and require lower doses, whereas patients with VKORC1 missense mutations are warfarin "resistant" and require higher doses. To compare the CYP2C9 and VKORC1 allele and genotype frequencies among 260 Ashkenazi (AJ) and 80 Sephardi Jewish (SJ) individuals, we genotyped six CYP2C9 and eight VKORC1 alleles by using the Tag-It Mutation Detection Kit and PCR-RFLP assays. The "sensitive"CYP2C9( *)2 and ( *)3 alleles had significantly higher frequencies in SJ than in AJ individuals, 0.194 and 0.144 versus 0.127 and 0.081, respectively (p A, underscoring the importance of screening for p.D36Y prior to initiating warfarin anticoagulation in AJ individuals. Taken together, our findings show that approximately 85% of AJ and approximately 90% of SJ individuals have at least one "sensitive" (CYP2C9( *)2, ( *)3, VKORC1 g.-1639G-->A) or "resistant" (VKORC1 p.D36Y) allele, indicating that each group has different warfarin pharmacogenetics and would benefit from genotype-based dose predictions.


Subject(s)
Anticoagulants/pharmacology , Aryl Hydrocarbon Hydroxylases/genetics , Drug Resistance/genetics , Jews/genetics , Mixed Function Oxygenases/genetics , Warfarin/pharmacology , Cytochrome P-450 CYP2C9 , DNA Primers/genetics , Dose-Response Relationship, Drug , Gene Frequency , Genotype , Humans , Pharmacogenetics , Polymorphism, Restriction Fragment Length , Promoter Regions, Genetic/genetics , Vitamin K Epoxide Reductases
10.
Mol Genet Metab ; 104(4): 700-2, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21967858

ABSTRACT

Tay-Sachs disease (TSD), a pan-ethnic, autosomal recessive, neurodegenerative, lysosomal disease, results from deficient ß-hexosaminidase A activity due to ß-hexosaminidase α-subunit (HEXA) mutations. Prenatal/premarital carrier screening programs in the Ashkenazi Jewish community have markedly reduced disease occurrence. We report the first Jordanian Arab TSD patient diagnosed by deficient ß-hexosaminidase A activity. HEXA mutation analysis revealed homozygosity for a nonsense mutation, c.78G>A (p.W26X). Previously reported in Arab patients, this mutation is a candidate for TSD screening in Arab populations.


Subject(s)
Codon, Nonsense , Tay-Sachs Disease/diagnosis , beta-Hexosaminidase alpha Chain/genetics , Consanguinity , DNA Mutational Analysis , Genetic Association Studies , Homozygote , Humans , Infant , Jordan , Male , Tay-Sachs Disease/blood , Tay-Sachs Disease/genetics , beta-Hexosaminidase alpha Chain/blood
11.
J Hum Genet ; 56(9): 682-4, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21796138

ABSTRACT

The ß-hexosaminidase A (HEXA) mutations in the first reported cases of infantile Tay-Sachs disease in the Persian population were identified in two unrelated consanguineous families. The clinical diagnoses of the affected infants were confirmed by their markedly deficient levels of HEXA activity in plasma or peripheral leukocytes. The specific causative mutation in each family was determined by sequencing the HEXA alleles in both sets of related parents. Two mutations were identified: c.1A>G (p.MIV), which obliterated the initiating methionine in codon 1, and c.1177C>T (p.R393X), which predicted a termination codon or nonsense mutation.


Subject(s)
Codon, Nonsense , Genetic Predisposition to Disease/genetics , Mutation, Missense , Tay-Sachs Disease/genetics , beta-Hexosaminidase alpha Chain/genetics , Adult , Alleles , Child, Preschool , Codon/genetics , Consanguinity , DNA Mutational Analysis , Female , Humans , Infant , Iran , Male , Polymerase Chain Reaction
12.
Clin Transl Sci ; 14(1): 204-213, 2021 01.
Article in English | MEDLINE | ID: mdl-32931151

ABSTRACT

To develop a novel pharmacogenetic genotyping panel, a multidisciplinary team evaluated available evidence and selected 29 genes implicated in interindividual drug response variability, including 130 sequence variants and additional copy number variants (CNVs). Of the 29 genes, 11 had guidelines published by the Clinical Pharmacogenetics Implementation Consortium. Targeted genotyping and CNV interrogation were accomplished by multiplex single-base extension using the MassARRAY platform (Agena Biosciences) and multiplex ligation-dependent probe amplification (MRC Holland), respectively. Analytical validation of the panel was accomplished by a strategic combination of > 500 independent tests performed on 170 unique reference material DNA samples, which included sequence variant and CNV accuracy, reproducibility, and specimen (blood, saliva, and buccal swab) controls. Among the accuracy controls were 32 samples from the 1000 Genomes Project that were selected based on their enrichment of sequence variants included in the pharmacogenetic panel (VarCover.org). Coupled with publicly available samples from the Genetic Testing Reference Materials Coordination Program (GeT-RM), accuracy validation material was available for the majority (77%) of interrogated sequence variants (100% with average allele frequencies > 0.1%), as well as additional structural alleles with unique copy number signatures (e.g., CYP2D6*5, *13, *36, *68; CYP2B6*29; and CYP2C19*36). Accuracy and reproducibility for both genotyping and copy number were > 99.9%, indicating that the optimized panel platforms were precise and robust. Importantly, multi-ethnic allele frequencies of the interrogated variants indicate that the vast majority of the general population carries at least one of these clinically relevant pharmacogenetic variants, supporting the implementation of this panel for pharmacogenetic research and/or clinical implementation programs.


Subject(s)
Genotyping Techniques/methods , Pharmacogenomic Testing/methods , Cytochrome P-450 CYP2B6/genetics , Cytochrome P-450 CYP2B6/metabolism , Cytochrome P-450 CYP2C19/genetics , Cytochrome P-450 CYP2C19/metabolism , Cytochrome P-450 CYP2D6/genetics , Cytochrome P-450 CYP2D6/metabolism , DNA/blood , DNA/genetics , DNA/isolation & purification , DNA Copy Number Variations , Ethnicity/genetics , Gene Frequency , Humans , Mouth Mucosa/chemistry , Pharmacogenomic Variants , Reproducibility of Results , Saliva/chemistry
13.
Hum Mutat ; 31(11): 1240-50, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20672374

ABSTRACT

The success of prenatal carrier screening as a disease prevention strategy in the Ashkenazi Jewish (AJ) population has driven the expansion of screening panels as disease-causing founder mutations have been identified. However, the carrier frequencies of many of these mutations have not been reported in large AJ cohorts. We determined the carrier frequencies of over 100 mutations for 16 recessive disorders in the New York metropolitan area AJ population. Among the 100% AJ-descended individuals, screening for 16 disorders resulted in ∼1 in 3.3 being a carrier for one disease and ∼1 in 24 for two diseases. The carrier frequencies ranged from 0.066 (1 in 15.2; Gaucher disease) to 0.006 (1 in 168; nemaline myopathy), which averaged ∼15% higher than those for all screenees. Importantly, over 95% of screenees chose to be screened for all possible AJ diseases, including disorders with lower carrier frequencies and/or detectability. Carrier screening also identified rare individuals homozygous for disease-causing mutations who had previously unrecognized clinical manifestations. Additionally, prenatal testing results and experience for all 16 disorders (n = 574) are reported. Together, these data indicate the general acceptance, carrier frequencies, and prenatal testing results for an expanded panel of 16 diseases in the AJ population.


Subject(s)
Genetic Carrier Screening/methods , Genetic Diseases, Inborn/diagnosis , Genetic Diseases, Inborn/prevention & control , Genetic Testing/methods , Jews/genetics , Prenatal Diagnosis/methods , Alleles , Female , Founder Effect , Gene Frequency , Genes, Recessive , Genetic Diseases, Inborn/genetics , Humans , Male , New York City , Patient Acceptance of Health Care , Pregnancy , Risk Factors
14.
Mov Disord ; 25(10): 1364-72, 2010 Jul 30.
Article in English | MEDLINE | ID: mdl-20629126

ABSTRACT

Among the genes implicated for parkinsonism is glucocerebrosidase (GBA), which causes Gaucher disease (GD). Despite a growing literature that GD may present as parkinsonism, neuroimaging, olfaction, and neuropsychological testing have not been extensively reported. We describe transcranial sonography (TCS), 18F-fluorodopa (F-dopa) and fluorodeoxyglucose (FDG) Positron emission tomography, olfaction testing, neuropsychological testing, and clinical features in homozygous and compound heterozygous GBA mutation carriers identified through screening of 250 Ashkenazi Jewish parkinsonian individuals treated at a tertiary care center. We identified two individuals with N370S/R496H compound heterozygous mutations and two with N370S homozygous mutations; one individual died before completing detailed evaluation. TCS (n = 3) demonstrated nigral hyperechogenicity that was greater than controls [median area maximal substantia nigra echogenicity (aSNmax) = 0.28 cm(2) vs. 0.14 cm(2), P = 0.005], but similar to idiopathic PD (aSNmax = 0.31 cm(2)). FDG PET (n = 2) demonstrated hypermetabolism of the lentiform nuclei, and F-fluorodopa PET (n = 2), bilateral reduction in striatal F-dopa uptake. Olfaction was markedly impaired in the two tested cases, including onset of smell disturbance in adolescence in one. Neuropsychological features (n = 3) were consistent with Parkinson's disease (PD) or diffuse Lewy body disease (DLB). The imaging, neuropsychological and olfactory markers suggest the GD phenotype includes PD with and without features of DLB, marked olfactory loss, nigral hyperechogenicity on TCS, and F-dopa and FDG PET abnormalities.


Subject(s)
Gaucher Disease/diagnosis , Gaucher Disease/genetics , Glucosylceramidase/genetics , Mutation/genetics , Parkinson Disease/diagnosis , Adult , Aged , Dihydroxyphenylalanine/analogs & derivatives , Female , Fluorodeoxyglucose F18 , Gaucher Disease/complications , Humans , Male , Middle Aged , Neuropsychological Tests , Olfaction Disorders/etiology , Parkinson Disease/complications , Phenotype , Positron-Emission Tomography/methods , Ultrasonography, Doppler, Transcranial/methods
15.
Mol Genet Genomic Med ; 8(2): e1053, 2020 02.
Article in English | MEDLINE | ID: mdl-31880409

ABSTRACT

BACKGROUND: Next-generation sequencing (NGS)-based panels have gained traction as a strategy for reproductive carrier screening. Their value for screening Ashkenazi Jewish (AJ) individuals, who have benefited greatly from population-wide targeted testing, as well as Sephardi/Mizrahi Jewish (SMJ) individuals (an underserved population), has not been fully explored. METHODS: The clinical utilization by 6,805 self-reported Jewish individuals of an expanded NGS panel, along with several ancillary assays, was assessed retrospectively. Data were extracted for a subset of 96 diseases that, during the panel design phase, were classified as being AJ-, SMJ-, or pan-Jewish/pan-ethnic-relevant. RESULTS: 64.6% of individuals were identified as carriers of one or more of these 96 diseases. Over 80% of the reported variants would have been missed by following recommended AJ screening guidelines. 10.7% of variants reported for AJs were in "SMJ-relevant genes," and 31.2% reported for SMJs were in "AJ-relevant genes." Roughly 2.5% of individuals carried a novel, likely pathogenic variant. One in 16 linked cohort couples was identified as a carrier couple for at least one of these 96 diseases. CONCLUSION: For maximal carrier identification, this study supports using expanded NGS panels for individuals of all Jewish backgrounds. This approach can better empower at-risk couples for reproductive decision making.


Subject(s)
Genetic Carrier Screening/statistics & numerical data , Genetic Diseases, Inborn/ethnology , Jews/genetics , Genetic Carrier Screening/standards , Genetic Diseases, Inborn/genetics , High-Throughput Nucleotide Sequencing/standards , High-Throughput Nucleotide Sequencing/statistics & numerical data , Humans , Practice Guidelines as Topic , Preconception Care/standards , Preconception Care/statistics & numerical data
16.
Methods Mol Biol ; 1885: 221-231, 2019.
Article in English | MEDLINE | ID: mdl-30506201

ABSTRACT

Cystic fibrosis (CF) is an inherited disease characterized by the accumulation of thick, sticky mucus which damages epithelia in organs such as the lungs, pancreas, liver, intestines, and other parts of the body. The most common symptoms are sinopulmonary disease and chronic gastrointestinal tract problems resulting from decreased mucociliary clearance and inflammation. CF is the most common life-limiting autosomal recessive disorder in people of northern European ancestry and it affects other populations with different prevalence. CF can be diagnosed by many methods including testing for blood immunoreactive trypsin, sweat chloride, transepithelial nasal potential difference, and molecular genetic testing.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis/diagnosis , Cystic Fibrosis/genetics , Genetic Testing , Mutation , Prenatal Diagnosis/methods , Genes, Recessive , Genetic Counseling , Genetic Testing/methods , Genotyping Techniques , Heterozygote , High-Throughput Nucleotide Sequencing , Humans , Sequence Analysis, DNA
17.
Methods Mol Biol ; 1885: 233-250, 2019.
Article in English | MEDLINE | ID: mdl-30506202

ABSTRACT

Tay-Sachs disease (TSD) is an autosomal recessive lysosomal storage disorder caused by mutations of the HEXA gene resulting in the deficiency of hexosaminidase A (Hex A) and subsequent neuronal accumulation of GM2 gangliosides. Infantile TSD is a devastating and fetal neurodegenerative disease with death before the age of 3-5 years. A small proportion of TSD patients carry milder mutations and may present juvenile or adult onset milder disease. TSD is more prevalent among Ashkenazi Jewish (AJ) individuals and some other genetically isolated populations with carrier frequencies of approximately ~1:27 which is much higher than that of 1:300 in the general population. Carrier screening and prenatal testing for TSD are effective in preventing the birth of affected fetuses greatly diminishing the incidence of TSD. Testing of targeted HEXA mutations by genotyping or sequencing can detect 98% of carriers in AJ individuals; however, the detection rate is much lower for most other ethnic groups. When combined with enzyme analysis, above 98% of carriers can be reliably identified regardless of ethnic background. Multiplex PCR followed by allele-specific primer extension is one method to test for known and common mutations. Sanger sequencing or other sequencing methods are useful to identify private mutations. For prenatal testing, only predefined parental mutations need to be tested. In the event of unknown mutational status or the presence of variants of unknown significance (VUS), enzyme analysis must be performed in conjunction with DNA-based assays to enhance the diagnostic accuracy. Enzymatic assays involve the use of synthetic substrates 4-methylumbelliferyl-N-acetyl-ß-glucosamine (4-MUG) and 4-methylumbelliferyl-6-sulfo-2-acetamido-2-deoxy-ß-D-glucopyranoside (4-MUGS) to measure the percentage Hex A activity (Hex A%) and specific Hex A activity respectively. These biochemical and molecular tests can be performed in both direct specimens and cultured cells from chorionic villi sampling or amniocentesis.


Subject(s)
Genetic Testing , Prenatal Diagnosis/methods , Tay-Sachs Disease/diagnosis , Tay-Sachs Disease/genetics , Alleles , DNA Contamination , DNA Mutational Analysis , Electrophoresis, Capillary , Genetic Testing/methods , Genetic Testing/standards , Genotype , Humans , Mutation , Polymerase Chain Reaction , Prenatal Diagnosis/standards , Tay-Sachs Disease/metabolism , beta-Hexosaminidase alpha Chain/genetics , beta-Hexosaminidase alpha Chain/metabolism
18.
Methods Mol Biol ; 1942: 11-27, 2019.
Article in English | MEDLINE | ID: mdl-30900172

ABSTRACT

Fragile X syndrome (FXS) is characterized by mental retardation and in the vast majority of cases it is caused by expansion of CGG trinucleotide repeats in the 5' untranslated region (or UTR) in the FMR1 gene on the X chromosome. The size and methylation status of CGG repeats are correlated with the clinical phenotype of FMR1-related disorders. The methods used for clinical genetic testing of FXS include polymerase chain reaction (PCR) amplification and Southern blot analyses, which effectively detect alleles with repeats in the normal, intermediate, premutation, and full mutation size ranges, as well as the methylation status of FMR1 promoter region.


Subject(s)
Blotting, Southern/methods , Fragile X Mental Retardation Protein/genetics , Fragile X Syndrome/diagnosis , Genetic Testing , Mutation , Polymerase Chain Reaction/methods , DNA Methylation , Female , Fragile X Syndrome/genetics , Humans , Male , Trinucleotide Repeats
19.
Pharmacogenomics ; 20(1): 9-20, 2019 01.
Article in English | MEDLINE | ID: mdl-30730286

ABSTRACT

AIM: To comprehensively interrogate CYP2D6 by integrating genotyping, copy number analysis and novel strategies to identify CYP2D6*36 and characterize CYP2D6 duplications. METHODS: Genotyping of 16 CYP2D6 alleles, multiplex ligation-dependent probe amplification (MLPA) and CYP2D6*36 and duplication allele-specific genotyping were performed on 427 African-American, Asian, Caucasian, Hispanic, and Ashkenazi Jewish individuals. RESULTS: A novel PCR strategy determined that almost half of all CYP2D6*10 (100C>T) alleles are actually *36 (isolated or in tandem with *10) and all identified duplication alleles were characterized. Integrated results from all testing platforms enabled the refinement of genotype frequencies across all studied populations. CONCLUSION: The polymorphic CYP2D6 gene requires comprehensive interrogation to characterize allelic variation across ethnicities, which was enabled in this study by integrating multiplexed genotyping, MLPA copy number analysis, novel PCR strategies and duplication allele-specific genotyping.


Subject(s)
Cytochrome P-450 CYP2D6/genetics , DNA Copy Number Variations/genetics , Ethnicity/genetics , Adult , Black or African American/genetics , Alleles , Asian People/genetics , Female , Gene Frequency/genetics , Genotype , Humans , Male , White People/genetics
20.
Elife ; 62017 09 12.
Article in English | MEDLINE | ID: mdl-28895531

ABSTRACT

Achieving confidence in the causality of a disease locus is a complex task that often requires supporting data from both statistical genetics and clinical genomics. Here we describe a combined approach to identify and characterize a genetic disorder that leverages distantly related patients in a health system and population-scale mapping. We utilize genomic data to uncover components of distant pedigrees, in the absence of recorded pedigree information, in the multi-ethnic BioMe biobank in New York City. By linking to medical records, we discover a locus associated with both elevated genetic relatedness and extreme short stature. We link the gene, COL27A1, with a little-known genetic disease, previously thought to be rare and recessive. We demonstrate that disease manifests in both heterozygotes and homozygotes, indicating a common collagen disorder impacting up to 2% of individuals of Puerto Rican ancestry, leading to a better understanding of the continuum of complex and Mendelian disease.


Subject(s)
Collagen Diseases/epidemiology , Collagen Diseases/genetics , Fibrillar Collagens/genetics , Molecular Epidemiology , Pedigree , Adolescent , Adult , Aged , Child , Female , Genotype , Heterozygote , Hispanic or Latino , Homozygote , Humans , Male , Middle Aged , Multigene Family , Musculoskeletal Diseases/epidemiology , Musculoskeletal Diseases/genetics , New York City/epidemiology , New York City/ethnology , Whole Genome Sequencing , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL