Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Malar J ; 19(1): 188, 2020 May 24.
Article in English | MEDLINE | ID: mdl-32448310

ABSTRACT

BACKGROUND: While sub-microscopic malarial infections are frequent and potentially deleterious during pregnancy, routine molecular detection is still not feasible. This study aimed to assess the performance of a Histidine Rich Protein 2 (HRP2)-based ultrasensitive rapid diagnostic test (uRDT, Alere Malaria Ag Pf) for the detection of infections of low parasite density in pregnant women. METHODS: This was a retrospective study based on samples collected in Benin from 2014 to 2017. A total of 942 whole blood samples collected in 327 women in the 1st and 3rd trimesters and at delivery were tested by uRDT, conventional RDT (cRDT, SD BIOLINE Malaria Ag Pf), microscopy, quantitative polymerase chain-reaction (qPCR) and Luminex-based suspension array technology targeting P. falciparum HRP2. The performance of each RDT was evaluated using qPCR as reference standard. The association between infections detected by uRDT, but not by cRDT, with poor maternal and birth outcomes was assessed using multivariate regression models. RESULTS: The overall positivity rate detected by cRDT, uRDT, and qPCR was 11.6% (109/942), 16.2% (153/942) and 18.3% (172/942), respectively. Out of 172 qPCR-positive samples, 68 were uRDT-negative. uRDT had a significantly better sensitivity (60.5% [52.7-67.8]) than cRDT (44.2% [36.6-51.9]) and a marginally decreased specificity (93.6% [91.7-95.3] versus 95.7% [94.0-97.0]). The gain in sensitivity was particularly high (33%) and statistically significant in the 1st trimester. Only 28 (41%) out of the 68 samples which were qPCR-positive, but uRDT-negative had detectable but very low levels of HRP2 (191 ng/mL). Infections that were detected by uRDT but not by cRDT were associated with a 3.4-times (95%CI 1.29-9.19) increased risk of anaemia during pregnancy. CONCLUSIONS: This study demonstrates the higher performance of uRDT, as compared to cRDTs, to detect low parasite density P. falciparum infections during pregnancy, particularly in the 1st trimester. uRDT allowed the detection of infections associated with maternal anaemia.


Subject(s)
Antigens, Protozoan/analysis , Diagnostic Tests, Routine/statistics & numerical data , Malaria, Falciparum/epidemiology , Plasmodium falciparum/isolation & purification , Protozoan Proteins/analysis , Adult , Female , Humans , Malaria, Falciparum/parasitology , Pregnancy , Prevalence , Retrospective Studies , Sensitivity and Specificity , Young Adult
3.
PLoS One ; 12(10): e0187234, 2017.
Article in English | MEDLINE | ID: mdl-29088280

ABSTRACT

Recent studies have highlighted the importance of local environmental factors to determine the fine-scale heterogeneity of malaria transmission and exposure to the vector. In this work, we compare a classical GLM model with backward selection with different versions of an automatic LASSO-based algorithm with 2-level cross-validation aiming to build a predictive model of the space and time dependent individual exposure to the malaria vector, using entomological and environmental data from a cohort study in Benin. Although the GLM can outperform the LASSO model with appropriate engineering, the best model in terms of predictive power was found to be the LASSO-based model. Our approach can be adapted to different topics and may therefore be helpful to address prediction issues in other health sciences domains.


Subject(s)
Malaria/epidemiology , Algorithms , Animals , Anopheles/parasitology , Humans , Malaria/transmission , Models, Statistical
4.
PLoS One ; 7(1): e28812, 2012.
Article in English | MEDLINE | ID: mdl-22238582

ABSTRACT

Malaria remains endemic in tropical areas, especially in Africa. For the evaluation of new tools and to further our understanding of host-parasite interactions, knowing the environmental risk of transmission--even at a very local scale--is essential. The aim of this study was to assess how malaria transmission is influenced and can be predicted by local climatic and environmental factors.As the entomological part of a cohort study of 650 newborn babies in nine villages in the Tori Bossito district of Southern Benin between June 2007 and February 2010, human landing catches were performed to assess the density of malaria vectors and transmission intensity. Climatic factors as well as household characteristics were recorded throughout the study. Statistical correlations between Anopheles density and environmental and climatic factors were tested using a three-level Poisson mixed regression model. The results showed both temporal variations in vector density (related to season and rainfall), and spatial variations at the level of both village and house. These spatial variations could be largely explained by factors associated with the house's immediate surroundings, namely soil type, vegetation index and the proximity of a watercourse. Based on these results, a predictive regression model was developed using a leave-one-out method, to predict the spatiotemporal variability of malaria transmission in the nine villages.This study points up the importance of local environmental factors in malaria transmission and describes a model to predict the transmission risk of individual children, based on environmental and behavioral characteristics.


Subject(s)
Environment , Malaria/transmission , Models, Biological , Animals , Anopheles/parasitology , Benin/epidemiology , Child, Preschool , Climate , Cohort Studies , Host-Parasite Interactions , Humans , Infant , Infant, Newborn , Insect Vectors/parasitology , Malaria/epidemiology , Rural Population/statistics & numerical data , Seasons , Specimen Handling/statistics & numerical data
SELECTION OF CITATIONS
SEARCH DETAIL