Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Immunol Cell Biol ; 100(7): 529-546, 2022 08.
Article in English | MEDLINE | ID: mdl-35471730

ABSTRACT

To control infections phagocytes can directly kill invading microbes. Macrophage-expressed gene 1 (Mpeg1), a pore-forming protein sometimes known as perforin-2, is reported to be essential for bacterial killing following phagocytosis. Mice homozygous for the mutant allele Mpeg1tm1Pod succumb to bacterial infection and exhibit deficiencies in bacterial killing in vitro. Here we describe a new Mpeg mutant allele Mpeg1tm1.1Pib on the C57BL/6J background. Mice homozygous for the new allele are not abnormally susceptible to bacterial or viral infection, and irrespective of genetic background show no perturbation in bacterial killing in vitro. Potential reasons for these conflicting findings are discussed. In further work, we show that cytokine responses to inflammatory mediators, as well as antibody generation, are also normal in Mpeg1tm1.1Pib/tm1.1Pib mice. We also show that Mpeg1 is localized to a CD68-positive endolysosomal compartment, and that it exists predominantly as a processed, two-chain disulfide-linked molecule. It is abundant in conventional dendritic cells 1, and mice lacking Mpeg1 do not present the model antigen ovalbumin efficiently. We conclude that Mpeg1 is not essential for innate antibacterial protection or antiviral immunity, but may play a focused role early in the adaptive immune response.


Subject(s)
Antigen Presentation , Pore Forming Cytotoxic Proteins , Animals , Bacterial Infections/immunology , Immunity, Innate , Mice , Mice, Inbred C57BL , Pore Forming Cytotoxic Proteins/immunology , Virus Diseases/immunology
2.
Proc Natl Acad Sci U S A ; 116(40): 20135-20140, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31527262

ABSTRACT

Staphylococcus aureus small-colony variants (SCVs) are associated with unusually chronic and persistent infections despite active antibiotic treatment. The molecular basis for this clinically important phenomenon is poorly understood, hampered by the instability of the SCV phenotype. Here we investigated the genetic basis for an unstable S. aureus SCV that arose spontaneously while studying rifampicin resistance. This SCV showed no nucleotide differences across its genome compared with a normal-colony variant (NCV) revertant, yet the SCV presented the hallmarks of S. aureus linked to persistent infection: down-regulation of virulence genes and reduced hemolysis and neutrophil chemotaxis, while exhibiting increased survival in blood and ability to invade host cells. Further genome analysis revealed chromosome structural variation uniquely associated with the SCV. These variations included an asymmetric inversion across half of the S. aureus chromosome via recombination between type I restriction modification system (T1RMS) genes, and the activation of a conserved prophage harboring the immune evasion cluster (IEC). Phenotypic reversion to the wild-type-like NCV state correlated with reversal of the chromosomal inversion (CI) and with prophage stabilization. Further analysis of 29 complete S. aureus genomes showed strong signatures of recombination between hsdMS genes, suggesting that analogous CI has repeatedly occurred during S. aureus evolution. Using qPCR and long-read amplicon deep sequencing, we detected subpopulations with T1RMS rearrangements causing CIs and prophage activation across major S. aureus lineages. Here, we have discovered a previously unrecognized and widespread mechanism of reversible genomic instability in S. aureus associated with SCV generation and persistent infections.


Subject(s)
Chromosomal Instability , Chromosomes, Bacterial , Phenotype , Staphylococcal Infections/microbiology , Staphylococcus aureus/genetics , Translocation, Genetic , Chromosome Inversion , Gene Order , Genome, Bacterial , Hemolysis , Humans , Staphylococcus Phages/physiology , Staphylococcus aureus/virology
3.
Proc Natl Acad Sci U S A ; 116(9): 3722-3727, 2019 02 26.
Article in English | MEDLINE | ID: mdl-30808758

ABSTRACT

Staphylococcus aureus is a notorious human bacterial pathogen with considerable capacity to develop antibiotic resistance. We have observed that human infections caused by highly drug-resistant S. aureus are more prolonged, complicated, and difficult to eradicate. Here we describe a metabolic adaptation strategy used by clinical S. aureus strains that leads to resistance to the last-line antibiotic, daptomycin, and simultaneously affects host innate immunity. This response was characterized by a change in anionic membrane phospholipid composition induced by point mutations in the phospholipid biosynthesis gene, cls2, encoding cardiolipin synthase. Single cls2 point mutations were sufficient for daptomycin resistance, antibiotic treatment failure, and persistent infection. These phenotypes were mediated by enhanced cardiolipin biosynthesis, leading to increased bacterial membrane cardiolipin and reduced phosphatidylglycerol. The changes in membrane phospholipid profile led to modifications in membrane structure that impaired daptomycin penetration and membrane disruption. The cls2 point mutations also allowed S. aureus to evade neutrophil chemotaxis, mediated by the reduction in bacterial membrane phosphatidylglycerol, a previously undescribed bacterial-driven chemoattractant. Together, these data illustrate a metabolic strategy used by S. aureus to circumvent antibiotic and immune attack and provide crucial insights into membrane-based therapeutic targeting of this troublesome pathogen.


Subject(s)
Drug Resistance, Bacterial/genetics , Membrane Proteins/genetics , Methicillin-Resistant Staphylococcus aureus/genetics , Staphylococcal Infections/genetics , Transferases (Other Substituted Phosphate Groups)/genetics , Anti-Bacterial Agents/pharmacology , Daptomycin/pharmacology , Drug Resistance, Bacterial/immunology , Gene Expression Regulation, Bacterial/drug effects , Host-Pathogen Interactions/immunology , Humans , Immune Evasion/genetics , Immune Evasion/immunology , Membrane Proteins/metabolism , Methicillin-Resistant Staphylococcus aureus/immunology , Methicillin-Resistant Staphylococcus aureus/metabolism , Methicillin-Resistant Staphylococcus aureus/pathogenicity , Microbial Sensitivity Tests , Staphylococcal Infections/immunology , Staphylococcal Infections/microbiology , Transferases (Other Substituted Phosphate Groups)/metabolism
4.
Article in English | MEDLINE | ID: mdl-30617095

ABSTRACT

Coagulase-negative staphylococci (CoNS) represent one of the major causes of health care- and medical device-associated infections. Emerging antimicrobial resistance has complicated the treatment of systemic infections caused by CoNS. Here, we describe the prevalence of antimicrobial resistance in clinical CoNS strains from a tertiary care hospital over a 4-year period, and we observed a significant increase in resistance to daptomycin. Notably, Staphylococcus capitis accounted for the majority of these daptomycin-resistant (DAP-R) CoNS. To further investigate the mechanisms of daptomycin resistance in CoNS, daptomycin-susceptible clinical strains of S. capitis and Staphylococcus epidermidis underwent in vitro daptomycin exposure to generate DAP-R CoNS mutants. Unlike that seen with Staphylococcus aureus, alteration of cell surface charge was not observed in the DAP-R CoNS strains, but biofilm formation was compromised. Whole-genome sequencing analysis of the DAP-R CoNS strains identified single nucleotide polymorphisms (SNPs) in walKR, the essential two-component regulatory system controlling cell wall biogenesis. PCR and sequencing of walK and walR from 17 DAP-R CoNS clinical isolates identified seven nonsynonymous mutations. The results were confirmed by the recreation of the walK SNP in S. epidermidis, which resulted in reduced susceptibility to daptomycin and vancomycin. This study highlights the significance of CoNS in evolving daptomycin resistance and showed that walKR is shared among the staphylococcal species and is involved in antibiotic resistance development. Notably, we did not observe mutations in genes responsible for phospholipid biosynthesis or an altered cell surface charge, suggesting that reduced daptomycin susceptibility in CoNS may emerge in a fashion distinct from that in S. aureus.


Subject(s)
Anti-Bacterial Agents/pharmacology , Daptomycin/pharmacology , Drug Resistance, Bacterial/genetics , Staphylococcus capitis/genetics , Staphylococcus epidermidis/genetics , Amino Acid Substitution/genetics , Bacterial Proteins/genetics , Biofilms/growth & development , Cross Infection/microbiology , Histidine Kinase/genetics , Humans , Microbial Sensitivity Tests , Polymorphism, Single Nucleotide/genetics , Staphylococcal Infections/drug therapy , Staphylococcus aureus/drug effects , Staphylococcus capitis/drug effects , Staphylococcus capitis/isolation & purification , Staphylococcus epidermidis/drug effects , Staphylococcus epidermidis/isolation & purification , Tertiary Care Centers , Vancomycin/pharmacology
5.
Proc Natl Acad Sci U S A ; 113(34): 9599-604, 2016 08 23.
Article in English | MEDLINE | ID: mdl-27506797

ABSTRACT

Innate cellular immune responses are a critical first-line defense against invading bacterial pathogens. Leukocyte migration from the bloodstream to a site of infection is mediated by chemotactic factors that are often host-derived. More recently, there has been a greater appreciation of the importance of bacterial factors driving neutrophil movement during infection. Here, we describe the development of a zebrafish infection model to study Acinetobacter baumannii pathogenesis. By using isogenic A. baumannii mutants lacking expression of virulence effector proteins, we demonstrated that bacterial drivers of disease severity are conserved between zebrafish and mammals. By using transgenic zebrafish with fluorescent phagocytes, we showed that a mutation of an established A. baumannii global virulence regulator led to marked changes in neutrophil behavior involving rapid neutrophil influx to a localized site of infection, followed by prolonged neutrophil dwelling. This neutrophilic response augmented bacterial clearance and was secondary to an impaired A. baumannii phenylacetic acid catabolism pathway, which led to accumulation of phenylacetate. Purified phenylacetate was confirmed to be a neutrophil chemoattractant. These data identify a previously unknown mechanism of bacterial-guided neutrophil chemotaxis in vivo, providing insight into the role of bacterial metabolism in host innate immune evasion. Furthermore, the work provides a potentially new therapeutic paradigm of targeting a bacterial metabolic pathway to augment host innate immune responses and attenuate disease.


Subject(s)
Acinetobacter Infections/immunology , Acinetobacter baumannii/genetics , Bacterial Proteins/genetics , Chemotaxis/drug effects , Phenylacetates/metabolism , Transcription Factors/genetics , Virulence Factors/genetics , Acinetobacter Infections/microbiology , Acinetobacter Infections/pathology , Acinetobacter baumannii/immunology , Acinetobacter baumannii/metabolism , Acinetobacter baumannii/pathogenicity , Animals , Animals, Genetically Modified , Chemotaxis/immunology , Embryo, Nonmammalian , Female , Gene Expression , Immunity, Innate , Metabolic Networks and Pathways/genetics , Mice , Mice, Inbred BALB C , Neutrophil Infiltration , Neutrophils/drug effects , Neutrophils/immunology , Neutrophils/microbiology , Phenylacetates/pharmacology , Transcription Factors/deficiency , Virulence , Virulence Factors/deficiency , Zebrafish
6.
J Infect Dis ; 215(suppl_1): S52-S57, 2017 02 15.
Article in English | MEDLINE | ID: mdl-28375520

ABSTRACT

Background: Acinetobacter baumannii is a pathogen of major importance in intensive care units worldwide, with the potential to cause problematic outbreaks and acquire high-level resistance to antibiotics. There is an urgent need to understand the mechanisms of A. baumannii pathogenesis for the future development of novel targeted therapies. In this study we performed an in vivo transcriptomic analysis of A. baumannii isolated from a mammalian host with bacteremia. Methods: Mice were infected with A. baumannii American Type Culture Collection 17978 using an intraperitoneal injection, and blood was extracted at 8 hours to purify bacterial RNA for RNA-Seq with an Illumina platform. Results: Approximately one-quarter of A. baumannii protein coding genes were differentially expressed in vivo compared with in vitro (false discovery rate, ≤0.001; 2-fold change) with 557 showing decreased and 329 showing increased expression. Gene groups with functions relating to translation and RNA processing were overrepresented in genes with increased expression, and those relating to chaperone and protein turnover were overrepresented in the genes with decreased expression. The most strongly up-regulated genes corresponded to the 3 recognized siderophore iron uptake clusters, reflecting the iron-restrictive environment in vivo. Metabolic changes in vivo included reduced expression of genes involved in amino acid and fatty acid transport and catabolism, indicating metabolic adaptation to a different nutritional environment. Genes encoding types I and IV pili, quorum sensing components, and proteins involved in biofilm formation all showed reduced expression. Many genes that have been reported as essential for virulence showed reduced or unchanged expression in vivo. Conclusion: This study provides the first insight into A. baumannii gene expression profiles during a life-threatening mammalian infection. Analysis of differentially regulated genes highlights numerous potential targets for the design of novel therapeutics.


Subject(s)
Acinetobacter Infections/blood , Acinetobacter baumannii/genetics , Bacteremia/blood , Bacterial Proteins/genetics , Transcriptome , Animals , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/blood , Drug Resistance, Multiple, Bacterial/genetics , Gene Expression Profiling , Gene Expression Regulation, Bacterial , Host-Pathogen Interactions/genetics , Mice , Mice, Inbred BALB C , Quorum Sensing , RNA, Bacterial/isolation & purification , Sequence Analysis, RNA , Virulence Factors/genetics
7.
Bioorg Med Chem ; 25(24): 6267-6272, 2017 12 15.
Article in English | MEDLINE | ID: mdl-29032931

ABSTRACT

With multidrug resistant bacteria on the rise, novel antibiotics are becoming highly sought after. In 2008, eleven compounds were identified by high throughput screening as inhibitors of BasE, a key enzyme of the non-ribosomal peptide synthetase pathway found in Acinetobacter baumannii. Herein, we describe the preparation of four structurally similar heterocyclic lead compounds from that study, including one 1,2,5-oxadiazole. A further library of 30 analogues containing the oxadiazole moiety was then generated. All compounds were screened against Acinetobacter baumannii and their minimum inhibitory concentration data is reported, with (E)-3-(2-hydroxyphenyl)-N-(4-methyl-1,2,5-oxadiazol-3-yl)acrylamide 32 found to have an MIC of 0.5mM. This work provides the foundation for further investigation of 1,2,5-oxadizoles as novel inhibitors of A. baumannii.


Subject(s)
Acinetobacter baumannii/drug effects , Anti-Bacterial Agents/pharmacology , Oxadiazoles/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Dose-Response Relationship, Drug , Microbial Sensitivity Tests , Molecular Structure , Oxadiazoles/chemical synthesis , Oxadiazoles/chemistry , Structure-Activity Relationship
8.
Antimicrob Agents Chemother ; 60(1): 161-7, 2016 01.
Article in English | MEDLINE | ID: mdl-26482299

ABSTRACT

Multidrug-resistant (MDR) Acinetobacter baumannii is an opportunistic human pathogen that has become highly problematic in the clinical environment. Novel therapies are desperately required. To assist in identifying new therapeutic targets, the antagonistic interactions between A. baumannii and the most common human fungal pathogen, Candida albicans, were studied. We have observed that the C. albicans quorum-sensing molecule, farnesol, has cross-kingdom interactions, affecting the viability of A. baumannii. To gain an understanding of its mechanism, the transcriptional profile of A. baumannii exposed to farnesol was examined. Farnesol caused dysregulation of a large number of genes involved in cell membrane biogenesis, multidrug efflux pumps (AcrAB-like and AdeIJK-like), and A. baumannii virulence traits such as biofilm formation (csuA, csuB, and ompA) and motility (pilZ and pilH). We also observed a strong induction in genes involved in cell division (minD, minE, ftsK, ftsB, and ftsL). These transcriptional data were supported by functional assays showing that farnesol disrupts A. baumannii cell membrane integrity, alters cell morphology, and impairs virulence characteristics such as biofilm formation and twitching motility. Moreover, we showed that A. baumannii uses efflux pumps as a defense mechanism against this eukaryotic signaling molecule. Owing to its effects on membrane integrity, farnesol was tested to see if it potentiated the activity of the membrane-acting polymyxin antibiotic colistin. When coadministered, farnesol increased sensitivity to colistin for otherwise resistant strains. These data provide mechanistic understanding of the antagonistic interactions between diverse pathogens and may provide important insights into novel therapeutic strategies.


Subject(s)
Acinetobacter baumannii/drug effects , Biofilms/drug effects , Candida albicans/pathogenicity , Farnesol/pharmacology , Gene Expression Regulation, Bacterial , Transcriptome/drug effects , Acinetobacter baumannii/genetics , Acinetobacter baumannii/metabolism , Anti-Bacterial Agents/pharmacology , Antibiosis , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biofilms/growth & development , Candida albicans/physiology , Cell Membrane/drug effects , Colistin/pharmacology , Drug Synergism , Farnesol/metabolism , Genes, MDR , Quorum Sensing
9.
J Infect Dis ; 210(1): 46-55, 2014 Jul 01.
Article in English | MEDLINE | ID: mdl-24431277

ABSTRACT

BACKGROUND: Acinetobacter baumannii is one of the most notorious hospital-acquired pathogens, and novel treatment strategies are desperately required. Two-component regulatory systems represent potential therapeutic targets as they mediate microorganism adaptation to changing environments, often control virulence, and are specific to bacteria. Here we describe the first global virulence regulator in A. baumannii. METHODS AND RESULTS: Using transcriptional profiling and functional assays of a deletion mutant in the A. baumannii sensor kinase gene, A1S_0574 (termed as gacS), we show that this sensor kinase regulates key virulence characteristics, including pili synthesis, biofilms, and motility, resulting in virulence attenuation in a mammalian septicemia model. Notably, we also identified that GacS regulates an operon novel to A. baumannii (paa operon), which is responsible for the metabolism of aromatic compounds. Deletion of paaE (A1S_1340) confirmed the role of this operon in A. baumannii virulence. Finally, we identified the cognate response regulator (A1S_0236) for GacS and confirmed their interaction. A1S_0236 was shown to regulate 75% of the GacS transcriptome and the same virulence phenotypes. Overexpression of A1S_0236 restored virulence in the gacS mutant. CONCLUSIONS: Our study characterizes a global virulence regulator, which may provide an alternate therapeutic target, in one of the most troublesome hospital-acquired pathogens.


Subject(s)
Acinetobacter baumannii/genetics , Acinetobacter baumannii/metabolism , Gene Expression Regulation, Bacterial , Metabolic Networks and Pathways/genetics , Phenylacetates/metabolism , Protein Kinases/metabolism , Transcription Factors/metabolism , Acinetobacter baumannii/growth & development , Acinetobacter baumannii/physiology , Animals , Biofilms/growth & development , Female , Fimbriae, Bacterial/metabolism , Gene Deletion , Gene Expression Profiling , Locomotion , Mice, Inbred BALB C , Protein Kinases/genetics , Sepsis/microbiology , Sepsis/pathology , Transcription Factors/genetics , Transcription, Genetic , Virulence , Virulence Factors/biosynthesis
10.
J Infect Dis ; 207(6): 929-39, 2013 Mar 15.
Article in English | MEDLINE | ID: mdl-23255563

ABSTRACT

The occurrence of mutations in methicillin-resistant Staphylococcus aureus (MRSA) during persistent infection leads to antimicrobial resistance but may also impact host-pathogen interactions. Here, we investigate the host-pathogen consequences of 2 mutations arising in clinical MRSA during persistent infection: RpoB H481Y, which is linked to rifampicin resistance, and RelA F128Y, which is associated with an active stringent response. Allelic exchange experiments showed that both mutations cause global transcriptional changes, leading to upregulation of capsule production, with attenuated virulence in a murine bacteremia model and reduced susceptibility to both antimicrobial peptides and whole-blood killing. Disruption of capsule biosynthesis reversed these impacts on innate immune function. These data clearly link MRSA persistence and reduced virulence to the same mechanisms that alter antimicrobial susceptibility. Our study highlights the wider consequences of suboptimal antimicrobial use, where drug resistance and immune escape mechanisms coevolve, thus increasing the likelihood of treatment failure.


Subject(s)
DNA-Directed RNA Polymerases/genetics , Drug Resistance, Bacterial/genetics , Methicillin-Resistant Staphylococcus aureus/genetics , Methicillin-Resistant Staphylococcus aureus/pathogenicity , Staphylococcal Infections/immunology , Transcription Factor RelA/genetics , Transcription, Genetic/genetics , Animals , Bacterial Capsules/genetics , Bacterial Capsules/immunology , Bacterial Capsules/metabolism , Female , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Humans , Immunity, Innate , Methicillin-Resistant Staphylococcus aureus/drug effects , Mice , Mice, Inbred BALB C , Phenotype , Polymorphism, Single Nucleotide , Rifampin , Up-Regulation , Virulence/genetics , alpha-Defensins/pharmacology , beta-Defensins/pharmacology
11.
FEMS Microbiol Lett ; 3712024 Jan 09.
Article in English | MEDLINE | ID: mdl-38719540

ABSTRACT

Acinetobacter baumannii is one of the most prevalent causes of nosocomial infections worldwide. However, a paucity of information exists regarding the connection between metabolic capacity and in vivo bacterial fitness. Elevated lactate is a key marker of severe sepsis. We have previously shown that the putative A. baumannii lactate permease gene, lldP, is upregulated during in vivo infection. Here, we confirm that lldP expression is upregulated in three A. baumannii strains during a mammalian systemic infection. Utilising a transposon mutant disrupted for lldP in the contemporary clinical strain AB5075-UW, and a complemented strain, we confirmed its role in the in vitro utilisation of l-(+)-lactate. Furthermore, disruption of the lactate metabolism pathway resulted in reduced bacterial fitness during an in vivo systemic murine competition assay. The disruption of lldP had no impact on the susceptibility of this strain to complement mediated killing by healthy human serum. However, growth in biologically relevant concentrations of lactate observed during severe sepsis, led to bacterial tolerance to killing by healthy human blood, a phenotype that was abolished in the lldP mutant. This study highlights the importance of the lactate metabolism pathway for survival and growth of A. baumannii during infection.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Lactic Acid , Acinetobacter baumannii/genetics , Acinetobacter baumannii/metabolism , Animals , Acinetobacter Infections/microbiology , Lactic Acid/metabolism , Mice , Humans , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Female , Sepsis/microbiology , DNA Transposable Elements/genetics , Gene Expression Regulation, Bacterial
12.
J Infect Dis ; 205(11): 1677-87, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22492855

ABSTRACT

The genetic mechanisms that contribute to reduced susceptibility to vancomycin in Staphylococcus aureus are complex and heterogeneous. In addition, debate is emerging as to the true effect of reduced susceptibility to vancomycin on staphylococcal virulence. To investigate this, comparative genomics was performed on a collection of vancomycin-exposed isogenic S. aureus pairs (14 strains in total). Previously described mutations were observed in genes such as vraG, agrA, yvqF, and rpoB; however, a new mechanism was identified involving a serine/threonine phosphatase, Stp1. After constructing an stp1 deletion mutant, we showed that stp1 is important in vancomycin susceptibility and cell wall biosynthesis. Gene expression studies showed that stp1 also regulates virulence genes, including a hemolysin, superantigen-like protein, and phenol-soluble modulin, and that the deletion mutant is attenuated in virulence in vivo. Stp1 provides a new link between vancomycin susceptibility and virulence in S. aureus.


Subject(s)
Phosphoprotein Phosphatases/metabolism , Staphylococcus aureus/enzymology , Vancomycin Resistance , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Disease Models, Animal , Female , Gene Deletion , Gene Expression Profiling , Hemolysis , Histocytochemistry , Liver/pathology , Liver Abscess/microbiology , Liver Abscess/mortality , Liver Abscess/pathology , Mice , Mice, Inbred C57BL , Microbial Sensitivity Tests , Phosphoprotein Phosphatases/genetics , Staphylococcal Infections/microbiology , Staphylococcal Infections/mortality , Staphylococcal Infections/pathology , Staphylococcus aureus/drug effects , Staphylococcus aureus/pathogenicity , Survival Analysis , Virulence , Virulence Factors/genetics , Virulence Factors/metabolism
13.
Biofilm ; 5: 100105, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36711324

ABSTRACT

Biofilm formation and capsule production are known microbial strategies used by bacterial pathogens to survive adverse conditions in the hospital environment. The relative importance of these strategies individually is unexplored. This project aims to compare the contributory roles of biofilm formation and capsule production in bacterial survival on hospital surfaces. Representative strains of bacterial species often causing hospital-acquired infections were selected, including Acinetobacter baumannii, Klebsiella pneumoniae, Staphylococcus aureus, Staphylococcus epidermidis and Pseudomonas aeruginosa. The importance of biofilm formation and capsule production on bacterial survival was evaluated by comparing capsule-positive wild-type and capsule-deficient mutant strains, and biofilm and planktonic growth modes respectively, against three adverse hospital conditions, including desiccation, benzalkonium chloride disinfection and ultraviolet (UV) radiation. Bacterial survival was quantitatively assessed using colony-forming unit (CFU) enumeration and the 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) assay and qualitatively by scanning electron microscopy (SEM). Correlations between capsule production and biofilm formation were further investigated. Biofilm formation contributed significantly to bacterial survival on hospital surface simulators, mediating high resistance to desiccation, benzalkonium chloride disinfection and UV radiation. The role of capsule production was minor and species-specific; encapsulated A. baumannii but not K. pneumoniae cells demonstrated slightly increased resistance to desiccation, and neither showed enhanced resistance to benzalkonium chloride. Interestingly, capsule production sensitized K. pneumoniae and A. baumannii to UV radiation. The loss of capsule in K. pneumoniae and A. baumannii enhanced biofilm formation, possibly by increasing cell surface hydrophobicity. In summary, this study confirms the crucial role of biofilm formation in bacterial survival on hospital surfaces. Conversely, encapsulation plays a relatively minor role and may even negatively impact bacterial biofilm formation and hospital survival.

14.
Antibiotics (Basel) ; 12(10)2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37887234

ABSTRACT

Biofilm formation is an important microbial strategy for fungal pathogens, such as Fusarium, Aspergillus, and Candida, to establish keratitis in patients wearing soft contact lenses. Despite the well-documented 2006 outbreak of Fusarium keratitis that eventually led to the withdrawal of the Bausch & Lomb multipurpose lens care solution ReNu with MoistureLoc ("MoistureLoc") from the global market, contact lens care systems and solutions currently available on the market do not specifically target fungal biofilms. This is partially due to the lack of recognition and understanding of important roles that fungal biofilms play in contact lens associated fungal keratitis (CLAFK). This review aims to reemphasize the link between fungal biofilms and CLAFK, and deepen our comprehension of its importance in pathogenesis and persistence of this medical device-related infection.

15.
Pathology ; 55(5): 663-668, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37336685

ABSTRACT

We collected 163 clinical Pseudomonas aeruginosa isolates at a tertiary hospital specialising in adult cystic fibrosis (CF) and lung transplantation (LTx) in Melbourne, Australia, to explore the activity of ceftolozane-tazobactam (C/T) in populations at high-risk for antimicrobial resistance. Of these, 144 (88.3%) were collected from sputum, and 19 (11.7%) from bronchoalveolar lavage. Most (85.3%) were derived from patients with cystic fibrosis and included a subset of patients that had undergone LTx. These isolates were tested against 11 antibiotics, including C/T, using Sensititre plates for broth microdilution (BMD) testing. Sixty (36.8%) isolates were classified as multidrug resistant (MDR) and 32 (19.6%) were extensively drug resistant (XDR). Overall, 133/163 (81.6%) isolates were susceptible to C/T. For MDR and XDR isolates, 88.3% and 28.1% were C/T susceptible, respectively. Among the non-MDR/XDR isolates, 100% remained susceptible to C/T. Comparisons of C/T susceptibility were made using BioMérieux Etests and Liofilchem MIC test strips (MTS). Categorical agreement to BMD was >93% for both test strips, but essential agreement to BMD was slightly higher with Etest (89.0%) compared to Liofilchem (74.8%). In conclusion, C/T retained activity against most MDR and over a quarter of XDR P. aeruginosa isolates from complex patients with CF and post-LTx.


Subject(s)
Cystic Fibrosis , Pseudomonas Infections , Adult , Humans , Pseudomonas aeruginosa , Microbial Sensitivity Tests , Drug Resistance, Multiple, Bacterial , Tazobactam/pharmacology , Cephalosporins/pharmacology , Anti-Bacterial Agents/pharmacology , Australia , Pseudomonas Infections/drug therapy
16.
Biofilm ; 6: 100162, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37941804

ABSTRACT

Background: Recurrent vulvovaginal candidiasis (RVVC) is a recalcitrant medical condition that affects many women of reproductive age. The importance of biofilm formation by Candida in RVVC has been recently questioned. This study aimed to elucidate the fundamental growth modes of Candida in the vagina of patients with RVVC or sporadic vulvovaginal candidiasis (VVC) and to assess their roles in the persistence of RVVC. Methods: Vaginal tissues were sampled from twelve patients clinically and microbiologically diagnosed as RVVC or VVC at a post-antifungal-treatment and asymptomatic period. High-resolution scanning electron microscopy, fluorescence in situ hybridization in combination with Candida-specific 18S rRNA probes and viable fungal burden were used to qualitatively and quantitatively evaluate Candida growth in the human vagina. The presence of Candida biofilm extracellular polymeric substances was examined using confocal laser scanning microscopy and biopsy sections pre-stained with Concanavalin A. Histopathological analysis was carried out on infected vaginal tissues stained with hematoxylin and eosin. Lastly, the susceptibility of epithelium-associated Candida biofilms to fluconazole at the peak serum concentration was evaluated. Results: Candida species grew on the vaginal epithelium of RVVC patients as morphologically disparate biofilms including monolayers, microcolonies, and macro-colonies, in addition to sporadic adherent cells. Candida biofilm growth on the vaginal epithelium was associated with mild lymphocytic infiltration of the vaginal mucosa. These epithelium-based Candida biofilms presented an important characteristic contributing to the persistence of RVVC that is the high tolerance to fluconazole. Conclusions: In summary, our study provides direct evidence to support the presence of Candida biofilms in RVVC and an important role of biofilm formation in disease persistence.

17.
EBioMedicine ; 80: 104045, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35537278

ABSTRACT

BACKGROUND: Clinical phage therapy is often delivered alongside antibiotics. However, the phenomenon of phage-antibiotic synergy has been mostly studied in vitro. Here, we assessed the in vivo bactericidal effect of a phage-antibiotic combination on Acinetobacter baumannii AB900 using phage øFG02, which binds to capsular polysaccharides and leads to antimicrobial resensitisation in vitro. METHODS: We performed a two-stage preclinical study using a murine model of severe A. baumannii AB900 bacteraemia. In the first stage, with an endpoint of 11 h, mice (n = 4 per group) were treated with either PBS, ceftazidime, phage øFG02, or the combination of phage and ceftazidime. The second stage involved only the latter two groups (n = 5 per group), with a prolonged endpoint of 16 h. The primary outcome was the average bacterial burden from four body sites (blood, liver, kidney, and spleen). Bacterial colonies from phage-treated mice were retrieved and screened for phage-resistance. FINDINGS: In the first stage, the bacterial burden (CFU/g of tissue) of the combination group (median: 4.55 × 105; interquartile range [IQR]: 2.79 × 105-2.81 × 106) was significantly lower than the PBS (median: 2.42 × 109; IQR: 1.97 × 109-3.48 × 109) and ceftazidime groups (median: 3.86 × 108; IQR: 2.15 × 108-6.35 × 108), but not the phage-only group (median: 1.28 × 107; IQR: 4.71 × 106-7.13 × 107). In the second stage, the combination treatment (median: 1.72 × 106; IQR: 5.11 × 105-4.00 × 106) outperformed the phage-only treatment (median: 7.46 × 107; IQR: 1.43 × 107-1.57 × 108). Phage-resistance emerged in 96% of animals receiving phages, and all the tested isolates (n = 11) had loss-of-function mutations in genes involved in capsule biosynthesis and increased sensitivity to ceftazidime. INTERPRETATION: øFG02 reliably drives the in vivo evolution of A. baumannii AB900 towards a capsule-deficient, phage-resistant phenotype that is resensitised to ceftazidime. This mechanism highlights the clinical potential of using phage therapy to target A. baumannii and restore antibiotic activity. FUNDING: National Health and Medical Research Council (Australia).


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Bacteriophages , Acinetobacter Infections/drug therapy , Acinetobacter Infections/microbiology , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacteriophages/genetics , Ceftazidime/pharmacology , Ceftazidime/therapeutic use , Drug Resistance, Multiple, Bacterial , Humans , Mice , Microbial Sensitivity Tests
18.
Microb Genom ; 8(2)2022 02.
Article in English | MEDLINE | ID: mdl-35166651

ABSTRACT

Acinetobacter baumannii is a critically important pathogen known for its widespread antibiotic resistance and ability to persist in hospital-associated environments. Whilst the majority of A. baumannii infections are hospital-acquired, infections from outside the hospital have been reported with high mortality. Despite this, little is known about the natural environmental reservoir(s) of A. baumannii and the virulence potential underlying non-clinical strains. Here, we report the complete genome sequences of six diverse strains isolated from environments such as river, soil, and industrial sites around the world. Phylogenetic analyses showed that four of these strains were unrelated to representative nosocomial strains and do not share a monophyletic origin, whereas two had sequence types belonging to the global clone lineages GC1 and GC2. Further, the majority of these strains harboured genes linked to virulence and stress protection in nosocomial strains. These genotypic properties correlated well with in vitro virulence phenotypic assays testing resistance to abiotic stresses, serum survival, and capsule formation. Virulence potential was confirmed in vivo, with most environmental strains able to effectively kill Galleria mellonella greater wax moth larvae. Using phenomic arrays and antibiotic resistance profiling, environmental and nosocomial strains were shown to have similar substrate utilisation patterns although environmental strains were distinctly more sensitive to antibiotics. Taken together, these features of environmental A. baumannii strains suggest the existence of a strain-specific distinct gene pools for niche specific adaptation. Furthermore, environmental strains appear to be equally virulent as contemporary nosocomial strains but remain largely antibiotic sensitive.


Subject(s)
Acinetobacter baumannii/classification , Acinetobacter baumannii/genetics , Drug Resistance, Multiple, Bacterial/genetics , Genomics , Phylogeny , Virulence Factors/genetics , Acinetobacter Infections , Acinetobacter baumannii/drug effects , Animals , Anti-Bacterial Agents/pharmacology , Biofilms , Cross Infection , Hospitals , Moths , Virulence/genetics , Whole Genome Sequencing
19.
J Urol ; 186(4): 1537-44, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21855915

ABSTRACT

PURPOSE: Periostin is a secreted extracellular matrix protein that is differentially expressed in the developing kidney. We analyzed the temporal-spatial expression of periostin in the developing kidney and ureter as well as its roles in ureter branching morphogenesis, nephrogenesis and ureter development. MATERIALS AND METHODS: RNA in situ hybridization and immunofluorescence histochemistry were used to investigate the expression of periostin, αv integrin and α-smooth muscle actin during mouse renal and ureteral development. Metanephric explants were cultured in the presence of recombinant periostin, and ureteral branch points/tips and the glomerular number were quantified. Explants were also cultured in the presence of exogenous bone morphogenetic protein 4 and the effect on periostin mRNA levels was determined by quantitative real-time polymerase chain reaction. RESULTS: Periostin expression was observed in the mesenchyme surrounding the kidney and ureter, renal stroma, metanephric mesenchyme, ureter epithelium and developing nephrons. At embryonic day 15.5 periostin and αv integrin, a common subunit of periostin receptors, were co-expressed in smooth muscle cells of the ureter, renal artery and intrarenal arteries. Bone morphogenetic protein 4 up-regulated periostin mRNA expression and exogenous periostin inhibited branching morphogenesis and glomerular number. CONCLUSIONS: Bone morphogenetic protein 4 which inhibits ureteral branching morphogenesis and promotes smooth muscle cell migration in the ureter up-regulated periostin mRNA expression in the developing kidney. Ureteral smooth muscle cells express periostin and αv integrin. Periostin inhibited ureteral branching morphogenesis and glomerular number. Together these results suggest that periostin and bone morphogenetic protein 4 may have a role in branching morphogenesis, nephrogenesis and possibly smooth muscle cell migration.


Subject(s)
Cell Adhesion Molecules/physiology , Kidney/embryology , Ureter/embryology , Animals , Bone Morphogenetic Protein 4/physiology , Cell Adhesion Molecules/metabolism , Immunohistochemistry , Integrin alphaVbeta3/metabolism , Kidney/metabolism , Mesoderm/metabolism , Mice , Mice, Inbred C57BL , Morphogenesis , Organ Culture Techniques , Receptors, Vitronectin/metabolism , Ureter/metabolism
20.
Antibiotics (Basel) ; 10(2)2021 Jan 20.
Article in English | MEDLINE | ID: mdl-33498191

ABSTRACT

Daptomycin is an important antibiotic for the treatment of infections caused by Staphylococcus aureus. The emergence of daptomycin resistance in S. aureus is associated with treatment failure and persistent infections with poor clinical outcomes. Here, we investigated host innate immune responses against clinically derived, daptomycin-resistant (DAP-R) and -susceptible S. aureus paired isolates using a zebrafish infection model. We showed that the control of DAP-R S. aureus infections was attenuated in vivo due to cross-resistance to host cationic antimicrobial peptides. These data provide mechanistic understanding into persistent infections caused by DAP-R S. aureus and provide crucial insights into the adaptive evolution of this troublesome pathogen.

SELECTION OF CITATIONS
SEARCH DETAIL