Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nat Immunol ; 23(5): 768-780, 2022 05.
Article in English | MEDLINE | ID: mdl-35314848

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and vaccination elicit CD4+ T cell responses to the spike protein, including circulating follicular helper T (cTFH) cells that correlate with neutralizing antibodies. Using a novel HLA-DRB1*15:01/S751 tetramer to track spike-specific CD4+ T cells, we show that primary infection or vaccination induces robust S751-specific CXCR5- and cTFH cell memory responses. Secondary exposure induced recall of CD4+ T cells with a transitory CXCR3+ phenotype, and drove expansion of cTFH cells transiently expressing ICOS, CD38 and PD-1. In both contexts, cells exhibited a restricted T cell antigen receptor repertoire, including a highly public clonotype and considerable clonotypic overlap between CXCR5- and cTFH populations. Following a third vaccine dose, the rapid re-expansion of spike-specific CD4+ T cells contrasted with the comparatively delayed increase in antibody titers. Overall, we demonstrate that stable pools of cTFH and memory CD4+ T cells established by infection and/or vaccination are efficiently recalled upon antigen reexposure and may contribute to long-term protection against SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , Epitopes/metabolism , Humans , Receptors, CXCR5/metabolism , T-Lymphocytes, Helper-Inducer
2.
Immunity ; 56(5): 909-913, 2023 05 09.
Article in English | MEDLINE | ID: mdl-37105169

ABSTRACT

Immunological imprinting generically refers to the effects prior exposures have on subsequent immune responses to, and eventually protection against, antigenically related viruses. Here, Koutsakos and Ellebedy explain different concepts and terms around imprinting and the fundamental immunological principles behind it. They also discuss the potential role imprinting may have in the context of COVID-19 vaccines.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans
3.
Immunity ; 56(4): 879-892.e4, 2023 04 11.
Article in English | MEDLINE | ID: mdl-36958334

ABSTRACT

Although the protective role of neutralizing antibodies against COVID-19 is well established, questions remain about the relative importance of cellular immunity. Using 6 pMHC multimers in a cohort with early and frequent sampling, we define the phenotype and kinetics of recalled and primary T cell responses following Delta or Omicron breakthrough infection in previously vaccinated individuals. Recall of spike-specific CD4+ T cells was rapid, with cellular proliferation and extensive activation evident as early as 1 day post symptom onset. Similarly, spike-specific CD8+ T cells were rapidly activated but showed variable degrees of expansion. The frequency of activated SARS-CoV-2-specific CD8+ T cells at baseline and peak inversely correlated with peak SARS-CoV-2 RNA levels in nasal swabs and accelerated viral clearance. Our study demonstrates that a rapid and extensive recall of memory T cell populations occurs early after breakthrough infection and suggests that CD8+ T cells contribute to the control of viral replication in breakthrough SARS-CoV-2 infections.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , CD8-Positive T-Lymphocytes , Breakthrough Infections , RNA, Viral , Antibodies, Neutralizing , Antibodies, Viral , Vaccination
4.
Nat Immunol ; 20(5): 613-625, 2019 05.
Article in English | MEDLINE | ID: mdl-30778243

ABSTRACT

Influenza A, B and C viruses (IAV, IBV and ICV, respectively) circulate globally and infect humans, with IAV and IBV causing the most severe disease. CD8+ T cells confer cross-protection against IAV strains, however the responses of CD8+ T cells to IBV and ICV are understudied. We investigated the breadth of CD8+ T cell cross-recognition and provide evidence of CD8+ T cell cross-reactivity across IAV, IBV and ICV. We identified immunodominant CD8+ T cell epitopes from IBVs that were protective in mice and found memory CD8+ T cells directed against universal and influenza-virus-type-specific epitopes in the blood and lungs of healthy humans. Lung-derived CD8+ T cells displayed tissue-resident memory phenotypes. Notably, CD38+Ki67+CD8+ effector T cells directed against novel epitopes were readily detected in IAV- or IBV-infected pediatric and adult subjects. Our study introduces a new paradigm whereby CD8+ T cells confer unprecedented cross-reactivity across all influenza viruses, a key finding for the design of universal vaccines.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Cross Reactions/immunology , Gammainfluenzavirus/immunology , Influenza A virus/immunology , Influenza B virus/immunology , Influenza, Human/immunology , Adolescent , Adult , Aged , Animals , CD8-Positive T-Lymphocytes/virology , Child , Epitopes, T-Lymphocyte/immunology , Female , Humans , Influenza A virus/physiology , Influenza B virus/physiology , Influenza Vaccines/immunology , Influenza, Human/virology , Gammainfluenzavirus/physiology , Male , Mice , Middle Aged , Young Adult
5.
Immunity ; 55(7): 1316-1326.e4, 2022 07 12.
Article in English | MEDLINE | ID: mdl-35690062

ABSTRACT

Vaccination against SARS-CoV-2 protects from infection and improves clinical outcomes in breakthrough infections, likely reflecting residual vaccine-elicited immunity and recall of immunological memory. Here, we define the early kinetics of spike-specific humoral and cellular immunity after vaccination of seropositive individuals and after Delta or Omicron breakthrough infection in vaccinated individuals. Early longitudinal sampling revealed the timing and magnitude of recall, with the phenotypic activation of B cells preceding an increase in neutralizing antibody titers. While vaccination of seropositive individuals resulted in robust recall of humoral and T cell immunity, recall of vaccine-elicited responses was delayed and variable in magnitude during breakthrough infections and depended on the infecting variant of concern. While the delayed kinetics of immune recall provides a potential mechanism for the lack of early control of viral replication, the recall of antibodies coincided with viral clearance and likely underpins the protective effects of vaccination against severe COVID-19.


Subject(s)
COVID-19 , Viral Vaccines , Antibodies, Neutralizing , Antibodies, Viral , Humans , SARS-CoV-2 , Vaccination
6.
J Virol ; : e0118624, 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39360825

ABSTRACT

Neuraminidase (NA)-specific antibodies have been associated with protection against influenza and thus NA is considered a promising target for next-generation vaccines against influenza A (IAV) and B viruses (IBV). NA inhibition (NI) by antibodies is typically assessed using an enzyme-linked lectin assay (ELLA). However, ELLA can be confounded by anti-hemagglutinin (anti-HA) antibodies that block NA by steric hindrance (termed HA interference). Although strategies have been employed to overcome HA interference for IAV, similar approaches have not been assessed for IBV. We found that HA interference is common in ELLA using IBV, rendering the technique unreliable. Anti-HA antibodies were not completely depleted from sera by HA-expressing cell lines, and this approach was of limited utility. In contrast, we find that treatment of virions with Triton X-100, but not Tween-20 or ether, efficiently separates the HA and NA components and overcomes interference caused by anti-HA antibodies. We also characterize a panel of recombinant IBV NA proteins that further validated the results from Triton X-100-treated virus-based ELLA. Using these reagents and assays, we demonstrate discordant antigenic evolution between IBV NA and HA over the last 80 years. This optimized ELLA protocol will facilitate further in-depth serological surveys of IBV immunity as well as antigenic characterization of the IBV NA on a larger scale.IMPORTANCEInfluenza B viruses (IBVs) contribute to annual epidemics and may cause severe disease, especially in children. Consequently, several approaches are being explored to improve vaccine efficacy, including the addition of neuraminidase (NA). Antigen selection and assessment of serological responses will require a reliable serological assay to specifically quantify NA inhibition (NI). Although such assays have been assessed for influenza A viruses (IAVs), this has not been done of influenza B viruses. Our study identifies a readily applicable strategy to measure the inhibitory activity of neuraminidase-specific antibodies against influenza B virus without interference from anti-hemagglutinin (anti-HA) antibodies. This will aid broader serological assessment of influenza B virus-specific antibodies and antigenic characterization of the influenza B virus neuraminidase.

7.
J Virol ; 98(6): e0160423, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38780249

ABSTRACT

The global burden of disease caused by influenza B virus (IBV) is substantial; however, IBVs remain overlooked. Understanding host-pathogen interactions and establishing physiologically relevant models of infection are important for the development and assessment of therapeutics and vaccines against IBV. In this study, we assessed an upper respiratory tract (URT)-restricted model of mouse IBV infection, comparing it to the conventional administration of the virus to the total respiratory tract (TRT). We found that URT infections caused by different strains of IBV disseminate to the trachea but resulted in limited dissemination of IBV to the lungs. Infection of the URT did not result in weight loss or systemic inflammation even at high inoculum doses and despite robust viral replication in the nose. Dissemination of IBV to the lungs was enhanced in mice lacking functional type I IFN receptor (IFNAR2), but not IFNγ. Conversely, in mice expressing the IFN-inducible gene Mx1, we found reduced IBV replication in the lungs and reduced dissemination of IBV from the URT to the lungs. Inoculation of IBV in both the URT and TRT resulted in seroconversion against IBV. However, priming at the TRT conferred superior protection from a heterologous lethal IBV challenge compared to URT priming, as determined by improved survival rates and reduced viral replication throughout the respiratory tract. Overall, our study establishes a URT-restricted IBV infection model, highlights the critical role of IFNs in limiting dissemination of IBV to the lungs, and also demonstrates that the lack of viral replication in the lungs may impact protection from subsequent infections. IMPORTANCE: Our study investigated how influenza B virus (IBV) spreads from the nose to the lungs of mice and the impact this has on disease and protection from re-infection. We found that when applied to the nose only, IBV does not spread very efficiently to the lungs in a process controlled by the interferon response. Priming immunity at the nose only resulted in less protection from re-infection than priming immunity at both the nose and lungs. These insights can guide the development of potential therapies targeting the interferon response as well as of intranasal vaccines against IBV.


Subject(s)
Influenza B virus , Lung , Orthomyxoviridae Infections , Virus Replication , Animals , Mice , Influenza B virus/physiology , Influenza B virus/immunology , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/virology , Lung/virology , Lung/immunology , Disease Models, Animal , Interferons/metabolism , Interferons/immunology , Myxovirus Resistance Proteins/metabolism , Myxovirus Resistance Proteins/genetics , Receptor, Interferon alpha-beta/genetics , Receptor, Interferon alpha-beta/deficiency , Mice, Inbred C57BL , Host-Pathogen Interactions/immunology , Respiratory Tract Infections/virology , Respiratory Tract Infections/immunology , Female , Interferon-gamma/metabolism , Trachea/virology
8.
PLoS Pathog ; 18(10): e1010891, 2022 10.
Article in English | MEDLINE | ID: mdl-36206307

ABSTRACT

Although antibody-inducing split virus vaccines (SV) are currently the most effective way to combat seasonal influenza, their efficacy can be modest, especially in immunologically-naïve individuals. We investigated immune responses towards inactivated whole influenza virus particle vaccine (WPV) formulations, predicated to be more immunogenic, in a non-human primate model, as an important step towards clinical testing in humans. Comprehensive analyses were used to capture 46 immune parameters to profile how WPV-induced responses differed to those elicited by antigenically-similar SV formulations. Naïve cynomolgus macaques vaccinated with either monovalent or quadrivalent WPV consistently induced stronger antibody responses and hemagglutination inhibition (HI) antibody titres against vaccine-matched viruses compared to SV formulations, while acute reactogenic effects were similar. Responses in WPV-primed animals were further increased by boosting with the same formulation, conversely to modest responses after priming and boosting with SV. 28-parameter multiplex bead array defined key antibody features and showed that while both WPV and SV induced elevated IgG responses against A/H1N1 nucleoprotein, only WPV increased IgG responses against A/H1N1 hemagglutinin (HA) and HA-Stem, and higher IgA responses to A/H1N1-HA after each vaccine dose. Antibodies to A/H1N1-HA and HA-Stem that could engage FcγR2a and FcγR3a were also present at higher levels after one dose of WPV compared to SV and remained elevated after the second dose. Furthermore, WPV-enhanced antibody responses were associated with higher frequencies of HA-specific B-cells and IFN-γ-producing CD4+ T-cell responses. Our data additionally demonstrate stronger boosting of HI titres by WPV following prior infection and support WPV administered as a priming dose irrespective of the follow up vaccine for the second dose. Our findings thus show that compared to SV vaccination, WPV-induced humoral responses are significantly increased in scope and magnitude, advocating WPV vaccination regimens for priming immunologically-naïve individuals and also in the event of a pandemic outbreak.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Influenza, Human , Animals , Humans , Hemagglutinins , Antibodies, Viral , Vaccination , Hemagglutination Inhibition Tests , Vaccines, Inactivated , Macaca fascicularis , Virion , Immunoglobulin A , Immunoglobulin G , Nucleoproteins
9.
Proc Natl Acad Sci U S A ; 118(41)2021 10 12.
Article in English | MEDLINE | ID: mdl-34607957

ABSTRACT

Morbidity and mortality rates from seasonal and pandemic influenza occur disproportionately in high-risk groups, including Indigenous people globally. Although vaccination against influenza is recommended for those most at risk, studies on immune responses elicited by seasonal vaccines in Indigenous populations are largely missing, with no data available for Indigenous Australians and only one report published on antibody responses in Indigenous Canadians. We recruited 78 Indigenous and 84 non-Indigenous Australians vaccinated with the quadrivalent influenza vaccine into the Looking into InFluenza T cell immunity - Vaccination cohort study and collected blood to define baseline, early (day 7), and memory (day 28) immune responses. We performed in-depth analyses of T and B cell activation, formation of memory B cells, and antibody profiles and investigated host factors that could contribute to vaccine responses. We found activation profiles of circulating T follicular helper type-1 cells at the early stage correlated strongly with the total change in antibody titers induced by vaccination. Formation of influenza-specific hemagglutinin-binding memory B cells was significantly higher in seroconverters compared with nonseroconverters. In-depth antibody characterization revealed a reduction in immunoglobulin G3 before and after vaccination in the Indigenous Australian population, potentially linked to the increased frequency of the G3m21* allotype. Overall, our data provide evidence that Indigenous populations elicit robust, broad, and prototypical immune responses following immunization with seasonal inactivated influenza vaccines. Our work strongly supports the recommendation of influenza vaccination to protect Indigenous populations from severe seasonal influenza virus infections and their subsequent complications.


Subject(s)
Antibodies, Viral/blood , Indigenous Peoples/statistics & numerical data , Influenza Vaccines/immunology , Influenza, Human/prevention & control , Lymphocyte Activation/immunology , Australia , B-Lymphocytes/immunology , Humans , Immunoglobulin G/blood , Immunologic Memory/immunology , Influenza, Human/immunology , Influenza, Human/virology , Lymphocyte Count , Mass Vaccination , Risk , T Follicular Helper Cells/immunology , T-Lymphocytes/immunology
10.
Proc Natl Acad Sci U S A ; 117(39): 24384-24391, 2020 09 29.
Article in English | MEDLINE | ID: mdl-32913053

ABSTRACT

An improved understanding of human T cell-mediated immunity in COVID-19 is important for optimizing therapeutic and vaccine strategies. Experience with influenza shows that infection primes CD8+ T cell memory to peptides presented by common HLA types like HLA-A2, which enhances recovery and diminishes clinical severity upon reinfection. Stimulating peripheral blood mononuclear cells from COVID-19 convalescent patients with overlapping peptides from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) led to the clonal expansion of SARS-CoV-2-specific CD8+ and CD4+ T cells in vitro, with CD4+ T cells being robust. We identified two HLA-A*02:01-restricted SARS-CoV-2-specfic CD8+ T cell epitopes, A2/S269-277 and A2/Orf1ab3183-3191 Using peptide-HLA tetramer enrichment, direct ex vivo assessment of A2/S269+CD8+ and A2/Orf1ab3183+CD8+ populations indicated that A2/S269+CD8+ T cells were detected at comparable frequencies (∼1.3 × 10-5) in acute and convalescent HLA-A*02:01+ patients. These frequencies were higher than those found in uninfected HLA-A*02:01+ donors (∼2.5 × 10-6), but low when compared to frequencies for influenza-specific (A2/M158) and Epstein-Barr virus (EBV)-specific (A2/BMLF1280) (∼1.38 × 10-4) populations. Phenotyping A2/S269+CD8+ T cells from COVID-19 convalescents ex vivo showed that A2/S269+CD8+ T cells were predominantly negative for CD38, HLA-DR, PD-1, and CD71 activation markers, although the majority of total CD8+ T cells expressed granzymes and/or perforin. Furthermore, the bias toward naïve, stem cell memory and central memory A2/S269+CD8+ T cells rather than effector memory populations suggests that SARS-CoV-2 infection may be compromising CD8+ T cell activation. Priming with appropriate vaccines may thus be beneficial for optimizing CD8+ T cell immunity in COVID-19.


Subject(s)
Betacoronavirus/immunology , CD8-Positive T-Lymphocytes/immunology , Coronavirus Infections/immunology , HLA-A2 Antigen/immunology , Pneumonia, Viral/immunology , CD4-Positive T-Lymphocytes/immunology , COVID-19 , Epitopes, T-Lymphocyte , Female , Humans , Immunologic Memory , Immunophenotyping , Leukocytes, Mononuclear/immunology , Lymphocyte Activation , Male , Middle Aged , Pandemics , Peptide Fragments/chemistry , Peptide Fragments/immunology , Polyproteins , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Viral Proteins/chemistry , Viral Proteins/immunology
11.
Immunol Cell Biol ; 100(8): 636-652, 2022 09.
Article in English | MEDLINE | ID: mdl-35713361

ABSTRACT

Special AT-binding protein 1 (SATB1) is a chromatin-binding protein that has been shown to be a key regulator of T-cell development and CD4+ T-cell fate decisions and function. The underlying function for SATB1 in peripheral CD8+ T-cell differentiation processes is largely unknown. To address this, we examined SATB1-binding patterns in naïve and effector CD8+ T cells demonstrating that SATB1 binds to noncoding regulatory elements linked to T-cell lineage-specific gene programs, particularly in naïve CD8+ T cells. We then assessed SATB1 function using N-ethyl-N-nitrosourea-mutant mice that exhibit a point mutation in the SATB1 DNA-binding domain (termed Satb1m1Anu/m1Anu ). Satb1m1Anu/m1Anu mice exhibit diminished SATB1-binding, naïve, Satb1m1Anu/m1Anu CD8+ T cells exhibiting transcriptional and phenotypic characteristics reminiscent of effector T cells. Upon activation, the transcriptional signatures of Satb1m1Anu/m1Anu and wild-type effector CD8+ T cells converged. While there were no overt differences, primary respiratory infection of Satb1m1Anu/m1Anu mice with influenza A virus (IAV) resulted in a decreased proportion and number of IAV-specific CD8+ effector T cells recruited to the infected lung when compared with wild-type mice. Together, these data suggest that SATB1 has a major role in an appropriate transcriptional state within naïve CD8+ T cells and ensures appropriate CD8+ T-cell effector gene expression upon activation.


Subject(s)
Influenza A virus , Matrix Attachment Region Binding Proteins , Animals , CD8-Positive T-Lymphocytes , Cell Differentiation , Lymphocyte Activation , Matrix Attachment Region Binding Proteins/metabolism , Mice
12.
PLoS Pathog ; 16(8): e1008714, 2020 08.
Article in English | MEDLINE | ID: mdl-32750095

ABSTRACT

Seasonal influenza virus infections cause 290,000-650,000 deaths annually and severe morbidity in 3-5 million people. CD8+ T-cell responses towards virus-derived peptide/human leukocyte antigen (HLA) complexes provide the broadest cross-reactive immunity against human influenza viruses. Several universally-conserved CD8+ T-cell specificities that elicit prominent responses against human influenza A viruses (IAVs) have been identified. These include HLA-A*02:01-M158-66 (A2/M158), HLA-A*03:01-NP265-273, HLA-B*08:01-NP225-233, HLA-B*18:01-NP219-226, HLA-B*27:05-NP383-391 and HLA-B*57:01-NP199-207. The immunodominance hierarchies across these universal CD8+ T-cell epitopes were however unknown. Here, we probed immunodominance status of influenza-specific universal CD8+ T-cells in HLA-I heterozygote individuals expressing two or more universal HLAs for IAV. We found that while CD8+ T-cell responses directed towards A2/M158 were generally immunodominant, A2/M158+CD8+ T-cells were markedly diminished (subdominant) in HLA-A*02:01/B*27:05-expressing donors following ex vivo and in vitro analyses. A2/M158+CD8+ T-cells in non-HLA-B*27:05 individuals were immunodominant, contained optimal public TRBV19/TRAV27 TCRαß clonotypes and displayed highly polyfunctional and proliferative capacity, while A2/M158+CD8+ T cells in HLA-B*27:05-expressing donors were subdominant, with largely distinct TCRαß clonotypes and consequently markedly reduced avidity, proliferative and polyfunctional efficacy. Our data illustrate altered immunodominance patterns and immunodomination within human influenza-specific CD8+ T-cells. Accordingly, our work highlights the importance of understanding immunodominance hierarchies within individual donors across a spectrum of prominent virus-specific CD8+ T-cell specificities prior to designing T cell-directed vaccines and immunotherapies, for influenza and other infectious diseases.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , HLA-B27 Antigen/genetics , Immunodominant Epitopes/immunology , Influenza, Human/immunology , Adult , Aged , Epitopes, T-Lymphocyte/immunology , Female , HLA-B27 Antigen/immunology , Humans , Immunodominant Epitopes/genetics , Immunologic Memory , Influenza A virus/physiology , Influenza, Human/genetics , Influenza, Human/virology , Male , Middle Aged , Young Adult
13.
Immunol Cell Biol ; 99(2): 130-132, 2021 02.
Article in English | MEDLINE | ID: mdl-33167072

ABSTRACT

A recent report by Davis et al. shows that following vaccination, B-cell activation results in the emergence of a population of antibody-secreting cells (plasmablasts - PBs) in blood and a population of plasma cells (PCs) in the bone marrow, which likely originate from the day 7 PBs. However, these newly arrived PCs do not become long-lived and their abundance decreases by 1 year post-vaccination.


Subject(s)
Influenza, Human , Plasma Cells , Bone Marrow , Bone Marrow Cells , Humans , Influenza, Human/prevention & control , Vaccination
14.
Immunol Cell Biol ; 99(9): 990-1000, 2021 10.
Article in English | MEDLINE | ID: mdl-34086357

ABSTRACT

In-depth understanding of human T-cell-mediated immunity in coronavirus disease 2019 (COVID-19) is needed if we are to optimize vaccine strategies and immunotherapies. Identification of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) T-cell epitopes and generation of peptide-human leukocyte antigen (peptide-HLA) tetramers facilitate direct ex vivo analyses of SARS-CoV-2-specific T cells and their T-cell receptor (TCR) repertoires. We utilized a combination of peptide prediction and in vitro peptide stimulation to validate novel SARS-CoV-2 epitopes restricted by HLA-A*24:02, one of the most prominent HLA class I alleles, especially in Indigenous and Asian populations. Of the peptides screened, three spike-derived peptides generated CD8+ IFNγ+ responses above background, S1208-1216 (QYIKWPWYI), S448-456 (NYNYLYRLF) and S193-201 (VFKNIDGYF), with S1208 generating immunodominant CD8+ IFNγ+ responses. Using peptide-HLA-I tetramers, we performed direct ex vivo tetramer enrichment for HLA-A*24:02-restricted CD8+ T cells in COVID-19 patients and prepandemic controls. The precursor frequencies for HLA-A*24:02-restricted epitopes were within the range previously observed for other SARS-CoV-2 epitopes for both COVID-19 patients and prepandemic individuals. Naïve A24/SARS-CoV-2-specific CD8+ T cells increased nearly 7.5-fold above the average precursor frequency during COVID-19, gaining effector and memory phenotypes. Ex vivo single-cell analyses of TCRαß repertoires found that the A24/S448+ CD8+ T-cell TCRαß repertoire was driven by a common TCRß chain motif, whereas the A24/S1208+ CD8+ TCRαß repertoire was diverse across COVID-19 patients. Our study provides an in depth characterization and important insights into SARS-CoV-2-specific CD8+ T-cell responses associated with a prominent HLA-A*24:02 allomorph. This contributes to our knowledge on adaptive immune responses during primary COVID-19 and could be exploited in vaccine or immunotherapeutic approaches.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , COVID-19 , HLA-A24 Antigen , Receptors, Antigen, T-Cell/immunology , COVID-19/immunology , Humans , SARS-CoV-2
15.
Immunol Cell Biol ; 99(1): 97-106, 2021 01.
Article in English | MEDLINE | ID: mdl-32741011

ABSTRACT

Influenza remains a significant global public health burden, despite substantial annual vaccination efforts against circulating virus strains. As a result, novel vaccine approaches are needed to generate long-lasting and universal broadly cross-reactive immunity against distinct influenza virus strains and subtypes. Several new vaccine candidates are currently under development and/or in clinical trials. The successful development of new vaccines requires testing in animal models, other than mice, which capture the complexity of the human immune system. Importantly, following vaccination or challenge, the assessment of adaptive immunity at the antigen-specific level is particularly informative. In this study, using peripheral blood mononuclear cells (PBMCs) from cynomolgus macaques, we describe detection methods and in-depth analyses of influenza virus-specific B cells by recombinant hemagglutinin probes and flow cytometry, as well as the detection of influenza virus-specific CD8+ and CD4+ T cells by stimulation with live influenza A virus and intracellular cytokine staining. We highlight the potential of these assays to be used with PBMCs from other macaque species, including rhesus macaques, pigtail macaques and African green monkeys. We also demonstrate the use of a human cytometric bead array kit in detecting inflammatory cytokines and chemokines from cynomolgus macaques to assess cytokine/chemokine milieu. Overall, the detection of influenza virus-specific B and T cells, together with inflammatory responses, as described in our study, provides useful insights for evaluating novel influenza vaccines. Our data deciphering immune responses toward influenza viruses can be also adapted to understanding immunity to other infections or vaccination approaches in macaque models.


Subject(s)
Influenza Vaccines , Influenza, Human , Orthomyxoviridae Infections , Animals , Antibodies, Viral , Chlorocebus aethiops , Flow Cytometry , Hemagglutinin Glycoproteins, Influenza Virus , Humans , Leukocytes, Mononuclear , Macaca mulatta , Mice , T-Lymphocytes , Vaccination
16.
J Immunol ; 202(2): 360-367, 2019 01 15.
Article in English | MEDLINE | ID: mdl-30617117

ABSTRACT

Influenza remains a global and unpredictable threat. Annual vaccination against influenza A and B viruses promotes the induction of Abs and memory B cells, which can provide strain-specific protection against subsequent infections. The formation of effective memory B cell and Ab responses is highly dependent on the germinal center reaction, a well-orchestrated process involving B cells and a specialized CD4+ T cell subset called T follicular helper (Tfh) cells. As Tfh cells predominantly reside within B cell follicles in secondary lymphoid organs, they are challenging to study in humans. Recent identification of a circulating counterpart of Tfh cells has allowed us to better understand the contribution of these circulating Tfh cells during human immune responses. In this article, we summarize the role of human Tfh cells during humoral immune responses and discuss the contribution of Tfh cells in promoting immunity to influenza viruses in healthy cohorts and high-risk groups.


Subject(s)
B-Lymphocytes/immunology , Germinal Center/immunology , Influenza Vaccines/immunology , Influenza, Human/immunology , Orthomyxoviridae/physiology , T-Lymphocytes, Helper-Inducer/immunology , CD4 Antigens/metabolism , Humans , Immunity, Humoral , Vaccination
17.
J Immunol ; 202(2): 382-391, 2019 01 15.
Article in English | MEDLINE | ID: mdl-30617120

ABSTRACT

Avian influenza A viruses (IAVs) naturally infect different avian species, and aquatic birds are their natural reservoir. Sporadically, avian IAVs can be transmitted to humans, and some, such as H5N1 and H7N9 viruses, cause severe disease in humans. Antigenically novel avian influenza viruses that infect and cause disease in humans pose a potential pandemic threat if they are able to spread efficiently from person to person. The immune response of the host is crucial in determining disease pathogenesis and is the basis for the development of control strategies. In this review, we examine the innate and adaptive immune responses to avian influenza viruses and their role in disease and recovery. Furthermore, we discuss the progress in developing vaccines against avian IAVs and summarize obstacles in designing universal and pandemic influenza vaccines.


Subject(s)
Influenza Vaccines/immunology , Influenza in Birds/immunology , Influenza, Human/immunology , Orthomyxoviridae/physiology , Adaptive Immunity , Animals , Birds , Disease Reservoirs , Humans , Immunity, Innate , Pandemics
20.
Proc Natl Acad Sci U S A ; 113(36): 10133-8, 2016 09 06.
Article in English | MEDLINE | ID: mdl-27543331

ABSTRACT

Mucosal-associated invariant T (MAIT) cells are innate-like T lymphocytes known to elicit potent immunity to a broad range of bacteria, mainly via the rapid production of inflammatory cytokines. Whether MAIT cells contribute to antiviral immunity is less clear. Here we asked whether MAIT cells produce cytokines/chemokines during severe human influenza virus infection. Our analysis in patients hospitalized with avian H7N9 influenza pneumonia showed that individuals who recovered had higher numbers of CD161(+)Vα7.2(+) MAIT cells in peripheral blood compared with those who succumbed, suggesting a possible protective role for this lymphocyte population. To understand the mechanism underlying MAIT cell activation during influenza, we cocultured influenza A virus (IAV)-infected human lung epithelial cells (A549) and human peripheral blood mononuclear cells in vitro, then assayed them by intracellular cytokine staining. Comparison of influenza-induced MAIT cell activation with the profile for natural killer cells (CD56(+)CD3(-)) showed robust up-regulation of IFNγ for both cell populations and granzyme B in MAIT cells, although the individual responses varied among healthy donors. However, in contrast to the requirement for cell-associated factors to promote NK cell activation, the induction of MAIT cell cytokine production was dependent on IL-18 (but not IL-12) production by IAV-exposed CD14(+) monocytes. Overall, this evidence for IAV activation via an indirect, IL-18-dependent mechanism indicates that MAIT cells are protective in influenza, and also possibly in any human disease process in which inflammation and IL-18 production occur.


Subject(s)
Immunity, Mucosal , Influenza A Virus, H7N9 Subtype/pathogenicity , Influenza, Human/immunology , Interleukin-18/immunology , Mucosal-Associated Invariant T Cells/immunology , Pneumonia, Viral/immunology , A549 Cells , Cell Communication/immunology , Coculture Techniques , Gene Expression , Granzymes/genetics , Granzymes/immunology , Humans , Immunity, Innate , Immunophenotyping , Influenza A Virus, H7N9 Subtype/immunology , Influenza, Human/mortality , Influenza, Human/pathology , Influenza, Human/virology , Interferon-gamma/genetics , Interferon-gamma/immunology , Interleukin-18/genetics , Killer Cells, Natural/immunology , Killer Cells, Natural/virology , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/virology , Lymphocyte Activation , Monocytes/immunology , Monocytes/virology , Mucosal-Associated Invariant T Cells/virology , NK Cell Lectin-Like Receptor Subfamily B/genetics , NK Cell Lectin-Like Receptor Subfamily B/immunology , Pneumonia, Viral/mortality , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , Signal Transduction , Survival Analysis
SELECTION OF CITATIONS
SEARCH DETAIL