Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Haematologica ; 2023 Nov 09.
Article in English | MEDLINE | ID: mdl-37941480

ABSTRACT

T cell acute lymphoblastic leukemia (T-ALL) and T cell lymphoblastic lymphoma (T-LBL) are rare aggressive hematological malignancies. Current treatment consists of intensive chemotherapy, leading to 80% overall survival but are associated with severe toxic side effects. Furthermore, 10-20% of patients still die from relapsed or refractory disease providing a strong rationale for more specific, targeted therapeutic strategies with less toxicities. Here, we report a novel MYH9::PDGFRB fusion in a T-LBL patient and demonstrate that this fusion product is constitutively active and sufficient to drive oncogenic transformation in vitro and in vivo. Expanding our analysis more broadly across T-ALL, we found a T-ALL cell line and multiple patient derived xenograft models with PDGFRB hyperactivation in the absence of a fusion, with high PDGFRB expression in TLX3 and HOXA T-ALL molecular subtypes. To target this PDGFRB hyperactivation, we evaluated the therapeutic effects of a selective PDGFRB inhibitor, CP-673451, both in vitro and in vivo and demonstrated sensitivity if the receptor is hyperactivated. Altogether, our work reveals that hyperactivation of PDGFRB is an oncogenic driver in T-ALL/T-LBL and that screening T-ALL/TLBL patients for phosphorylated PDGFRB levels can serve as a biomarker for PDGFRB inhibition as a novel targeted therapeutic strategy in their treatment regimen.

3.
J Biol Chem ; 291(7): 3197-208, 2016 Feb 12.
Article in English | MEDLINE | ID: mdl-26668318

ABSTRACT

The metalloproteinase ADAMTS-5 (A disintegrin and metalloproteinase with thrombospondin motifs) degrades aggrecan, a proteoglycan essential for cartilage structure and function. ADAMTS-5 is the major aggrecanase in mouse cartilage, and is also likely to be the major aggrecanase in humans. ADAMTS-5 is a multidomain enzyme, but the function of the C-terminal ancillary domains is poorly understood. We show that mutant ADAMTS-5 lacking the catalytic domain, but with a full suite of ancillary domains inhibits wild type ADAMTS activity, in vitro and in vivo, in a dominant-negative manner. The data suggest that mutant ADAMTS-5 binds to wild type ADAMTS-5; thus we tested the hypothesis that ADAMTS-5 associates to form oligomers. Co-elution, competition, and in situ PLA experiments using full-length and truncated recombinant ADAMTS-5 confirmed that ADAMTS-5 molecules interact, and showed that the catalytic and disintegrin-like domains support these intermolecular interactions. Cross-linking experiments revealed that recombinant ADAMTS-5 formed large, reduction-sensitive oligomers with a nominal molecular mass of ∼ 400 kDa. The oligomers were unimolecular and proteolytically active. ADAMTS-5 truncates comprising the disintegrin and/or catalytic domains were able to competitively block full-length ADAMTS-5-mediated aggrecan cleavage, measured by production of the G1-EGE(373) neoepitope. These results show that ADAMTS-5 oligomerization is required for full aggrecanase activity, and they provide evidence that blocking oligomerization inhibits ADAMTS-5 activity. The data identify the surface provided by the catalytic and disintegrin-like domains of ADAMTS-5 as a legitimate target for the design of aggrecanase inhibitors.


Subject(s)
ADAM Proteins/metabolism , Aggrecans/metabolism , Arthritis, Experimental/enzymology , Knee Joint/enzymology , ADAM Proteins/chemistry , ADAM Proteins/genetics , ADAM Proteins/isolation & purification , ADAMTS5 Protein , Aggrecans/isolation & purification , Animals , Arthritis, Experimental/immunology , Arthritis, Experimental/pathology , Catalytic Domain , Cross-Linking Reagents/chemistry , Crosses, Genetic , Dimerization , Enzyme Activation , Gene Deletion , HEK293 Cells , Humans , Knee Joint/immunology , Knee Joint/pathology , Mice, Inbred C57BL , Mice, Mutant Strains , Molecular Weight , Mutant Proteins , Peptide Fragments/chemistry , Peptide Fragments/genetics , Peptide Fragments/isolation & purification , Peptide Fragments/metabolism , Protein Interaction Domains and Motifs , Proteolysis , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/isolation & purification , Recombinant Fusion Proteins/metabolism
4.
Exp Hematol ; 132: 104176, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38320689

ABSTRACT

The overall survival rate of patients with T-cell acute lymphoblastic leukemia (T-ALL) is now 90%, although patients with relapsed T-ALL face poor prognosis. The ubiquitin-proteasome system maintains normal protein homeostasis, and aberrations in this pathway are associated with T-ALL. Here we demonstrate the in vitro and in vivo activity of ixazomib, a second-generation orally available, reversible, and selective proteasome inhibitor against pediatric T-ALL cell lines and patient-derived xenografts (PDXs) grown orthotopically in immunodeficient NOD.Cg-PrkdcscidIL2rgtm1Wjl/SzJAusb (NSG) mice. Ixazomib was highly potent in vitro, with half-maximal inhibitory concentration (IC50) values in the low nanomolar range. As a monotherapy, ixazomib significantly extended mouse event-free survival of five out of eight T-ALL PDXs in vivo.


Subject(s)
Boron Compounds , Glycine/analogs & derivatives , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Humans , Child , Animals , Mice , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Heterografts , Proteasome Inhibitors/pharmacology , Mice, Inbred NOD , T-Lymphocytes , Mice, SCID
5.
Heliyon ; 9(11): e22085, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38053908

ABSTRACT

Mutations within the IL7-R-JAK-STAT signaling pathway are important drivers of T-cell acute lymphoblastic leukemia (T-ALL). Here we describe the important steps required to generate retroviral particles for the stable expression of mutant JAK3 constructs that induce constitutive JAK/STAT signaling. These are subsequently used for the viral transduction of the IL-3 cytokine-dependent Ba/F3 cell line or murine hematopoietic stem and progenitor cells (HSPCs) for in vitro and in vivo modelling of cytokine-independent growth or leukemia initiation respectively.

6.
Blood Adv ; 6(7): 2373-2387, 2022 04 12.
Article in English | MEDLINE | ID: mdl-35061886

ABSTRACT

Philadelphia-like (Ph-like) acute lymphoblastic leukemia (ALL) is a high-risk subtype of B-cell ALL characterized by a gene expression profile resembling Philadelphia chromosome-positive ALL (Ph+ ALL) in the absence of BCR-ABL1. Tyrosine kinase-activating fusions, some involving ABL1, are recurrent drivers of Ph-like ALL and are targetable with tyrosine kinase inhibitors (TKIs). We identified a rare instance of SFPQ-ABL1 in a child with Ph-like ALL. SFPQ-ABL1 expressed in cytokine-dependent cell lines was sufficient to transform cells and these cells were sensitive to ABL1-targeting TKIs. In contrast to BCR-ABL1, SFPQ-ABL1 localized to the nuclear compartment and was a weaker driver of cellular proliferation. Phosphoproteomics analysis showed upregulation of cell cycle, DNA replication, and spliceosome pathways, and downregulation of signal transduction pathways, including ErbB, NF-κB, vascular endothelial growth factor (VEGF), and MAPK signaling in SFPQ-ABL1-expressing cells compared with BCR-ABL1-expressing cells. SFPQ-ABL1 expression did not activate phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) signaling and was associated with phosphorylation of G2/M cell cycle proteins. SFPQ-ABL1 was sensitive to navitoclax and S-63845 and promotes cell survival by maintaining expression of Mcl-1 and Bcl-xL. SFPQ-ABL1 has functionally distinct mechanisms by which it drives ALL, including subcellular localization, proliferative capacity, and activation of cellular pathways. These findings highlight the role that fusion partners have in mediating the function of ABL1 fusions.


Subject(s)
Phosphatidylinositol 3-Kinases , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Child , Fusion Proteins, bcr-abl/genetics , Fusion Proteins, bcr-abl/metabolism , Humans , Phosphatidylinositol 3-Kinases/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Protein Kinase Inhibitors/pharmacology , Signal Transduction , Vascular Endothelial Growth Factor A
SELECTION OF CITATIONS
SEARCH DETAIL