Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Parasite Immunol ; 42(8)2020 08.
Article in English | MEDLINE | ID: mdl-31650557

ABSTRACT

AIMS: As the most abundant cell population in the blood, erythrocytes represent an attractive source of nutrients and a protective niche to a number of pathogens. Previously, we observed the attachment of the myxozoan parasite Sphaerospora molnari to erythrocytes of its host, common carp (Cyprinus carpio), raising a number of questions about the nature of this interaction. METHODS AND RESULTS: We elucidated the impact of S molnari on the number of erythrocytes in healthy and immunocompromised fish, over a period of 6 weeks. While we observed only a mild decrease in RBC numbers in healthy individuals, we witnessed gradual and finally severe haemolytic anaemia in immunosuppressed fish. Accompanying this overt loss was increased erythropoiesis as represented by an increase of erythroblasts in the blood. In vitro, we demonstrated the uptake of host proteins from CFSE-labelled erythrocytes, ultimately inducing death of host RBCs, likely for nutrient gain of the parasite. Nevertheless, the results do not exclude a possible role of erythrocyte-derived proteins in immune evasion. CONCLUSION: Overall, the obtained data provide first evidence for the previously unknown appetite of myxozoan parasites for host erythrocytes and create an important framework for future investigations into the molecular mechanisms underlining this interaction.


Subject(s)
Erythrocytes/parasitology , Feeding Behavior/physiology , Myxozoa/physiology , Anemia, Hemolytic/parasitology , Animals , Carps/parasitology , Erythropoiesis/physiology , Fish Diseases/parasitology , Phylogeny
2.
J Immunol ; 196(11): 4522-35, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27183628

ABSTRACT

Tetrapods contain a single CD4 coreceptor with four Ig domains that likely arose from a primordial two-domain ancestor. Notably, teleost fish contain two CD4 genes. Like tetrapod CD4, CD4-1 of rainbow trout includes four Ig domains, whereas CD4-2 contains only two. Because CD4-2 is reminiscent of the prototypic two-domain CD4 coreceptor, we hypothesized that by characterizing the cell types bearing CD4-1 and CD4-2, we would shed light into the evolution and primordial roles of CD4-bearing cells. Using newly established mAbs against CD4-1 and CD4-2, we identified two bona-fide CD4(+) T cell populations: a predominant lymphocyte population coexpressing surface CD4-1 and CD4-2 (CD4 double-positive [DP]), and a minor subset expressing only CD4-2 (CD4-2 single-positive [SP]). Although both subsets produced equivalent levels of Th1, Th17, and regulatory T cell cytokines upon bacterial infection, CD4-2 SP lymphocytes were less proliferative and displayed a more restricted TCRß repertoire. These data suggest that CD4-2 SP cells represent a functionally distinct population and may embody a vestigial CD4(+) T cell subset, the roles of which reflect those of primeval CD4(+) T cells. Importantly, we also describe the first CD4(+) monocyte/macrophage population in a nonmammalian species. Of all myeloid subsets, we found the CD4(+) population to be the most phagocytic, whereas CD4(+) lymphocytes lacked this capacity. This study fills in an important gap in the knowledge of teleost CD4-bearing leukocytes, thus revealing critical insights into the evolutionary origins and primordial roles of CD4(+) lymphocytes and CD4(+) monocytes/macrophages.


Subject(s)
CD4 Antigens/immunology , CD4-Positive T-Lymphocytes/immunology , Macrophages/immunology , Myeloid Cells/immunology , Oncorhynchus mykiss/immunology , Animals , Biological Evolution , Monocytes/immunology
3.
Fish Shellfish Immunol ; 54: 391-401, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27131902

ABSTRACT

Toll-like receptors (TLRs) interact directly with particular pathogenic structures and are thus highly important to innate immunity. The present manuscript characterises a suite of 14 TLRs in maraena whitefish (Coregonus maraena), a salmonid species with increasing importance for aquaculture. Whitefish TLRs were structurally and evolutionary analysed. The results revealed a close relationship with TLRs from salmonid fish species rainbow trout and Atlantic salmon. Profiling the baseline expression of TLR genes in whitefish indicated that mainly members of the TLR11 family were highly expressed across all investigated tissues. A stimulation model with inactivated Aeromonas salmonicida was used to induce inflammation in the peritoneal cavity of whitefish. This bacterial challenge induced the expression of pro-inflammatory cytokine genes and evoked a strong influx of granulated cells of myeloid origin into the peritoneal cavity. As a likely consequence, the abundance of TLR-encoding transcripts increased moderately in peritoneal cells, with the highest levels of transcripts encoding non-mammalian TLR22a and a soluble TLR5 variant. In the course of inflammation, the proportion of granulated cells increased in peripheral blood accompanied by elevated TLR copy numbers in spleen and simultaneously reduced TLR copy numbers in head kidney at day 3 post-stimulation. Altogether, the present study provides in-vivo evidence for relatively modest TLR response patterns, but marked trafficking of myeloid cells as an immunophysiological consequence of A. salmonicida inflammation in whitefish. The present results contribute to improved understanding of the host-pathogen interaction in salmonid fish.


Subject(s)
Fish Proteins/genetics , Furunculosis/genetics , Gram-Negative Bacterial Infections/veterinary , Salmonidae , Toll-Like Receptors/genetics , Aeromonas salmonicida/physiology , Animals , Evolution, Molecular , Fish Proteins/metabolism , Furunculosis/immunology , Furunculosis/microbiology , Gram-Negative Bacterial Infections/genetics , Gram-Negative Bacterial Infections/immunology , Gram-Negative Bacterial Infections/microbiology , Immunity, Innate/genetics , Phylogeny , Salmonidae/classification , Toll-Like Receptors/metabolism
4.
J Virol ; 88(10): 5444-54, 2014 May.
Article in English | MEDLINE | ID: mdl-24574413

ABSTRACT

UNLABELLED: Interferons (IFNs) are cytokines produced by host cells in response to the infection with pathogens. By binding to the corresponding receptors, IFNs trigger different pathways to block intracellular replication and growth of pathogens and to impede the infection of surrounding cells. Due to their key role in host defense against viral infections, as well as for clinical therapies, the IFN responses and regulation mechanisms are well studied. However, studies of type I IFNs have mainly focused on alpha interferon (IFN-α) and IFN-ß subtypes. Knowledge of IFN-κ and IFN-ω is limited. Moreover, most studies are performed in humans or mouse models but not in the original host of zoonotic pathogens. Bats are important reservoirs and transmitters of zoonotic viruses such as lyssaviruses. A few studies have shown an antiviral activity of IFNs in fruit bats. However, the function of type I IFNs against lyssaviruses in bats has not been studied yet. Here, IFN-κ and IFN-ω genes from the European serotine bat, Eptesicus serotinus, were cloned and functionally characterized. E. serotinus IFN-κ and IFN-ω genes are intronless and well conserved between microchiropteran species. The promoter regions of both genes contain essential regulatory elements for transcription factors. In vitro studies indicated a strong activation of IFN signaling by recombinant IFN-ω, whereas IFN-κ displayed weaker activation. Noticeably, both IFNs inhibit to different extents the replication of different lyssaviruses in susceptible bat cell lines. The present study provides functional data on the innate host defense against lyssaviruses in endangered European bats. IMPORTANCE: We describe here for the first time the molecular and functional characterization of two type I interferons (IFN-κ and -ω) from European serotine bat (Eptesicus serotinus). The importance of this study is mainly based on the fact that very limited information about the early innate immune response against bat lyssaviruses in their natural host serotine bats is yet available. Generally, whereas the antiviral activity of other type I interferons is well studied, the functional involvement of IFN-κ and -ω has not yet been investigated.


Subject(s)
Chiroptera/immunology , Disease Reservoirs , Interferon Type I/immunology , Lyssavirus/immunology , Animals , Cell Line , Chiroptera/genetics , Cloning, Molecular , Conserved Sequence , Interferon Type I/genetics , Lyssavirus/physiology , Promoter Regions, Genetic , Transcriptional Activation , Virus Replication/drug effects
5.
Fish Shellfish Immunol ; 42(1): 98-107, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25449374

ABSTRACT

The complement system is one of the most ancient and most essential innate immune cascades throughout the animal kingdom. Survival of aquatic animals, such as rainbow trout, depends on this early inducible, efficient immune cascade. Despite increasing research on genes coding for complement components in bony fish, some complement-related genes are still unknown in salmonid fish. In the present study, we characterize the genes encoding complement factor D (CFD), CD93 molecule (CD93), and C-type lectin domain family 4, member M (CLEC4M) from rainbow trout (Oncorhynchus mykiss). Subsequently, we performed comprehensive and comparative expression analyses of 36 complement genes including CFD, CD93, and CLEC4M and further putative complement-associated genes to obtain general information about the functional gene interaction within the complement pathway in fish. These quantification analyses were conducted in liver, spleen and gills of healthy fish of two rainbow trout strains, selected for survival (strain BORN) and growth (Import strain), respectively. The present expression study clearly confirms for rainbow trout that liver represents the primary site of complement expression. Spleen and gills also express most complement genes, although the mean transcript levels were generally lower than in liver. The transcription data suggest a contribution of spleen and gills to complement activity. The comparison of the two rainbow trout strains revealed a generally similar complement gene expression. However, a significantly lower expression of numerous genes especially in spleen seems characteristic for the BORN strain. This suggests a strain-specific complement pathway regulation under the selected rearing conditions.


Subject(s)
Complement System Proteins/genetics , Models, Immunological , Oncorhynchus mykiss/genetics , Oncorhynchus mykiss/immunology , Transcriptome/immunology , Animals , Complement Factor D/genetics , DNA Primers/genetics , DNA, Complementary/genetics , Gene Expression Profiling/methods , Genes, Duplicate/genetics , Lectins, C-Type/genetics , Liver/metabolism , Membrane Glycoproteins/genetics , Real-Time Polymerase Chain Reaction , Receptors, Complement/genetics , Species Specificity
6.
Fish Shellfish Immunol ; 36(1): 206-14, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24239597

ABSTRACT

The interleukin 1 receptor-associated kinase 4 (IRAK4) is an essential factor for TLR-mediated activation of the host's immune functions subsequent to pathogen contact. We have characterized the respective cDNA and gene sequences from three salmonid species, salmon, rainbow trout and maraena whitefish. The gene from salmon is structured into eleven exons, as is the mammalian homologue, while exons have been fused in the genes from the two other salmonid species. Rainbow trout expresses also a pseudogene at low levels. Its basic structure resembles more closely the primordial gene than the functional copy does. The N-terminal death domain and the C-terminal protein kinase domain of the factors are better conserved throughout evolution than the linker domain. The deduced amino acid sequences of the factors from all three species group together in an evolutionary tree of IRAK4 factors. Scrutinizing expression and function of IRAK4 from rainbow trout, we found its highest expression in head kidney and spleen and lowest expression in muscle tissue. Infecting fish with Aeromonas salmonicida did not modulate its expression during 72 h of observation. Expression of a GFP-tagged trout IRAK4 revealed, expectedly, its cytoplasmic localization in human HEK-293 cells. However, this factor significantly quenched in a dose-dependent fashion not only the pathogen-induced stimulation of NF-κB factors in the HEK-293 reconstitution system of TLR2 signaling, but also the basal NF-κB levels in unstimulated control cells. Our data unexpectedly imply that IRAK4 is involved in establishing threshold levels of active NF-κB in resting cells.


Subject(s)
Aeromonas salmonicida/immunology , Fish Diseases/microbiology , Gram-Negative Bacterial Infections/veterinary , Interleukin-1 Receptor-Associated Kinases/immunology , Phylogeny , Salmonidae , Amino Acid Sequence , Animals , Base Sequence , Cloning, Molecular , Fish Diseases/genetics , Fish Diseases/immunology , Gene Rearrangement/immunology , Gram-Negative Bacterial Infections/genetics , Gram-Negative Bacterial Infections/immunology , Gram-Negative Bacterial Infections/microbiology , HEK293 Cells , Humans , Interleukin-1 Receptor-Associated Kinases/genetics , Molecular Sequence Data , RNA, Messenger/chemistry , RNA, Messenger/genetics , Reverse Transcriptase Polymerase Chain Reaction/veterinary , Sequence Alignment , Sequence Analysis, DNA , Signal Transduction/immunology , Toll-Like Receptors/immunology
7.
Front Immunol ; 15: 1407237, 2024.
Article in English | MEDLINE | ID: mdl-38947329

ABSTRACT

Introduction: Red blood cells (RBCs), also known as erythrocytes, are underestimated in their role in the immune system. In mammals, erythrocytes undergo maturation that involves the loss of nuclei, resulting in limited transcription and protein synthesis capabilities. However, the nucleated nature of non-mammalian RBCs is challenging this conventional understanding of RBCs. Notably, in bony fishes, research indicates that RBCs are not only susceptible to pathogen attacks but express immune receptors and effector molecules. However, given the abundance of RBCs and their interaction with every physiological system, we postulate that they act in surveillance as sentinels, rapid responders, and messengers. Methods: We performed a series of in vitro experiments with Cyprinus carpio RBCs exposed to Aeromonas hydrophila, as well as in vivo laboratory infections using different concentrations of bacteria. Results: qPCR revealed that RBCs express genes of several inflammatory cytokines. Using cyprinid-specific antibodies, we confirmed that RBCs secreted tumor necrosis factor alpha (TNFα) and interferon gamma (IFNγ). In contrast to these indirect immune mechanisms, we observed that RBCs produce reactive oxygen species and, through transmission electron and confocal microscopy, that RBCs can engulf particles. Finally, RBCs expressed and upregulated several putative toll-like receptors, including tlr4 and tlr9, in response to A. hydrophila infection in vivo. Discussion: Overall, the RBC repertoire of pattern recognition receptors, their secretion of effector molecules, and their swift response make them immune sentinels capable of rapidly detecting and signaling the presence of foreign pathogens. By studying the interaction between a bacterium and erythrocytes, we provide novel insights into how the latter may contribute to overall innate and adaptive immune responses of teleost fishes.


Subject(s)
Aeromonas hydrophila , Carps , Cytokines , Erythrocytes , Fish Diseases , Gram-Negative Bacterial Infections , Animals , Carps/immunology , Carps/microbiology , Erythrocytes/immunology , Erythrocytes/metabolism , Cytokines/metabolism , Cytokines/immunology , Aeromonas hydrophila/immunology , Gram-Negative Bacterial Infections/immunology , Fish Diseases/immunology , Fish Diseases/microbiology , Phagocytosis/immunology , Pathogen-Associated Molecular Pattern Molecules/immunology , Immunity, Innate
8.
J Gen Virol ; 94(Pt 8): 1723-1733, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23658209

ABSTRACT

The underlying mechanisms allowing West Nile virus (WNV) to replicate in a large variety of different arthropod, bird and mammal species are largely unknown but are believed to rely on highly conserved proteins relevant for viral entry and replication. Consistent with this, the integrin αvß3 has been proposed lately to function as the cellular receptor for WNV. More recently published data, however, are not in line with this concept. Integrins are highly conserved among diverse taxa and are expressed by almost every cell type at high numbers. Our study was designed to clarify the involvement of integrins in WNV infection of cells. A cell culture model, based on wild-type and specific integrin knockout cell lines lacking the integrin subunits αv, ß1 or ß3, was used to investigate the susceptibility to WNV, and to evaluate binding and replication efficiencies of four distinct strains (New York 1999, Uganda 1937, Sarafend and Dakar). Though all cell lines were permissive, clear differences in replication efficiencies were observed. Rescue of the ß3-integrin subunit resulted in enhanced WNV yields of up to 90 %, regardless of the virus strain used. Similar results were obtained for ß1-expressing and non-expressing cells. Binding, however, was not affected by the expression of the integrins in question, and integrin blocking antibodies failed to have any effect. We conclude that integrins are involved in WNV infection but not at the level of binding to target cells.


Subject(s)
Host-Pathogen Interactions , Integrins/metabolism , Receptors, Virus/metabolism , Virus Internalization , West Nile virus/physiology , Animals , Cell Line , Chlorocebus aethiops , Gene Knockout Techniques , Integrins/genetics , Mice , Receptors, Virus/genetics
9.
Fish Shellfish Immunol ; 35(6): 2017-9, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24091063

ABSTRACT

The investigation of the cellular immune response in fish species has been for a long time hampered by absence of appropriate monoclonal antibodies (MAbs) recognising subset specific surface markers. Consequently, the majority of immunological studies still focus on the changes in total leukocyte numbers or describe gene pattern in lymphoid organs without any information about their cellular composition. Flow cytometric techniques are routinely used for the evaluation of the leukocyte composition in numerous vertebrate species and contributed significantly to the current knowledge of immune system. In rainbow trout is so far only a limited number of MAbs against characterised (IgM and IgT, CD8α) or unknown lineage markers on thrombocytes, myeloid cells or T cells available. By combination of several MAbs, we developed a rapid, simple, accurate and high throughput method for reliable discrimination of major leukocyte subpopulations from 10 µl of peripheral blood. Additionally, by a consecutive gating, this mixture enables the evaluation of the proportion between CD8α(+) and CD8α(-) population and provides for the first time valuable information about the kinetic of CD4(+) cells in rainbow trout. Furthermore, the combination of all antibodies within one sample reduced the hands-on time down to 90 min allowing fast and accurate estimation of cell kinetics in a high number of individuals. Thus presented findings enable the precise evaluation of the cellular components of immune system during both pathological and physiological responses and have therefore an immense potential for future applications in the development of vaccines and better understanding of fish immune system.


Subject(s)
Antibodies, Monoclonal/blood , Fish Proteins/blood , Flow Cytometry/methods , Leukocytes/cytology , Oncorhynchus mykiss/immunology , Animals , Flow Cytometry/veterinary , Immunity, Cellular , Oncorhynchus mykiss/blood
10.
Fish Shellfish Immunol ; 35(4): 1192-9, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23911871

ABSTRACT

The peritoneal cavity has been extensively used as a laboratory model of inflammation in many species, including the teleost fish. Although, the peritoneal cavity of rainbow trout (Oncorhynchus mykiss) was previously shown to contain a resident population of leukocytes, closer information about their exact composition and their functional response to pathogens is still missing. In the presented work, flow cytometric analysis using monoclonal antibodies was performed to characterize this cell population and evaluate its traffic during the first 72 h after antigenic stimulation and infection with Aeromonas salmonicida. Obtained results indicate that the unstimulated peritoneal cavity represents rather a lymphoid niche, dominated by the IgM(+) B cells. Expectedly, the composition changed rapidly after stimulation, which resulted in two complete changes of dominant cell type within first 72 h post injection. While the first stage of inflammation was dominated by myeloid cells, lymphocytes predominated at the later time points, with IgM(+) B cells representing more than two thirds of all cells. Later, the infection experiment elucidated the peritoneal infection and identified the key differences to the antigenic stimulation. Additionally, the data indicate that the resolution of the inflammation depends more on the bacterial clearance by myeloid cells than on regulation by lymphocytes. Taken together, obtained results represent the first complete description of the immune reaction protecting the peritoneal cavity of the fish and shed some light on the conservation of these processes during the evolution.


Subject(s)
Aeromonas salmonicida/immunology , Antibodies, Bacterial/metabolism , Fish Proteins/metabolism , Leukocytes/cytology , Oncorhynchus mykiss/immunology , Animals , Antibodies, Monoclonal/metabolism , Flow Cytometry/veterinary , Peritoneal Cavity/cytology , Peritoneal Cavity/physiology
11.
Front Immunol ; 14: 1041325, 2023.
Article in English | MEDLINE | ID: mdl-36875079

ABSTRACT

The myxozoan parasite Tetracapsuloides bryosalmonae is the causative agent of proliferative kidney disease (PKD)-a disease of salmonid fishes, notably of the commercially farmed rainbow trout Oncorhynchus mykiss. Both wild and farmed salmonids are threatened by this virulent/deadly disease, a chronic immunopathology characterized by massive lymphocyte proliferation and hyperplasia, which manifests as swollen kidneys in susceptible hosts. Studying the immune response towards the parasite helps us understand the causes and consequences of PKD. While examining the B cell population during a seasonal outbreak of PKD, we unexpectedly detected the B cell marker immunoglobulin M (IgM) on red blood cells (RBCs) of infected farmed rainbow trout. Here, we studied the nature of this IgM and this IgM+ cell population. We verified the presence of surface IgM via parallel approaches: flow cytometry, microscopy, and mass spectrometry. The levels of surface IgM (allowing complete resolution of IgM- RBCs from IgM+ RBCs) and frequency of IgM+ RBCs (with up to 99% of RBCs being positive) have not been described before in healthy fishes nor those suffering from disease. To assess the influence of the disease on these cells, we profiled the transcriptomes of teleost RBCs in health and disease. Compared to RBCs originating from healthy fish, PKD fundamentally altered RBCs in their metabolism, adhesion, and innate immune response to inflammation. In summary, RBCs play a larger role in host immunity than previously appreciated. Specifically, our findings indicate that the nucleated RBCs of rainbow trout interact with host IgM and contribute to the immune response in PKD.


Subject(s)
Kidney Diseases , Oncorhynchus mykiss , Animals , Erythrocytes , B-Lymphocytes , Immunoglobulin M
12.
Mol Biol Rep ; 39(4): 4291-300, 2012 Apr.
Article in English | MEDLINE | ID: mdl-21779798

ABSTRACT

The Ca(2+)-binding protein regucalcin (RGN) is crucial for the regulation of Ca(2+) ion homeostasis and signal transduction of cells. It is involved in the regulation of Ca(2+)-dependent protein kinases and Ca(2+) pump enzymes in cell membranes. Comparative transcriptome analysis in healthy fish of two aquacultured rainbow trout (Oncorhynchus mykiss) lines (BORN, TCO) varying in susceptibility to environmental stress identified significant differences in the expression of the RGN gene. Therefore, we firstly determined the full genomic DNA and cDNA sequence of RGN gene from rainbow trout and comparatively investigated the complete cDNA sequence in another salmonid fish dedicated for local aquaculture, the maraena whitefish (Coregonus marena). The sequence coding region translates for proteins of 298 and 299 amino acids (aa), respectively, indicating a high conservation of RGN proteins (95.7% aa identity) between the two related salmonids. In the second place, we generated RGN gene expression profiles after pathogen (Aeromonas salmonicidae subsp. salmonicida) and temperature (8 and 23°C) challenge in the two rainbow trout lines using salmon microarrays and quantitative RT-PCR. The profiles not only verified initially detected gene expression differences, they also display a tissue specific gene expression in dependence from the stressor and time. The differences in gene expression support our assumption that RGN might play a role in recovery of rainbow trout after environmental stress.


Subject(s)
Calcium-Binding Proteins/genetics , Oncorhynchus mykiss/genetics , Salmonidae/genetics , Aeromonas/physiology , Animals , Calcium-Binding Proteins/metabolism , Conserved Sequence/genetics , Evolution, Molecular , Gene Expression Regulation , Genome/genetics , Gram-Negative Bacterial Infections/genetics , Molecular Sequence Data , Oncorhynchus mykiss/microbiology , Organ Specificity/genetics , Phylogeny , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Salmonidae/microbiology , Temperature
13.
Front Immunol ; 13: 798712, 2022.
Article in English | MEDLINE | ID: mdl-35140719

ABSTRACT

The immune system is a complex and sophisticated biological system, spanning multiple levels of complexity, from the molecular level to that of tissue. Our current understanding of its function and complexity, of the heterogeneity of leukocytes, is a result of decades of concentrated efforts to delineate cellular markers using conventional methods of antibody screening and antigen identification. In mammalian models, this led to in-depth understanding of individual leukocyte subsets, their phenotypes, and their roles in health and disease. The field was further propelled forward by the development of single-cell (sc) RNA-seq technologies, offering an even broader and more integrated view of how cells work together to generate a particular response. Consequently, the adoption of scRNA-seq revealed the unexpected plasticity and heterogeneity of leukocyte populations and shifted several long-standing paradigms of immunology. This review article highlights the unprecedented opportunities offered by scRNA-seq technology to unveil the individual contributions of leukocyte subsets and their crosstalk in generating the overall immune responses in bony fishes. Single-cell transcriptomics allow identifying unseen relationships, and formulating novel hypotheses tailored for teleost species, without the need to rely on the limited number of fish-specific antibodies and pre-selected markers. Several recent studies on single-cell transcriptomes of fish have already identified previously unnoticed expression signatures and provided astonishing insights into the diversity of teleost leukocytes and the evolution of vertebrate immunity. Without a doubt, scRNA-seq in tandem with bioinformatics tools and state-of-the-art methods, will facilitate studying the teleost immune system by not only defining key markers, but also teaching us about lymphoid tissue organization, development/differentiation, cell-cell interactions, antigen receptor repertoires, states of health and disease, all across time and space in fishes. These advances will invite more researchers to develop the tools necessary to explore the immunology of fishes, which remain non-conventional animal models from which we have much to learn.


Subject(s)
Fishes/genetics , Fishes/immunology , Leukocytes/immunology , Leukocytes/metabolism , RNA-Seq , Single-Cell Analysis , Animals , Immunity , Single-Cell Analysis/methods
14.
ISME J ; 16(5): 1409-1419, 2022 05.
Article in English | MEDLINE | ID: mdl-35042972

ABSTRACT

Diplonemids are one of the most abundant groups of heterotrophic planktonic microeukaryotes in the world ocean and, thus, are likely to play an essential role in marine ecosystems. So far, only few species have been introduced into a culture, allowing basic studies of diplonemid genetics, morphology, ultrastructure, metabolism, as well as endosymbionts. However, it remains unclear whether these heterotrophic flagellates are parasitic or free-living and what are their predominant dietary patterns and preferred food items. Here we show that cultured diplonemids, maintained in an organic-rich medium as osmotrophs, can gradually switch to bacterivory as a sole food resource, supporting positive growth of their population, even when fed with a low biovolume of bacteria. We further observed remarkable differences in species-specific feeding patterns, size-selective grazing preferences, and distinct feeding strategies. Diplonemids can discriminate between low-quality food items and inedible particles, such as latex beads, even after their ingestion, by discharging them in the form of large waste vacuoles. We also detected digestion-related endogenous autofluorescence emitted by lysosomes and the activity of a melanin-like material. We present the first evidence that these omnipresent protists possess an opportunistic lifestyle that provides a considerable advantage in the generally food resource-limited marine environments.


Subject(s)
Ecosystem , Eukaryota , Bacteria/genetics , Feeding Behavior , Plankton
15.
Biomolecules ; 12(2)2022 02 18.
Article in English | MEDLINE | ID: mdl-35204827

ABSTRACT

Poly lactic-co-glycolic acid (PLGA) particles safely and effectively deliver pharmaceutical ingredients, with many applications approved for clinical use in humans. In fishes, PLGA particles are being considered as carriers of therapeutic drugs and vaccine antigens. However, existing studies focus mainly on vaccine antigens, the endpoint immune responses to these (e.g., improved antibody titres), without deeper understanding of whether fishes react to the carrier. To test whether or not PLGA are recognized by or interact at all with the immune system of a teleost fish, we prepared, characterized and injected PLGA microparticles intraperitoneally into common carp. The influx, phenotype of inflammatory leukocytes, and their capacity to produce reactive oxygen species and phagocytose PLGA microparticles were tested by flow cytometry, qPCR, and microscopy. PLGA microparticles were indeed recognized. However, they induced only transient recruitment of inflammatory leukocytes that was resolved 4 days later whereas only the smallest µm-sized particles were phagocytosed. The overall response resembled that described in mammals against foreign materials. Given the similarities between our findings and those described in mammals, PLGA particles can be adapted to play a dual role as both antigen and drug carriers in fishes, depending on the administered dose and their design.


Subject(s)
Carps , Vaccines , Animals , Antigens , Glycols , Immunity , Lactic Acid , Mammals , Polyglycolic Acid , Polylactic Acid-Polyglycolic Acid Copolymer , Vaccines/pharmacology
16.
Biology (Basel) ; 11(2)2022 Jan 21.
Article in English | MEDLINE | ID: mdl-35205041

ABSTRACT

In poikilothermic vertebrates, seasonality influences different immunological parameters such as leukocyte numbers, phagocytic activity, and antibody titers. This phenomenon has been described in different teleost species, with immunological parameters peaking during warmer months and decreased levels during winter. In this study, the cellular immune responses of rainbow trout (Oncorhynchus mykiss) kept under constant photoperiod and water temperature against intraperitoneally injected Aeromonas salmonicida during the summer and winter were investigated. The kinetics of different leukocyte subpopulations from peritoneal cavity, spleen, and head kidney in response to the bacteria was measured by flow cytometry. Furthermore, the kinetics of induced A. salmonicida-specific antibodies was evaluated by ELISA. Despite maintaining the photoperiod and water temperature as constant, different cell baselines were detected in all organs analyzed. During the winter months, B- and T-cell responses were decreased, contrary to what was observed during summer months. However, the specific antibody titers were similar between the two seasons. Natural antibodies, however, were greatly increased 12 h post-injection only during the wintertime. Altogether, our results suggest a bias toward innate immune responses and potential lymphoid immunosuppression in the wintertime in trout. These seasonal differences, despite photoperiod and water temperature being kept constant, suggest an internal inter-seasonal or circannual clock controlling the immune system and physiology of this teleost fish.

17.
Cells ; 11(3)2022 01 23.
Article in English | MEDLINE | ID: mdl-35159187

ABSTRACT

Myxozoans are a diverse group of microscopic cnidarian parasites and some representatives are associated with important diseases in fish, in both marine and freshwater aquaculture systems. Research on myxozoans has been largely hampered by the inability to isolate myxozoan parasites from their host tissues. In this study, we developed and optimized a method to isolate the myxozoan proliferative stages of different size and cellularity from fish blood, using DEAE-cellulose ion exchange chromatography. We optimized several parameters and obtained 99-100% parasite purity, as well as high survival and infectivity. Using polyclonal pan-carp blood cell-specific antibodies, we further developed a rapid cytometric assay for quantification of the proliferative stages, not only in highly concentrated DEAE-C isolates but also in dilute conditions in full blood. Early developmental stages of myxozoans are key to parasite proliferation, establishment, and pathology in their hosts. The isolation of these stages not only opens new possibilities for in vivo and in vitro studies, but also for obtaining purified DNA and protein extracts for downstream analyses. Hence, we provide a long-desired tool that will advance the functional research into the mechanisms of host exploitation and immune stimulation/evasion in this group, which could contribute greatly to the development of therapeutic strategies against myxozoans.


Subject(s)
Carps , Fish Diseases , Myxozoa , Animals , Antibodies , Aquaculture , Genomics , Myxozoa/genetics
18.
Biology (Basel) ; 10(7)2021 Jul 12.
Article in English | MEDLINE | ID: mdl-34356504

ABSTRACT

Inadequate oxygen saturation can induce stress responses in fish and further affect their immunity. Pikeperch, recently introduced in intensive aquaculture, is suggested to be reared at nearly 100% DO (dissolved oxygen), yet this recommendation can be compromised by several factors including the water temperature, stocking densities or low circulation. Herein, we aimed to investigate the effect of low oxygen saturation of 40% DO (±3.2 mg/L) over 28 days on pikeperch farmed in recirculating aquaculture systems. The obtained data suggest that-although the standard blood and health parameters did not reveal any significant differences at any timepoint-the flow cytometric analysis identified a slightly decreased proportion of lymphocytes in the HK (head kidney) of fish exposed to hypoxia. This has been complemented by marginally downregulated expression of investigated immune and stress genes in HK and liver (including FTH1, HIF1A and NR3C1). Additionally, in the model of acute peritoneal inflammation induced with inactivated Aeromonas hydrophila, we observed a striking dichotomy in the sensitivity to the low DO between innate and adaptive immunity. Thus, while the mobilization of myeloid cells from HK to blood, spleen and peritoneal cavity, underlined by changes in the expression of key proinflammatory cytokines (including MPO, IL1B and TNF) was not influenced by the low DO, hypoxia impaired the influx of lymphocytes to the peritoneal niche in the later phases of the immune reaction. Taken together, our data suggest high robustness of pikeperch towards the low oxygen saturation and further encourage its introduction to the intensive aquaculture systems.

19.
Fish Physiol Biochem ; 36(4): 1271-6, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20526670

ABSTRACT

The proline-rich protein 13 (PRR13) is reported to be a key regulator of the resistance to cytostatica by decreasing the copy number of the proapoptotic gene thrombospondin-1. We isolated and characterized the complete PRR13 gene sequence of rainbow trout (Oncorhynchus mykiss). The gene comprises four exons and three introns, the latter of comparatively short lengths (100-811 bp). The full-length PRR13 cDNA consists of 1,101 nucleotides, including an open reading frame of 563 bp, which is predicted to encode a 187 amino acid protein with a molecular mass of 18.8 kDa. A continuous stretch of ten serine residues at the C-terminus is highly conserved and characteristic for vertebrate PRR13, but not for other known proline-rich proteins. Phylogenetic analyses suggest a clear separation of teleostean PRR13 proteins and those from mammalian and reptilian species. Comparison of the tissue-specific PRR13 mRNA abundance in two strains of the rainbow trout coastal form (TCO Steelhead II-WA vs. BORN Steelhead II-Germany) revealed an increased expression in the BORN trout in nearly all examined tissues. The major expression differences were detected in gill (2.29-fold) and in liver tissue (2.16-fold). Hence, the increased PRR13 expression in BORN trout might cause improved protection from natural cytostatica and therefore support our assumption that PRR13 is a candidate gene possibly involved in the varying ability of the two rainbow trout strains to handle environmental stress under local conditions of the Southern Baltic.


Subject(s)
Gene Expression Regulation/genetics , Oncorhynchus mykiss/genetics , Phylogeny , Proline-Rich Protein Domains/genetics , Repressor Proteins/genetics , Animals , Computational Biology , DNA Primers/genetics , DNA, Complementary/genetics , Gene Components , Gene Expression Profiling , Germany , Oncorhynchus mykiss/metabolism , Open Reading Frames/genetics , Repressor Proteins/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Thrombospondin 1/metabolism
20.
Sci Rep ; 10(1): 14913, 2020 09 10.
Article in English | MEDLINE | ID: mdl-32913268

ABSTRACT

The objective of the present study is to identify and evaluate informative indicators for the welfare of rainbow trout exposed to (A) a water temperature of 27 °C and (B) a stocking density of 100 kg/m3 combined with a temperature of 27 °C. The spleen-somatic and condition index, haematocrit and the concentrations of haemoglobin, plasma cortisol and glucose revealed non-significant differences between the two stress groups and the reference group 8 days after the onset of the experiments. The transcript abundance of almost 1,500 genes was modulated at least twofold in in the spleen of rainbow trout exposed to a critical temperature alone or a critical temperature combined with crowding as compared to the reference fish. The number of differentially expressed genes was four times higher in trout that were simultaneously challenged with high temperature and crowding, compared to trout challenged with high temperature alone. Based on these sets of differentially expressed genes, we identified unique and common tissue- and stress type-specific pathways. Furthermore, our subsequent immunologic analyses revealed reduced bactericidal and inflammatory activity and a significantly altered blood-cell composition in challenged versus non-challenged rainbow trout. Altogether, our data demonstrate that heat and overstocking exert synergistic effects on the rainbow trout's physiology, especially on the immune system.


Subject(s)
Crowding , Fish Proteins/metabolism , Heat-Shock Response , Immune System/immunology , Oncorhynchus mykiss/immunology , Transcriptome , Animals , Computational Biology , Fish Proteins/genetics , Gene Expression Profiling , Glucose/metabolism , Hemoglobins/analysis , Hydrocortisone/blood , Oncorhynchus mykiss/genetics , Spleen/immunology , Spleen/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL